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The local nuclear curvature C(s,t) as a derivative of local nuclear slope B(s,t) is reconstructed
from the experimental differential cross-section of pp and pp elastic scattering for TeV energies
in the small-|¢| region where the non-exponential behavior of the diffraction cone, i.e. the “break”
phenomenon is clearly visible. Predictions for C(s, t) are investigated in several Pomeron models. The
extreme sensitivity of the local nuclear curvature for the choice of a Pomeron model is emphasized.
Only some of them predict a C(s,t = 0) or (C(s)) which decreases with energy and changes sign at

very large energy.
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I. INTRODUCTION

The TOTEM experiment at CERN LHC observed
the non-exponential behavior of the low-|t| elastic pp
differential cross-section, i.e. the so called “break”
phenomenon at /s = 8 and 13 TeV colliding energies
in a statistically significant manner [1-3]. The analysis
revealed that the differential elastic cross section does
not, in fact, decrease purely exponentially as exp(—Blt|)
at a small value of |t|, but rather shows a concave
curvature relative to the expected exponential decrease
as in the case of pp elastic scattering measurements
at ISR in the 1970s. Recently, it was found that the
curvature effects, although small, lead to significant
changes in the forward slope parameter relative to that
determined in a purely exponential fit. This suggests the
inclusion of the small-|¢| differential cross section data
into the fits [4]. Curvature was studied previously at
much lower energies in Refs. [5, 6].

Below we propose a simple procedure to reveal the
“experimental” curvature allowing us to assess the onset
of the asymptopia. The onset of asymptopia coincides
with the energy where the value of the curvature
parameter at vanishing [t| goes to zero. Therefore,
we shall study the energy and [¢| behaviour of the
curvature within the framework of phenomenological
models. These models naturally consider the curvature as
a manifestation of the threshold structure of the scatter-
ing amplitude required by t-channel unitarity.

II. CHOICE OF DATA AND CURVATURE
SHAPE

Latest experiments on elastic pp scattering performed
at CERN brought us closer to answering an old questi-
on: “where is asymptopia?” [7]. In elastic hadron-hadron
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scattering the fine structure parameters of diffraction
cone such as the slope

B(s,t) = %m (W) , (1)

and curvature

1d
C(Sat) - ZdtB(&t)y (2)
are sensitive indicators of the transition to the
“asymptotic” regime [8]. To further explore the above
mentioned non-exponential behavior, we shall use the
experimental data points at a given fixed energy normali-
zed by a linear exponential [1, 2]:

(%), (%)
dt exp dt lin

exp(t) = ; 3)
Rexp(t (‘Z)Hn 3

where (do/dt),,,, are the measured data points and
(do/dt);;,, is the approximation of all experimental
points at given fixed energy in a selected interval of |¢|
by a linear exponential i.e.

do bt
2 = 4
< dt )lin “n ( )

with a and b fitted to the data. The result of applying
this procedure is illustrated in Fig. 1.

Below we propose a simple procedure to obtain
the “ezperimental” curvature enabling us to assess the
offensive of the mentioned asymptotic regime. For this
purpose, we select a range of interest in the diffraction
cone, i.e. a |t| range showing the “break” phenomenon,
which is likely a reflection due to the “pion cloud” [9]. On
one hand, the boundary of this range is determined by
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the Coulomb-nuclear interference region of the diffracti-
on cone |t.|. In general, the above boundary reaches the
value [t| ~ 0.01 GeV? but not less than [t| = 0.005
GeV2. The other boundary for large-|t|, |t4|, does not
reach the dip-bump region, which is for a few tens of
GeV energies at [t| ~ 1 GeVZ, and for TeV energies at
|t| ~ 0.6 — 0.2 GeV2. Within these boundaries, one can
find the area where the R(t) normalized differential cross-
sections have concave shapes (see, for example, Fig. 1)
reflecting the presence of the “break” observed first at
ISR in the 1970s [10]. This phenomenon was detected
with a greater or lesser precision in subsequent experi-
ments: SPS, Tevatron and LHC. The precision is associ-
ated with the specifics of the experiment.
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Fig. 1. The normalized differential cross section for pp
scattering at 8 TeV (la) [1] and 13 TeV (1b) [2]. Open
circles together with the bars are the experimental points
with statistical errors. The black curves are a theoretical R-
function calculated from the model defined by Eq. (5) fitted
to the experimental points

