Journal of Physical Studies 26(2), Article 2801 [12 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.2801

X-RAY DIFFRACTION CHARACTERIZATION OF NANOSTRUCTURED NATIVE OXIDE FILMS ON INDIUM SELENIDE BY MODIFIED SHERRER AND WILLIAMSON–HALL METHODS

S. I. Drapak{1,2}, S. V. Gavrylyuk3, Y. B. Khalavka2 , V. D. Fotiy1, P. M. Fochuk2 , O. I. Fediv4 

1 Photon-Quartz Design & Technology Ltd., 246, Holovna St., Chernivtsi, UA–58032, Ukraine,
2 Institute of Biology, Chemistry and Bioresources, Yuriy Fedkovych Chernivtsi National University,
25, Lesia Ukrainka St., Chernivtsi, UA–58012, Ukraine,
3 Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University,
12, Stepan Bandera St., Lviv, UA—79013, Ukraine,
4 Bukovinian State Medical University, 2, Theater Sq., Chernivtsi, UA–58000, Ukraine

Received 08 December 2021; in final form 14 February 2022; accepted 22 March 2022; published online 30 May 2022

Indium selenide belonging to the class of two-dimensional layered semiconductors is a promising material for nonlinear optical applications in the mid-infrared wavelength region as a detector and a source of THz waves; as the basis of various optoelectronic devices for the visible wavelength region (photodetectors, polarization-sensitive photodiodes, solar cells, phototransistors); as a matrix for hydrogen storage; as a substrate in planar nanotechnologies, etc. This compound is currently considered a useful middle ground between silicon and grapheme with great potential for manufacturing new-generation electronic and optoelectronic ultra-thin and ultra-fast nanodevices. That is why the question of InSe (both bulk and in the form of two-dimensional objects) stability in the air under ambient conditions becomes extremely relevant. Moreover, the results of recent theoretical and experimental studies on its stability are contradictive. This work is part of research aimed at studying the aging process of 2D layered compounds belonging to $A^3B^6$ family group and photosensitive devices based on them.

It is shown that the necessary conditions for the oxidation of layered indium selenide crystals during their long-term storage under ambient conditions are the presence of an atomically smooth cleaved surface (0001) in the absence of growth defects and mechanical damage, as well as daylight illumination. As follows from the X-ray diffraction (XRD) study, the native oxide films formed on the van der Waals surface (0001) of InSe are two-phase and consist of pure indium and diselenium pentoxide Se$_2$O$_5$ nanocrystallites. A modified Scherrer equation and the Williamson-Hall method with the involvement of various models were used to determine the average crystallite size of both types of the compounds and the intrinsic strain from the XRD peak broadening the analysis. The average values of stress and the bulk energy density of deformation were also determined for pure indium nanocrystallites. Physical and chemical phenomena that lead to the presence of compressive stresses in both In and Se$_2$O$_5$ nanocrystallites and account for the fact that the film surface is formed by smaller crystallites than in the oxide volume have been analyzed.

Key words: indium selenide, native oxide, thin films, X-ray diffraction analysis, X-ray phase analysis, elastic properties.

