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The local nuclear curvature C(s, t) as a derivative of local nuclear slope B(s, t) is reconstructed
from the experimental di�erential cross-section of pp and p̄p elastic scattering for TeV energies
in the small-|t| region where the non-exponential behavior of the di�raction cone, i. e. the �break�
phenomenon is clearly visible. Predictions for C(s, t) are investigated in several Pomeron models. The
extreme sensitivity of the local nuclear curvature for the choice of a Pomeron model is emphasized.
Only some of them predict a C(s, t = 0) or ⟨C(s)⟩ which decreases with energy and changes sign at
very large energy.
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I. INTRODUCTION

The TOTEM experiment at CERN LHC observed
the non-exponential behavior of the low-|t| elastic pp
di�erential cross-section, i. e. the so called �break�
phenomenon at

√
s = 8 and 13 TeV colliding energies

in a statistically signi�cant manner [1�3]. The analysis
revealed that the di�erential elastic cross section does
not, in fact, decrease purely exponentially as exp(−B|t|)
at a small value of |t|, but rather shows a concave
curvature relative to the expected exponential decrease
as in the case of pp elastic scattering measurements
at ISR in the 1970s. Recently, it was found that the
curvature e�ects, although small, lead to signi�cant
changes in the forward slope parameter relative to that
determined in a purely exponential �t. This suggests the
inclusion of the small-|t| di�erential cross section data
into the �ts [4]. Curvature was studied previously at
much lower energies in Refs. [5, 6].
Below we propose a simple procedure to reveal the

�experimental� curvature allowing us to assess the onset
of the asymptopia. The onset of asymptopia coincides
with the energy where the value of the curvature
parameter at vanishing |t| goes to zero. Therefore,
we shall study the energy and |t| behaviour of the
curvature within the framework of phenomenological
models. These models naturally consider the curvature as
a manifestation of the threshold structure of the scatter-
ing amplitude required by t-channel unitarity.

II. CHOICE OF DATA AND CURVATURE
SHAPE

Latest experiments on elastic pp scattering performed
at CERN brought us closer to answering an old questi-
on: �where is asymptopia?� [7]. In elastic hadron�hadron

scattering the �ne structure parameters of di�raction
cone such as the slope

B(s, t) =
d

dt
ln

(
dσ(s, t)

dt

)
, (1)

and curvature

C(s, t) =
1

2

d

dt
B(s, t), (2)

are sensitive indicators of the transition to the
�asymptotic� regime [8]. To further explore the above
mentioned non-exponential behavior, we shall use the
experimental data points at a given �xed energy normali-
zed by a linear exponential [1, 2]:

Rexp(t) =

(
dσ

dt

)
exp

−
(
dσ

dt

)
lin(

dσ

dt

)
lin

, (3)

where (dσ/dt)exp are the measured data points and

(dσ/dt)lin is the approximation of all experimental
points at given �xed energy in a selected interval of |t|
by a linear exponential i. e.(

dσ

dt

)
lin

= aebt, (4)

with a and b �tted to the data. The result of applying
this procedure is illustrated in Fig. 1.
Below we propose a simple procedure to obtain

the �experimental� curvature enabling us to assess the
o�ensive of the mentioned asymptotic regime. For this
purpose, we select a range of interest in the di�raction
cone, i. e. a |t| range showing the �break� phenomenon,
which is likely a re�ection due to the �pion cloud� [9]. On
one hand, the boundary of this range is determined by
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the Coulomb-nuclear interference region of the di�racti-
on cone |tc|. In general, the above boundary reaches the
value |t| ≈ 0.01 GeV2 but not less than |t| = 0.005
GeV2. The other boundary for large-|t|, |td|, does not
reach the dip-bump region, which is for a few tens of
GeV energies at |t| ≈ 1 GeV2, and for TeV energies at
|t| ≈ 0.6 − 0.2 GeV2. Within these boundaries, one can
�nd the area where theR(t) normalized di�erential cross-
sections have concave shapes (see, for example, Fig. 1)
re�ecting the presence of the �break� observed �rst at
ISR in the 1970s [10]. This phenomenon was detected
with a greater or lesser precision in subsequent experi-
ments: SPS, Tevatron and LHC. The precision is associ-
ated with the speci�cs of the experiment.
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Fig. 1. The normalized di�erential cross section for pp
scattering at 8 TeV (1a) [1] and 13 TeV (1b) [2]. Open
circles together with the bars are the experimental points
with statistical errors. The black curves are a theoretical R-
function calculated from the model de�ned by Eq. (5) �tted