In this work, we study the s- and ¢-behavior of the
curvature within the framework of the phenomenologi-
cal approach which considers the “break” as the revelati-
on of the threshold structure of the scattering ampli-
tude in the t-channel and the shape of proton in the
kinematic region in question. Doing this, we choose the
following non-exponentially behaving model for the di-
fferential cross section within the diffraction cone at a
fixed energy [9, 11]:

do(t)

_ aeét—i—’y\/to—t’
dt

(5)
where tq = 4m2.

In addition, to find the interval of the momentum
transfer for the experimental data, where it is necessary
to carry out the investigations, we used the same
normalized form Ry, (), as defined above:

do do
(7),~ (@),
do ’
(dt)lin

where (do/dt)y, is the theoretical differential cross
section, Eq. (5) fitted to the experimental points and
(do/dt)yn is the approximation of all experimental
points with the model given by Eq. (4) at a given fi-
xed energy. Within the model given by Eq. (5), the
slope and curvature can be calculated with the help
of Egs. (1) and (2). To look for the fine structure of
the diffraction cone of pp and pp elastic scattering at
LHC energies and close to it, we chose the experi-
mental data for pp and pp elastic scattering which
contain a sufficiently large number of experimental points
N, and the concave form of the function R is clearly vi-
sible. Namely, we consider the energies: E.,=546 GeV
for pp scattering [12, 13] and 7 TeV (ATLAS) [14], 8 TeV
[1], 13 TeV [2, 3] for pp scattering. Another aspect is
that the x?/NDF value in the investigated range in the
case of the fits with model (5) should be as close to 1
as possible (the eighth column in Table 1 with statistical
error accounting only). As a result, we find the so-called
“experimental” values of the curvature within the selected
kinematical region for all the selected 5 sets by model (5).
The results are shown in Fig. 2 and quoted in Table 1.
Note that in the case of the measurements at 1.8 [15]
and 1.96 TeV [16] for pp scattering, and also at 2.76 TeV
[17] and 7 TeV (TOTEM) [18], the slope B(s,t) is almost
constant (C(s,t) = 0); thus these data were not included
in our analysis.

Rth(t) = (6)

Set /s, GeV? ||te|, GeV?||ta], GeVZ|C(0), |AC(0),| N |x°/NDF |Exp. data
GeV 4| GeV™

1 546 0.0157 | 0.6200 | 10.53 | 0.94 |135| 1.26 | [12, 13]

2 | 7000 0.0132 | 0.1668 | 8.80 | 1.66 [25| 0.61 [14]

3| 8000 0.0285 | 0.1947 | 834 | 0.65 |30 | 0.95 [1]

4 13000 (1)| 0.0305 | 0.1662 | 7.20 | 1.29 |76 | 0.90 [2]

5 113000 (2)| 0.0466 | 0.1589 | 7.98 | 0.35 |67 | 0.95 3]

Table 1. The boundaries of diffraction cone regions and relevant curvature values for selected energies
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Fig. 2. The “ezperimental” curvature C(s,0) calculated by
Egs. (1), (2), (5) with the parameters obtained from the
fit using model (5) for all 5 selected sets of experimental
data. The black circles represent pp scattering, the black
square represents pp scattering. The bar represents the fitting
uncertainty. Solid lines represent the C(s,0) calculated using
the model given by Egs. (7), (8), (9), (10). The solid thick
line corresponds to option I, the solid thin line corresponds
to option II, the dotted line corresponds to option III. The
results of the fits in options (I)—(III) are given in Table 2.
The quality of the fit for all options x*/NDF ~ 1.3. The stars
correspond to FMO model calculations discussed in Sec. IV

