Journal of Physical Studies 26(2), Article 2501 [8 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.2501

SPECTROSCOPIC DIAGNOSTICS OF OVERSTRESSED NANOSECOND DISCHARGE PLASMA BETWEEN ZINC ELECTRODES IN AIR AND NITROGEN

O. K. Shuaibov , R. V. Hrytsak , O. I. Minya, A. A. Malinina , Yu. Yu. Bilak , Z. T. Gomoki

Uzhhorod National University,
3, Narodna Sq., Uzhhorod, UA–88000, Ukraine

Received 11 January 2022; in final form 05 April 2022; accepted 07 April 2022; published online 27 May 2022

The paper presents emission spectra of an overstressed nanosecond discharge between zinc electrodes in air and nitrogen at pressures of 13.3 kPa and 20 kPa, respectively. In the process of microexplosions of inhomogeneities on the working surfaces of zinc electrodes in a strong electric field, zinc vapor is introduced into the discharge gap during the formation of ectons. This creates prerequisites for the formation of molecules and clusters of zinc, oxide and zinc nitride in plasma and the synthesis of thin nanostructured films of zinc, oxide and zinc nitride, which can be deposited on a glass or quartz substrate installed near the center of the discharge gap.

The spectral characteristics of the discharge were investigated from the central part of the discharge gap 2 mm in size. The main excited components of the plasma of vapor-gas mixtures based on zinc vapor and air and nitrogen have been identified, which, when deposited outside the discharge plasma, can lead to the formation of thin nanostructured films of zinc, nitride and zinc oxide.

Key words: overstressed nanosecond discharge, zinc, air, plasma.

Full text


References
  1. A. K. Shuaibov, A. A. Malinina, A. N. Malinin, Overstressed Nanosecond Discharge: in gases at atmospheric pressure and its application for the synthesis of nanostructures based on transition metals (LAP Lambert Academic Publishing, Beau Bassin, Mauritius, 2021).
  2. V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (Nova Science Publishers Inc., New York, 2014).
  3. E. Kh. Bakst, V. F. Tarasenko, Yu. V. Shut'ko, M. V. Erofeev, Quantum Elec. (Woodbury) 42, 153 (2012);
    Crossref
  4. A. K. Shuaibov et al., Surf. Eng. Appl. Electrochem. 56, 510 (2020);
    Crossref
  5. G. Palani, K. Kannan, D. Radhika, P. Vijayakumar, K. Pakiyaraj, Phys. Chem. Solid State 21 571 (2020);
    Crossref
  6. G. A. Mesyats, Phys.-Usp. 38, 567 (1995);
    Crossref
  7. D. V. Beloplotov, A. A. Grishkov, D. A. Sorokin, V. A Shklyaev, Russ. Phys. J. 64, 340 (2021);
    Crossref
  8. A. H. Abduev, A. Sh. Asvarov, A. K. Ahmetov, R. M. Emirov, V. V. Belyaev, Appl. Phys. Lett. 43, 40 (2017);
    Crossref
  9. O. K. Shuaibov et al., Ukr. J. Phys. 63, 790 (2018);
    Crossref
  10. A. R. Striganov, Tablitsy spektralnykh liniy neytralnykh i ionizirovannykh atomov (Atomizdat, Moscow, 1966).
  11. NIST Atomic Spectra Database Lines Form, https://physics.nist.gov/PhysRefData/ASD/lines_form.html
  12. S. I. Maksimov, A. V. Kretinina, N. S Fomina, L. N. Gall, Nauchnoe priborostroenie 25, 36 (2015).
  13. D. Z. Pai, D. L. Lacoste, C. O. Laux, Plasma Sources Sci. Technol. 19, 065015 (2010);
    Crossref
  14. J. P. Walters, H. V Malmstadt, Anal. Chem. 37, 1484 (1965).
    Crossref
  15. L. P. Babich, T. V. Loyko, V. A. Tsukerman, Usp. Fiz. Nauk 160, 49 (1990);
    Crossref
  16. A. K. Shuaibov, G. E. Laslov, Ya. Ya. Kozak, Opt. Spectrosc. 116, 552 (2014);
    Crossref
  17. R. Shyker, Y. Binur, A. Szöke, Phys. Rev. A 12, 512 (1975);
    Crossref
  18. A. N. Gomonai, J. Appl. Spectrosc. 82, 13 (2015);
    Crossref
  19. D. Levko, L. L. Raja, Phys. Plasmas 22, 123518 (2016);
    Crossref