Journal of Physical Studies 26(1), Article 1302 [8 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.1302

ATOMISTIC MODELING OF FORMATION AND FRICTION OF MATERIALS WITH NANODIMENSIONAL SURFACES

A. V. Khomenko , M. V. Zakharov, M. O. Gorpinchenko

Sumy State University,
2, Rymskyi-Korsakov St., Sumy, UA–40007, Ukraine

Received 28 October 2021; in final form 23 November 2021; accepted 25 November 2021; published online 11 February 2022

The review presents the results of modeling of the solvation of nanoparticles with deep eutectic solvents that act as stabilizers of metal nanoparticles, which provide a new platform for nanoparticle technology. It is calculated that there is a slower dynamics of solvent molecules, i.e., a slowing down of water near solutes. Such water has limited movement and cannot be organized into tetrahedral forms, in contrast to water in volume. Also, the paper describes systematic studies of the adsorption configuration, distribution density and adsorption energy of molecules H$_{2}$O, CO$_{2}$, CH$_{4}$, N$_{2}$, C$_{8}$H$_{18}$ and fluorocarbons C$_{3}$F$_{8}$ and C$_{5}$F$_{12}$ on the surface of kaolinite (0 0 1). Water adsorption is initiated and occurs due to the growth of clusters around surface groups, which is mainly regulated by the interactions of hydrogen bonds. Further, the paper investigates theoretically physical and mechanical properties of nanoscale systems, in particular, nanotips, amorphous carbon monolayer and nanoparticles. It is shown that the single-layer amorphous carbon is surprisingly stable and is deformed with a high ultimate strength without the propagation of cracks from the point of failure. The sliding on amorphous polyethylene and silicon studied using the method of molecular dynamics is described. The paper also discusses the dependencies of the friction force, acting on nanoparticles, on their velocity and sizes, in particular, the contact area, the structure and the type of the material, as well as on the direction of their shear and temperature. At an angle of rotation $ 45^\circ $, the silicon friction forces reach a minimum value, which can be termed superlubricity. The molecular dynamics modeling of the surface of carbon nanotubes, chitosan, polyvinyl acetate, titanium dioxide, $α$-quartz and zeolite is described to solve application problems ranging from reaction control to targeted delivery and creation of new drugs. The general principles have been identified that artificial water channels made of carbon nanotubes porins must satisfy, which can serve as a basis for further experiments. The organic modification mainly forms a modifier layer by crosslinking the hydrogen bond with the substrate, the flatness of the modified layer is strongly influenced by the type and concentration of the modifier.

Key words: atomic force microscopy, carbon-based materials, friction, graphene, nanoparticles, tribology.