to the experimental points

In this work, we study the s- and t-behavior of the
curvature within the framework of the phenomenologi-
cal approach which considers the �break� as the revelati-
on of the threshold structure of the scattering ampli-
tude in the t-channel and the shape of proton in the
kinematic region in question. Doing this, we choose the
following non-exponentially behaving model for the di-
�erential cross section within the di�raction cone at a
�xed energy [9, 11]:

dσ(t)

dt
= aeδt+γ

√
t0−t, (5)

where t0 = 4m2
π.

In addition, to �nd the interval of the momentum
transfer for the experimental data, where it is necessary
to carry out the investigations, we used the same
normalized form Rth(t), as de�ned above:

Rth(t) =

(
dσ

dt

)
th

−
(
dσ

dt

)
lin(

dσ

dt

)
lin

, (6)

where (dσ/dt)th is the theoretical di�erential cross
section, Eq. (5) �tted to the experimental points and
(dσ/dt)lin is the approximation of all experimental
points with the model given by Eq. (4) at a given �-
xed energy. Within the model given by Eq. (5), the
slope and curvature can be calculated with the help
of Eqs. (1) and (2). To look for the �ne structure of
the di�raction cone of pp and p̄p elastic scattering at
LHC energies and close to it, we chose the experi-
mental data for pp and p̄p elastic scattering which
contain a su�ciently large number of experimental points
N , and the concave form of the function R is clearly vi-
sible. Namely, we consider the energies: Ecm=546 GeV
for p̄p scattering [12, 13] and 7 TeV (ATLAS) [14], 8 TeV
[1], 13 TeV [2, 3] for pp scattering. Another aspect is
that the χ2/NDF value in the investigated range in the
case of the �ts with model (5) should be as close to 1
as possible (the eighth column in Table 1 with statistical
error accounting only). As a result, we �nd the so-called
�experimental� values of the curvature within the selected
kinematical region for all the selected 5 sets by model (5).
The results are shown in Fig. 2 and quoted in Table 1.
Note that in the case of the measurements at 1.8 [15]
and 1.96 TeV [16] for p̄p scattering, and also at 2.76 TeV
[17] and 7 TeV (TOTEM) [18], the slope B(s, t) is almost
constant (C(s, t) = 0); thus these data were not included
in our analysis.

Set
√
s, GeV2 |tc|, GeV2 |td|, GeV2 C(0),

GeV−4
∆C(0),
GeV−4

N χ2/NDF Exp. data

1 546 0.0157 0.6200 10.53 0.94 135 1.26 [12, 13]

2 7000 0.0132 0.1668 8.80 1.66 25 0.61 [14]

3 8000 0.0285 0.1947 8.34 0.65 30 0.95 [1]

4 13000 (1) 0.0305 0.1662 7.20 1.29 76 0.90 [2]

5 13000 (2) 0.0466 0.1589 7.98 0.35 67 0.95 [3]

Table 1. The boundaries of di�raction cone regions and relevant curvature values for selected energies
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Fig. 2. The �experimental� curvature C(s, 0) calculated by
Eqs. (1), (2), (5) with the parameters obtained from the
�t using model (5) for all 5 selected sets of experimental
data. The black circles represent pp scattering, the black
square represents p̄p scattering. The bar represents the �tting
uncertainty. Solid lines represent the C(s, 0) calculated using
the model given by Eqs. (7), (8), (9), (10). The solid thick
line corresponds to option I, the solid thin line corresponds
to option II, the dotted line corresponds to option III. The
results of the �ts in options (I)�(III) are given in Table 2.
The quality of the �t for all options χ2/NDF ∼ 1.3. The stars
correspond to FMO model calculations discussed in Sec. IV

III. EFFECTIVE POMERON APPROACH

The next step was to choose a simple Pomeron contri-
bution to the scattering amplitude, which e�ciently
describes the data and corresponds to the observed
behavior of the curvature C(s, 0). In the selected energy
region, within the framework of the Regge approach, the
contribution of the secondary Reggeons can be neglected,
the pp and p̄p scattering di�erential cross sections are
described by the same Pomeron contribution (neglecting

the small correction from Odderon). We chose a common
form of the simple Pomeron [11] as

