Journal of Physical Studies 26(1), Article 1201 [10 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.1201

METHODS OF FORMATION AND CONTROL OF RADIATION FIELDS OF M-30 MICROTRON

M. I. Romanyuk , J. J. Gaynish, O. M. Turhovsky, M. V. Goshovsky, G. F. Pitchenko, I. G. Megela , O. O. Parlag , V. T. Maslyuk 

Institute of Electron Physics of the National Academy of Sciences of Ukraine,
21, Universytetska St., UA–88017, Uzhhorod,
e-mails: nanu.iep@gmail.com; myk.romanyuk@iep.org.ua; myk.romanyuk@gmail.com; volodymyr.maslyuk@gmail.com

Received 10 June 2021; in final form 30 December 2021; accepted 04 January 2022; published online 05 February 2022

The paper describes the accelerator ‟Mikrotron M-30” (1-18 MeV) of the Institute of Electronic Physics of the National Academy of Sciences of Ukraine and its main characteristics. Also, it briefly reviews articles on the formation of radiation fields and discusses their characteristics for nuclear physics installations. It includes application of various methods of measuring the currents of charged particles, methods of detecting radiation fields using various recording media and changing the spatial distribution using flattening filters. Attention is also paid to an alternative low-cost registration method using commercial window glass.

For the ‟Mikrotron M-30” accelerator, parameters of the radiation fields were investigated on a metrological bench oriented along the electron beam at distances of 0-400 cm from the M-30 beam output node. Dosimetric characteristics were determined using ionization chambers of the ROBOTRON dosimeter and a Faraday cylinder designed for diagnostics of electron beams with energies up to 30 MeV.

In this work, to control the spatial uniformity of the radiation field, we used a registration method based on glass plates; the degree of uniformity of the radiation field was determined by a change in their optical characteristics, namely, the degree of darkening. For correctness of the obtained distributions, the radiation dose was limited to the region of linearity of glass darkening from the absorbed dose. The use of a radiation shaper ensured irradiation of samples with radiation of a uniform field in the irradiation plane of 30\

Analytical dependencies of the radiation dose on the distance to the output node M-30 were obtained using a Faraday cylinder. The combination of these dose dependencies of glass darkening, the spatial homogeneity of the fields, along with the dose dependence on the distance to the source node, made it possible to develop protocols for dosimetric tracking of the irradiation process for materials and devices for various purposes.

Key words: microtron (1–30 MeV), radiation fields, formation, homogeneity, dose, control.