Full text


References
  1. A. E. Filippov, S. N. Gorb, Combined Discrete and Continual Approaches in Biological Modelling (Springer, Cham, 2020);
    Crossref
  2. G.-P. Ostermeyer, V. L. Popov, E. V. Shilko, O. S. Vasiljeva, Multiscale Biomechanics and Tribology of Inorganic and Organic Systems (Springer, Cham, 2021);
    Crossref
  3. S. R. Varanasi, O. A. Guskova, A. John, J.-U. Sommer, J. Chem. Phys. 142, 224308 (2015);
    Crossref
  4. S. Canuto, Solvation Effects on Molecules and Biomolecules, Computational Methods and Applications (Springer, Dordrecht, 2008);
    Crossref
  5. A. V. Khomenko, D. V. Boyko, M. V. Zakharov, J. Frict. Wear 39, 152 (2018);
    Crossref
  6. A. V. Khomenko, I. A. Lyashenko, V. N. Borisyuk, Fluct. Noise Lett. 9, 19 (2010);
    Crossref
  7. A. V. Khomenko, I. A. Lyashenko, Condens. Matter Phys. 9, 695 (2006);
    Crossref
  8. A. I. Olemskoi, O. V. Yushchenko, A. Yu. Badalyan, Theor. Math. Phys. 174, 386 (2013);
    Crossref
  9. M. Atilhan, S. Aparicio, J. Phys. Chem. C 122, 18029 (2018);
    Crossref
  10. A. S. Pensado, A. A. H. Padua, Angew. Chem. 123, 8842 (2011);
    Crossref
  11. A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, Y. A. Kunitskii, Phys.-Usp. 55, 270 (2012);
    Crossref
  12. A. Khomenko, M. Zakharov, D. Boyko, B. N. J. Persson, Beilstein J. Nanotechnol. 9, 1239 (2018);
    Crossref
  13. A. V. Khomenko, M. V. Zakharov, K. P. Khomenko, Y. V. Khyzhnya, P. E. Trofymenko, in: Proceedings of the IEEE 8th International Conference on Nanomaterials: Application Properties (NAP'18) (IEEE, USA) 4, 04NNLS15-1-4 (2018);
    Crossref
  14. A. Khomenko, M. Zakharov, B. N. J. Persson, Tribol. Lett. 67, 113 (2019);
    Crossref
  15. A. V. Khomenko, N. V. Prodanov, B. N. J. Persson, Condens. Matter Phys. 16, 33401 (2013);
    Crossref
  16. B. N. J. Persson, Sliding Friction. Physical Principles and Applications (Springer-Verlag, Berlin, 2000);
    Crossref
  17. V. L. Popov, Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation (Springer, Berlin, Heidelberg, 2009);
    Crossref
  18. Y. Ma, G. Lu, C. Shao, X. Li, Fuel 237, 989 (2019);
    Crossref
  19. B. Zhang, J. Kang, T. Kang, Appl. Surf. Sci 439, 792 (2018);
    Crossref
  20. E. Di Biase, L. Sarkisov, Carbon 94, 27 (2015);
    Crossref
  21. A. L. Chaffee et al., Int. J. Greenhouse Gas Control 1, 11 (2007);
    Crossref
  22. O. Mazur, L. Stefanovich, Physica D 424, 132942 (2021);
    Crossref
  23. A. V. Khomenko, I. A. Lyashenko, V. N. Borisyuk, Ukr. J. Phys. 54, 1139 (2009).
  24. A. V. Khomenko, I. A. Lyashenko, Phys. Lett. A 366, 165 (2007);
    Crossref
  25. C.-T. Toh et al., Nature 577, 199 (2020);
    Crossref
  26. I. P. Herman, Chem. Rev. 89, 1323 (1989);
    Crossref
  27. S. Zhan et al., Soft Matter 15, 8827 (2019);
    Crossref
  28. D. Hossain, M. A. Tschopp, D. K. Ward, Polymer 51, 6071 (2010);
    Crossref
  29. A. V. Khomenko, D. S. Troshchenko, L. S. Metlov, P. E. Trofimenko, Nanosistemi, Nanomater. Nanotehnologii 15, 203 (2017);
    Crossref
  30. L. Chen, Y. Wang, H. Bu, Y. Chen, Proc. Inst. Mech. Eng. N 227, 130 (2013);
    Crossref
  31. M. Hirano, K. Shinjo, Phys. Rev. B 41, 11837 (1990);
    Crossref
  32. A. V. Khomenko, I. A. Lyashenko, J. Frict. Wear 31, 308 (2010);
    Crossref
  33. M. Vögele, J. Köfinger, G. Hummer, Faraday Discuss. 209, 341 (2018);
    Crossref
  34. G. Hummer, J. C. Rasaiah, J. P. Noworyta, Nature 414, 188 (2001);
    Crossref
  35. K. Goossens, H. Winter, J. Chem. Inf. Model. 58, 2193 (2018);
    Crossref
  36. J. Wu et al., Front. Chem. 7, 746 (2019);
    Crossref
  37. S. Feng, T. Bein, Nature 368, 834 (1994);
    Crossref
  38. A. A. Goncharov, A. N. Yunda, H. Komsta, P. Rogalski, Acta Phys. Pol. A 132, 270 (2017);
    Crossref
  39. A. Hospital, J. R. Goñi, M. Orozco, J. Gelpi, Adv. Appl. Bioinform. Chem. 2015, 37 (2015);
    Crossref
  40. G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, Pharmacol. Rev. 66, 334 (2013);
    Crossref