A(s, t) = gi(s̃)
αP (t)eφ(t), (7)

where s̃ = −i
s

s0
, s0 = 1 GeV2,

αP (t) = 1 + α′t+ γ(
√
t0 −

√
t0 − t), (8)

φ(t) = bt+ β(
√
t0 − t−

√
t0), (9)

where αP (t) is a non-linear Pomeron trajectory and
φ(t) is the non-exponential residue function [9]. The di-
�erential cross section has the form

dσ

dt
=

πk

4s2
|A(s, t)|2. (10)

Given that originally natural units are used for the model
parameters, to get the units of the measured data we
apply a conversation factor k = 0.38938 mb GeV2.
Next, we performed an overall (Pomeron) �t of all the

above selected 5 sets of data using the model given by
Eqs. (7), (8), (9), (10). We consider three options of the
combination of the non-exponential behavior by φ(t) and
the nonlinear trajectory of the Pomeron α(t):

β ̸= γ ̸= 0 (I);
β ̸= 0, γ = 0 (II);
β = 0, γ ̸= 0 (III).

The results of the �ts in variants (I)�(III) are given
in Table 2. The calculated C(s, 0) quantities in options
I�III are shown in Fig. 2. Only the behavior of C(s, 0)
in case (I) has a decreasing character, which completely
corresponds to the behavior of the curvature determined
directly from the experiment (circles and square). The
value of the curvature parameter depending on s changes
its sign at asymptotically large energies.

I II III

Parameter Value Error Value Error Value Error

g1 for 546 GeV 25.44 0.05 25.34 0.05 25.20 0.04

g2 for 7 TeV 39.12 0.02 39.19 0.02 39.16 0.02

g3 for 8 TeV 42.09 0.02 42.07 0.02 42.05 0.02

g4 for 13 (1) TeV 45.74 0.02 45.77 0.02 45.80 0.02

g5 for 13 (2) TeV 45.78 0.02 45.81 0.02 45.86 0.02

b, GeV−2 0 �xed 0.5440 0.020 1.128 0.227

α′, GeV−2 0.4991 0.0013 0.4684 0.0013 0.4355 0.0023

γ, GeV−1 0.3169 0.0012 0 0 −0.03472 0.00113

β, GeV−1 −1.193 0.024 −0.6245 0.0202 0 0

Table 2. The parameters of the Pomeron �t for (I)�(III) options.
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IV. FMO APPROACH

More realistic is the Froissaron and Maximal Odderon
approach, which gives a good description of all accessi-
ble pp and p̄p elastic scattering at GeV and TeV energi-
es and in a wide |t|-range [19, 20]. Let us recall that
this is one of the few approximations in which all the
basic requirements are taken into account, including both
the Froissart theorem for the forward scattering and
the Auberson�Kinoshita�Martin theorem for t ̸= 0. If
one includes the latest data from CERN LHC [1, 2] to
the analysis, in order to get a proper description, it is
necessary to take into account not only the Pomeron,
but also the contribution of the Odderon. The simplest
form of the scattering amplitude in this case is:

P (s, t) = P0(s, t) + P1(s, t) + P2(s, t), (11)

which is the Pomeron contribution.
The simple and dipole Pomerons for both components

have a conventional form:

P0(s, t) = −aP0 s̃
αP (t)eφP0

(t), (12)

P1(s, t) = −aP1 s̃
αP (t)eφP1

(t) ln s̃, (13)

s̃=−i
s− 2m2

2m2
,

αP (t) = 1 + α′
P t, (14)

while the tripole term has the form

P2(s, t) = −s̃aP2

2J1(zP )

zP
eφP2

(t) ln2 s̃, (15)

according to the AKM asymptotic theorem,

zP = rP τ ln s̃, (16)

τ =
√
−t/t0, t0 = 1 GeV2.

The common form of residue functions suggests a non-
linear exponent:

φPi
(t) = βPi(

√
tP −

√
tP − t), (17)

tP = 4m2
π.

The contribution of Odderon reads as:

O(s, t) = O0(s, t) +O1(s, t) +O2(s, t), (18)

O0(s, t) = iaO0
s̃αO(t)eφO0

(t),

O1(s, t) = iaO1
s̃αO(t)eφO1

(t) ln s̃,

O2(s, t) = is̃aO2

2J1(zO)

zO
eφO2

(t) ln2 s̃,

φOi
(t) = βOi(

√
tO −

√
tO − t), (19)

tO = 9m2
π, αO(t) = 1 + α′

Ot, zO = rOτ ln s̃.