III. EFFECTIVE POMERON APPROACH

The next step was to choose a simple Pomeron contri-
bution to the scattering amplitude, which efficiently
describes the data and corresponds to the observed
behavior of the curvature C(s,0). In the selected energy
region, within the framework of the Regge approach, the
contribution of the secondary Reggeons can be neglected,
the pp and pp scattering differential cross sections are
described by the same Pomeron contribution (neglecting

the small correction from Odderon). We chose a common
form of the simple Pomeron [11] as

A(Sat) = gi(g)ap(t)ego(t)’ (7)

~ .S
where § = —i—, 59 = 1 GeV?,
S0

ap(t) = 1+ a't +y(Vto — Vo — 1), (8)

o(t) = bt + B(Vto — t — Vo), 9)

where ap(t) is a non-linear Pomeron trajectory and
©(t) is the non-exponential residue function [9]. The di-
fferential cross section has the form

do

T (10)

k
= T2 JAG, o)
Given that originally natural units are used for the model
parameters, to get the units of the measured data we
apply a conversation factor k = 0.38938 mb GeV?2.

Next, we performed an overall (Pomeron) fit of all the
above selected 5 sets of data using the model given by
Egs. (7), (8), (9), (10). We consider three options of the
combination of the non-exponential behavior by ¢(t) and
the nonlinear trajectory of the Pomeron «(t):

B#v#0 (D)
B #0,v=0 (II);
B =0,v#0 (II).

The results of the fits in variants (I)-(III) are given
in Table 2. The calculated C(s,0) quantities in options
I-IIT are shown in Fig. 2. Only the behavior of C(s,0)
in case (I) has a decreasing character, which completely
corresponds to the behavior of the curvature determined
directly from the experiment (circles and square). The
value of the curvature parameter depending on s changes
its sign at asymptotically large energies.

I I 111
Parameter Value | Error | Value | Error | Value Error
g1 for 546 GeV | 25.44 | 0.05 | 25.34 | 0.05 25.20 0.04
g2 for 7 TeV 39.12 | 0.02 | 39.19 | 0.02 39.16 0.02
g3 for 8 TeV 42.09 | 0.02 | 42.07 | 0.02 42.05 0.02
ga for 13 (1) TeV| 45.74 | 0.02 | 45.77 | 0.02 45.80 0.02
gs for 13 (2) TeV| 45.78 | 0.02 | 45.81 | 0.02 45.86 0.02
b, GeV~? 0 fixed | 0.5440 | 0.020 | 1.128 0.227
o, Gev—? 0.4991 {0.0013| 0.4684 |0.0013| 0.4355 | 0.0023
v, GevV ! 0.3169 {0.0012 0 0 [—0.03472|0.00113
B, Gev ! —1.193] 0.024 |—0.6245|0.0202 0 0

Table 2. The parameters of the Pomeron fit for (I)-(III) options.
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IV. FMO APPROACH

More realistic is the Froissaron and Maximal Odderon
approach, which gives a good description of all accessi-
ble pp and pp elastic scattering at GeV and TeV energi-
es and in a wide [t|-range [19, 20]. Let us recall that
this is one of the few approximations in which all the
basic requirements are taken into account, including both
the Froissart theorem for the forward scattering and
the Auberson—Kinoshita-Martin theorem for ¢t # 0. If
one includes the latest data from CERN LHC [1, 2] to
the analysis, in order to get a proper description, it is
necessary to take into account not only the Pomeron,
but also the contribution of the Odderon. The simplest
form of the scattering amplitude in this case is:

P(Svt):P0(57t)+P1(37t)+P2(8at)7 (11)
which is the Pomeron contribution.

