Journal of Physical Studies 26(1), Article 1901 [8 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.1901

MAGNETIC COMPLEXITY OF ACTIVE REGIONS DURING 23–24 SOLAR CYCLES

O. A. Baran , A. I. Prysiazhnyi , M. M. Koval'chuk 

Astronomical Observatory, Ivan Franko National University of Lviv,
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine
e-mails: oleksandra.baran@lnu.edu.ua, andrii.prysiazhnyi@lnu.edu.ua, marmyr.kovalchuk@gmail.com

Received 30 November 2021; in final form 29 December 2021; accepted 04 January 2022; published online 11 February 2022

The paper examines the distribution of the magnetic complexity of active regions (ARs) during 1996-2019 (solar cycles 23-24). The research is based on the ARs data from the website of the Heliophysical Integrated Observatory HELIO (\url{www.helio-vo.eu}). ARs are grouped according to their magnetic complexity using Hale classification.

We divided ARs classes into a unipolar and a bipolar group of classes, as well as into a simple and a complex group. We studied changes in magnetic configurations during the development of each region. We calculated daily total areas of ARs of each complexity class and analyzed their yearly values in different phases of the solar cycle. We determined the relative duration of complex magnetic configurations for each AR of the complex group. We compared the numbers of such ARs and the durations of their complex magnetic configuration in the maximum phases of cycles 23 and 24.

The study has shown that the characteristics of ARs of different groups vary significantly during the solar cycle. ARs of the unipolar group occupy a larger total area in the ascending phase; the graph for the total area of the bipolar group is similar to the corresponding graph for all regions. ARs of simple classes prevail during the periods of solar activity minimum; ARs of complex classes occupy a larger total area and there are more of them around the period of maximum.

The difference between cycles 23 and 24 is manifested primarily in the number and the total area of all ARs in the maximum phase. For all groups separately the maximal values of the total ARs area are smaller in cycle 24 than in cycle 23. The numbers and the durations of ARs with a complex magnetic configuration in the maximum phases of cycles 23 and 24 are significantly different.

Key words: solar cycle, active regions, sunspot polarity, magnetic configurations, Hale classes.

Full text


References
  1. G. E. Hale, F. Ellerman, S. B. Nicholson, A. H. Joy, Astrophys. J. 49, 153 (1919);
    Crossref
  2. G. E. Hale, S. B. Nicholson, Magnetic Observations of Sunspots, 1917–1924 (Carnegie Inst., Washington DC, 1938).
  3. H. Künzel, Astron. Nachr. 288, 177 (1965).
  4. L. van Driel-Gesztelyi, L. M. Green, Liv. Rev. Solar Phys. 12, 1, (2015);
    Crossref
  5. H. Künzel, Astron. Nachr. 285, 271 (1960);
    Crossref
  6. S. F. Smith, R. Howard, in Structure and Development of Solar Active Regions, edited by K. O. Kiepenheuer (Springer, 1968), p. 33.
  7. T. Atac, Astrophys. Space Sci. 129, 203 (1987);
    Crossref
  8. I. Sammis, F. Tang, H. Zirin, Astrophys. J. 540, 583 (2000);
    Crossref
  9. M. Ternullo, L. Contarino, P. Romano, F. Zuccarello, Astron. Nachr. 327, 36 (2006);
    Crossref
  10. J. Guo, J. Lin, Y. Deng, Mon. Not. R. Astron. Soc. 441, 2208 (2014);
    Crossref
  11. P. X. Gao, Astrophys. J. 894, 77 (2020);
    Crossref
  12. S. A. Jaeggli, A. A. Norton, Astrophys. J. Lett. 820, L11 (2016);
    Crossref
  13. S. Nikbakhsh, E. I. Tanskanen, M. J. Käpylä, T. Hackman, Astron. Astrophys. 629, A45 (2019);
    Crossref
  14. A. V. Zhukova et al., Geomagn. Aeron. 60, 673 (2020);
    Crossref
  15. V. M. Efimenko, V. G. Lozitsky, Geomagn. Aeron. 58, 1057 (2018);
    Crossref