Full text


References
  1. M. R. Cleland, in Industrial Applications of Electron Accelerators (CERN Accelerator School, Zeegse, Netherlands, 2005), p. 383;
    Crossref
  2. ISO 11137-3:2006. Sterilization of health care products — Radiation — Part 3: Guidance on dosimetric aspects; https://www.iso.org/standard/33955.html
  3. N. P. Dikiy et al., Probl. At. Sci. Technol. 37, 26 (2001); https://vant.kipt.kharkov.ua/ARTICLE/VANT_2001_1/article_2001_1_26.pdf
  4. V. Maslyuk et al., in Space Research in Ukraine. 2016–2018, edited by O. Fedorov (Akademperiodyka, Kyiv, 2018), p. 130; https://cosparhq.cnes.fr/assets/uploads/2020/09/Ukraine_2016-2018.pdf
  5. Ю. А. Похил та ін., Косм. наука технол. 15(6), 73 (2009); https://www.mao.kiev.ua/biblio/jscans/knit/2009-15/knit-2009-15-6-09.pdf
  6. Л. С. Новиков, Радиационные воздействия на материалы космических аппаратов (Университетская книга, Москва, 2010).
  7. А. И. Акишин, Методы радиационных испытаний космических материалов (Изд-во Моск. ун-та, Москва, 2005).
  8. С. П. Капица, В. Н. Мелехин, Микротрон (Наука, Москва, 1969).
  9. Ю. М. Ципенюк, Фундаментальные и прикладные исследования на микротроне (Физматгиз, Москва, 2009).
  10. В. Т. Маслюк, Вісн. НАН України, №11, 46 (2016).
  11. Н. И. Романюк и др., в кн. Тезисы докладов VI конференции по физике высоких энерґий, ядерной физике и ускорителям (ННЦ ХФТИ, Харьков, 2008), с. 92.
  12. В. В. Смалюк, Диагностика пучков заряженных частиц в ускорителях (Параллель, Новосибирск, 2009).
  13. Н. И. Романюк и др., в кн. Тезисы докладов VI конференции по физике высоких энергий, ядерной физике и ускорителям (ННЦ ХФТИ, Харьков, 2008), с. 101.
  14. S. Okabe et al., Jpn. J. Appl. Phys. 5, 68 (1966);
    Crossref
  15. А. А. Красных и др., Науч. вед. Белгород. гос. ун-та. Cер. Мат. Физ. 50, 323 (2018); https://core.ac.uk/download/pdf/161830918.pdf
  16. V. N. Boriskin et al., Probl. At. Sci. Technol., No 1, 74 (2004); https://vant.kipt.kharkov.ua/ARTICLE/VANT_2004_1/article_2004_1_74.pdf
  17. Н. И. Айзацкий и др., Вісн. Харк. ун-ту, № 657. Сер. фіз. "Ядра, частинки, поля", вип. 1(26), 77 (2005); http://nuclear.univer.kharkov.ua/lib/657_1(26)_05_p77-80.pdf
  18. M. Andreev, S. Kovalsky, S. Kornilov, M. Motorin, N. Rempe, AIP Adv. 7, 015033 (2017);
    Crossref
  19. P. Mayles, A. Nahum, J. C. Rosenwald, Handbook of Radiotherapy Physics: Theory and Practice (Taylor & Francis Group, CRC Press, Boca Raton, FL, 2007).
  20. I. A. Miloichikova et al., Phys. Part. Nucl. Lett. 13, 890 (2016);
    Crossref
  21. S. G. Stuchebrov et al., AIP Conf. Proc. 1772, 060016 (2016);
    Crossref
  22. S. R. Deans, The Radon Transform and Some of Its Applications (Courier Corporation, 2007).
  23. С. М. Бреховских, Ю. Н. Викторова, Л. М. Ланда, Радиационные эффекты в стеклах (Энергоиздат, Москва, 1982).
  24. F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, 1986);
    Crossref
  25. Yu. M. Aleksandrov, V. F. Grushin, A. N. Zinevich, L. Z. Dzhilavyan, V. A. Oboznyr, Sov. Phys.-JETP 41, 801 (1975); http://jetp.ras.ru/cgi-bin/dn/e_041_05_0801.pdf
  26. L. V. E. Caldas, M. I. Teixeira, Radiat. Prot. Dosim. 101, 149 (2002); https://www.ipen.br/biblioteca/2002/08491.pdf ;
    Crossref
  27. P. G. Fuochi et al., in Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications. Conference proceedings (2008), p. 70;
    Crossref
  28. M. Askarbioki, M. B. Zarandi, S. Khakshournia, S. P. Shirmardi, M. Sharifian, J. Instrum. 13, T12003 (2002);
    Crossref
  29. Н. И. Романюк и др., в кн. XV конференция по физике высоких энергий и ядерной физике и ускорителям. Тезю докл. (ННЦ ХФТИ, Харьков, 2017), c. 74.
  30. F. P. Korshunov, A. P. Lazar, Instrum. Exp. Tech. 48, 89 (2005);
    Crossref
  31. В. Т. Маслюк та ін., у кн. XXVII щорічна наукова конференція інституту ядерних досліджень НАН України. До 50-річчя ІЯД НАН України (ІЯД НАН України, Київ, 2020), с. 92.