The simple and dipole Pomerons for both components
have a conventional form:

The common form of residue functions suggests a non-
linear exponent:

op(t) = BT (VP —Vip — 1), (17)
tp = 4m3r.
The contribution of Odderon reads as:
O(Svt) :OO(S,t)+01(S,t)+02(57t), (18)
Oo(s,t) = iap, 5o (t) ppoq (t)’
O1(s,t) = iap,5°®eror1 M In 3,
Os(s,t) = i8ap, Mew%(ﬂ In® 3,
20
vo,(t) = B (Vto — Vo — t), (19)

ao(t) =14+ apt, 20 =roTns.

In this model we use the following normalization of the
total amplitude [11],

to = Qmi,

AG(s,8) = P(s,1) £ O(5,1) ; (20)
do 1
T = Tormaz (s 0%, (21)
1 bp
oi(s) = gijﬁp(s,t =0), (22)
and
- e (23)

P8 = S Al (s 1= 0)"

To control the physical meaning of the fitted parameters
of differential cross section Eq. (21), we also included the
data at t = 0 from energy /s = 546 GeV up to 13 TeV
from compilation [20] to fit with help of Egs. (22) and
(23). The values of the fitted parameters are shown in
Table 3.

Py(s,t) = —ap, 527 Merro®), (12)
Pi(s,t) = —ap, 52 Mepri M n 5, (13)
- s —2m?
S=—i—,
2m?
ap(t) =1+ apt, (14)
while the tripole term has the form
5 2J1(z -
Py(s,t) = —scuDQMe“"P2 ) 1n? 3, (15)
zp
according to the AKM asymptotic theorem,
Zzp =TpTIns, (16)
T =/—t/to, to = 1 GeV?,
Pomeron

Parameter Value | Error

ap,, mb 93.50 5.04

ap, mb | —9.460 | 0.692
ap,, mb 0.5706 [0.0234
op, GeV™2| 0.8868 [0.0684

g, Gev~l| 2422 |0.213

BT, GeV™l| 3.812 | fixed
B2, GeV™l| 6.211 [0.2031
rp 0.3514 [0.0148

Statistics

Odderon
Parameter | Value | Error
ao,, mb | —19.06 | 6.66
ao,, mb | 2.823 |0.921
ao,, mb | —0.1157]0.0317
ap, GeV~=2| 0.1766 [0.1541
B0, GeV~'| 1.099 |2.637
891, GeV~l| 2536 |2.451
B2, GeV~!| 3.258 |1.655
ro 0.6800 |0.0355
x?/NDF = 0.94

Table 3. The values of the fitted parameters of the Froissaron and Maximal Odderon model
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In case of this model it is more convenient to consi-
der the slope B(s) and curvature C(s) averaged in some
interval of |¢| [19]. We did it in the intervals in accordance
with Table 4 for TeV energies.

- 1 dO’(tmin)/dt
(B(s)) = N In (da(tmax)/dt) , (24)
where
At = trax — tmin. (25)
(C6) = 51 [Bltwa) ~ Bltwin)]. (26)

To calculate the slope B(t) at the points ¢max and tmin,
we use the formula for numerical differentiation:

1 ) <d0(s,t+At)/dt)’

Bls,t) = ——
(50 = 5a: ™ Go(s.t = Ayt

(27)

the step was chosen as At = 1076,

V5, GeV? | |tmin|, GeV? ||tmax|, GeVZ[(C(s,t)), GeV™*
546 0.0157 0.3500 6.80
7000 0.0132 0.1690 3.64
8000 0.0285 0.1605 3.48
13000 0.0305 0.1300 2.86

Table 4. Averaged curvature and intervals of its calculation

To calculate (C(s)) according to the FMO, the interval
of momentum transfer with a descending branch of local
slope B(s,t) should be selected (see Table 4).

Within these intervals the calculated averaged
curvature takes the values given in Table 4.

With the rise in energy, the averaged curvature (C(s))
asymptotically decreases (stars in Fig. 2) as in the case
of a simple Pomeron with a non-linear trajectory and
residue [option (I)].