In this model we use the following normalization of the
total amplitude [11],

App
p̄p(s, t) = P (s, t)±O(s, t) : (20)

dσ

dt
=

1

16πks2
|App

p̄p(s, t)|2, (21)

σt(s) =
1

s
ImApp

p̄p(s, t = 0), (22)

and

ρ(s) =
ReApp

p̄p(s, t = 0)

ImApp
p̄p(s, t = 0)

. (23)

To control the physical meaning of the �tted parameters
of di�erential cross section Eq. (21), we also included the
data at t = 0 from energy

√
s = 546 GeV up to 13 TeV

from compilation [20] to �t with help of Eqs. (22) and
(23). The values of the �tted parameters are shown in
Table 3.

Pomeron Odderon

Parameter Value Error Parameter Value Error

aP0 , mb 93.50 5.04 aO0 , mb −19.06 6.66

aP1 , mb −9.460 0.692 aO1 , mb 2.823 0.921

aP2 , mb 0.5706 0.0234 aO2 , mb −0.1157 0.0317

α′
P , GeV

−2 0.8868 0.0684 α′
O, GeV

−2 0.1766 0.1541

βP0 , GeV−1 2.422 0.213 βO0 , GeV−1 1.099 2.637

βP1 , GeV−1 3.812 �xed βO1 , GeV−1 2.536 2.451

βP2 , GeV−1 6.211 0.2031 βO2 , GeV−1 3.258 1.655

rP 0.3514 0.0148 rO 0.6800 0.0355

Statistics χ2/NDF = 0.94

Table 3. The values of the �tted parameters of the Froissaron and Maximal Odderon model
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In case of this model it is more convenient to consi-
der the slope B(s) and curvature C(s) averaged in some
interval of |t| [19]. We did it in the intervals in accordance
with Table 4 for TeV energies.

⟨B(s)⟩ = 1

∆t
ln

(
dσ(tmin)/dt

dσ(tmax)/dt

)
, (24)

where

∆t = tmax − tmin. (25)

⟨C(s)⟩ = 1

2∆t
[B(tmax)−B(tmin)] . (26)

To calculate the slope B(t) at the points tmax and tmin,
we use the formula for numerical di�erentiation:

B(s, t) =
1

2∆t
ln

(
dσ(s, t+∆t)/dt

dσ(s, t−∆t)/dt

)
, (27)

the step was chosen as ∆t = 10−6.

√
s, GeV2 |tmin|, GeV2 |tmax|, GeV2 ⟨C(s, t)⟩, GeV−4

546 0.0157 0.3500 6.80

7000 0.0132 0.1690 3.64

8000 0.0285 0.1605 3.48

13000 0.0305 0.1300 2.86

Table 4. Averaged curvature and intervals of its calculation

To calculate ⟨C(s)⟩ according to the FMO, the interval
of momentum transfer with a descending branch of local
slope B(s, t) should be selected (see Table 4).
Within these intervals the calculated averaged

curvature takes the values given in Table 4.
With the rise in energy, the averaged curvature ⟨C(s)⟩

asymptotically decreases (stars in Fig. 2) as in the case
of a simple Pomeron with a non-linear trajectory and
residue [option (I)].

V. CONCLUSIONS

We have studied the phenomenology of the pp and p̄p
elastic scattering within TeV energy range using a model
in which the analytical properties of the scattering ampli-
tude are accounted for by the threshold singularity in the
t-channel. It has been shown that such features re�ect
adequately the �break� part of the t-dependence of the
di�erential cross-section in the form of a concave curve
of the R(t) function. To clarify the question whether
the non-exponential behavior of the di�raction cone is
due to the nonlinear trajectory or the non-exponential
residue function, it is necessary to take into account
additionally the novel LHC data. We emphasize that
the non-exponential behavior of the function φ(t) in the
Pomeron pole residue, as well as the non-linearity of the
Pomeron trajectory α(t) is strongly suggested by the
data. As a result, one can observe that the curvature
C(s, 0) has a tendency to decrease and change the si-
gn at thousands of TeV (see Fig. 2). It means that the
�asymptopia� [7] moves to a distant area. Most notably,
the same curvature behavior is predicted for the averaged
case (see Table 4 and Fig. 2) within the Froissaron and
Maximal Odderon (FMO) model that satis�es the basic
principles.
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