V. CONCLUSIONS

We have studied the phenomenology of the pp and pp
elastic scattering within TeV energy range using a model
in which the analytical properties of the scattering ampli-
tude are accounted for by the threshold singularity in the
t-channel. It has been shown that such features reflect
adequately the “break” part of the t-dependence of the
differential cross-section in the form of a concave curve
of the R(t) function. To clarify the question whether
the non-exponential behavior of the diffraction cone is
due to the nonlinear trajectory or the non-exponential
residue function, it is necessary to take into account
additionally the novel LHC data. We emphasize that
the non-exponential behavior of the function ¢(t) in the
Pomeron pole residue, as well as the non-linearity of the
Pomeron trajectory «(t) is strongly suggested by the
data. As a result, one can observe that the curvature
C(s,0) has a tendency to decrease and change the si-
gn at thousands of TeV (see Fig. 2). It means that the
“asymptopia” [7] moves to a distant area. Most notably,
the same curvature behavior is predicted for the averaged
case (see Table 4 and Fig. 2) within the Froissaron and
Maximal Odderon (FMO) model that satisfies the basic
principles.
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TOHKA CTPYKTYPA JU®PAKIIIMHOIO KOHYCA IIPOTOH-IIPOTOHHOI'O TA
AHTUIIPOTOH-IIPOTOHHOTO IIPYXKHOI'O PO3CIIOBAHHSY 3A EHEPI'TIA BEJIMKOI'O
ATPOHHOI'O KOJIAMJIEPA

H. Benne!, I. Cani®®*, O. Jlenuen®
L Vorczopodevrut naytonasvrul ynisepcumem, sya. Ywisepcumemevka, 14, Yorczeopod, Yrpaina,
2[enmp pisunwnuz docaidocens im. Birwepa, n.c. 49, Bydanewm, 1525, Yeopujumna
3 Vnisepcumems im. Emeewa, anes ITazmansi, 1/A, Bydanewm, 1117, Yzopuwuna,
4 Texnonoziunut inemumym ynisepcumemy MATE, Kamnyc Pobepma Kapoas,
H-3200, Jendew, eya. Mampai, 36, Yeopuuna
5 5Inemumym eaexmponnoi gisuxu HAH Yrpainu, sya. Ynisepcumemevka, 21, Yorczopod, Yrpaina

ITapamerp MOKaIBHOI sAAEPHOI KPUBU3HU SK IOXIAHY BiJl JIOKAJTBHOTO SIAEPHOTO HAXUIIY BiATBOpE-
HO 3 eKCIIEPUMEHTATLHOrO M epeHniaabHoro mepepisy i mpyKHoro poscioBanHs 3a eHepriit Bemmkoro
AJIPOHHOTO KOJIaliIepa B JIISHIN TIEPeJaHoro iMmysbey, ae crnocrepiraemo “3amom”. Ilependadennst Kiib-
KOX MOJIeJjIeil MOMEPOHa, MEePEBIpseMO 3a MpU MaJjIuX nepeJannx immynabcax. CrmocrepiraemMo Haa3BUIaHY
9y TJUBICTD TapaMeTpa JOKAJIBHOI si/IEPHOI KPUBU3HU 3aJI€2KHO Bix BUOOPY MOzesIi moMepona. Jlumre neski
3 1UX MOJIeJiell IPOrHO3YI0Th 3MEHIIEHHS [IapaMeTpa JIOKAJIbHOL S€PHOI KPUBU3HU 3 €HEPIi€i0, 3HAK SAKOI

3MIHIOETBCS 32 Jy7Ke BEJIUKUX €Hepriil.

Kurro4oBi cioBa: moMepoH, OIepOH, aCUMIITOIIis, TPY2KHE pp 1 pp PO3CIIOBaHHS, TAPAMETP JIOKAIbHOT

AJ€PHOI KPUBU3HU, JIOKAJIbHUN S€PHUN HAXWUII.
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