Full text


References
  1. S. Deckoff-Jones et al., Sci. Rep. 6, 22620 (2016);
    Crossref
  2. M. Chen, C. Tang, T. Tanabe, Y. Oyama, Opt. Photonics J. 9, 178 (2019);
    Crossref
  3. R. Yu. Aliyev, K. A. Askerov, Appl. Phys. (Prikl. Fiz.), No. 3, 63 (1999).
  4. S. I. Drapak, V. B. Orletskii, Z. D. Kovalyuk, V. V. Netyaga, V. D. Fotii, Tech. Phys. Lett. 29, 480 (2003);
    Crossref
  5. W. Feng et al., J. Mat. Chem. C 3, 7022 (2015);
    Crossref
  6. M. Li et al., Adv. Mater. 30, 1803690 (2018);
    Crossref
  7. F. P. Kesamanly, V. Yu. Rud', Yu. V. Rud', Fiz. Tech. Poluprov. 30, 1921 (1996).
  8. G. A. Il'chuk et al., Semiconductors 40, 1321 (2006);
    Crossref
  9. J. Martinez-Pastor, A. Segura, J. L. Valdes, A. Chevy, J. Appl. Phys. 62, 1477 (1987);
    Crossref
  10. S. I. Drapak, M. O. Vorobets, Z. D. Kovalyuk, Semiconductors 39, 600 (2005);
    Crossref
  11. M. F. Pereira, O. Shulika, Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz) (Springer, Dordrecht, 2014).
  12. A. Rogalski, Infrared and Terahertz Detectors, 3d ed. (CRC Press, Roca Raton, London, New York, 2019).
  13. H. L. Zhuang, R. G. Hennig, Chem. Mater. 25, 3232 (2013);
    Crossref
  14. Yu. I. Zhirko, Z. D. Kovalyuk, M. M. Pyrlja, V. B. Boledzyuk, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, edited by T. N. Veziroglu et al. (Springer, Dordrecht, 2004), p. 519;
    Crossref
  15. Y. Zhirko, V. Trachevsky, Z. Kovalyuk, "On the possibility of layered crystals application for solid state hydrogen storages - InSe and GaSe crystals," in Hydrogen Storage, edited by J. Liu (InTech, Rijeka, 2012);
    Crossref
  16. Y. Zhirko, V. Grekhov, N. Skubenko, Z. Kovalyuk, T. Feshak, "Characterization and optical properties of layered InSe and GaSe crystals intercalated with hydrogen and oxygen-hydrogen-containing molecules," in Advanced Materials for Renevable Hydrogen Production, Storage and Utilization, edited by J. Liu (InTech, Rijeka, 2015);
    Crossref
  17. A. P. Bakhtinov et al., Phys. Solid State 49, 1572 (2007);
    Crossref
  18. A. I. Dmitriev, Tech. Phys. 57, 1152 (2012);
    Crossref
  19. A. Segura, A. Chevy, J. P. Guesdon, J. M.Besson, Sol. Energy Mater. 2, 159 (1980);
    Crossref
  20. P. V. Galiy, T. M. Nenchuk, J. M. Stakhira, J. Phys. D: Appl Phys. 34, 18 (2001);
    Crossref
  21. A. Yu. Zavrazhnov, D. N. Turchen, Condens. Matter Interphases (Kondensirovannye Sredy Mezhfaznye Granitsy) 1, 190 (1999).
  22. O. A. Balitskii, R. V. Lutsiv, V. P. Savchyn, J. M. Stakhira, Mater. Sci. Eng. B 56, 5 (1998);
    Crossref
  23. O. A. Balitskii, N. N. Berchenko, V. P. Savchyn, J. M. Stakhira, Mater. Chem. Phys. 65, 130 (2000);
    Crossref
  24. O. A. Balitskii, V. P. Savchyn, Mater. Sci. Semicon. Process. 7, 55 (2004);
    Crossref
  25. T. Loher, K. Ueno, A. Koma, Appl. Surf. Sci. 130-132, 334 (1998);
    Crossref
  26. S. V. Sorokin et al., Materials 13, 3447 (2020);
    Crossref
  27. T. Loher, A. Koma, Jap. J. Appl. Phys. 37, L1062 (1998).
  28. E. Wisotzki, A. Klein, W. Jaegermann, Thin Solid Films 380, 263 (2000);
    Crossref
  29. N. Nakayama, T. Kuramachi, T. Tanbo, H. Ueba, C. Tatsuyama, Surf. Sci. 244, 58 (1991);
    Crossref
  30. S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, I. T. Drapak, Z. D. Kovalyuk, Appl. Surf. Sci. 253, 279 (2006);
    Crossref
  31. K. Ueno, K. Sasaki, T. Nakahara, A. Koma, Appl. Surf. Sci. 130-132, 670 (1998);
    Crossref
  32. S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, Z. D. Kovalyuk, O. S. Lytvyn, Superlattices Microstruct. 44, 563 (2008);
    Crossref
  33. P. V. Galiy et al., Metallofiz. Noveishie Tekhnol. 41, 1395 (2019);
    Crossref
  34. V. L. Bakumenko, Z. D. Kovalyuk, E. A. Tishin, V. F. Chishko, Fiz. Electron., No. 19, 123 (1979).
  35. A. I. Dmitriev, et al., Phys. Solid State 53, 622 (2011);
    Crossref
  36. C. Bai, Scanning tunneling microscopy and its application (Springer-Verlag and GmbH & Co. K, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 2010).
  37. S. M. Sze, Physics of semiconductor devices (John Wiley & Sons, Wiley Interscience, New York, 1981).
  38. J. Robertson, J. Phys. C: Solid State Phys. 12, 4777 (1979);
    Crossref
  39. M. Ratner, D. Ratner, Nanotechnology: A gentle introduction to the next big idea (Prentice Hall Professional, New Jersey, 2003).
  40. Yu. A. Chaplygina, Nanotechnology in Electronics. Iss. 2 (Tekhnosfera, Moscow, 2013).
  41. D. A. Bandurin et al., Nat. Nanotechnol. 12, 223 (2017);
    Crossref
  42. F. Yan et al., Nanotechnology 28, 27LT01 (2017);
    Crossref
  43. Q. Cui et al., Crystals 7, 149 (2017);
    Crossref
  44. A. K. Geim, I. V. Grigorieva, Nature 499, 419 (2013);
    Crossref
  45. D. W. Boukhvalov et al., Nanomaterials (Basel) 7, 372 (2017);
    Crossref
  46. A. Politano et al., Nanoscale 8, 8474 (2016);
    Crossref
  47. K. J. Xiao, A. Carvalho, A. H. Castro Neto, Phys. Rev. B 96, 054112 (2017);
    Crossref
  48. Z. Chen, J. Biscaras, A. Shukla, Nanoscale 7, 5981 (2015);
    Crossref
  49. P.-H. Ho et al., ACSNano 11, 7362 (2017);
    Crossref
  50. M. Rahaman, R. D. Rodriguez, M. Monecke, S. A. Lopez-Rivera D. R. T. Zahn, Semicond. Sci. Technol. 32, 105004 (2017);
    Crossref
  51. L. Shi et al., J. Phys. Chem. Lett. 8, 4368 (2017);
    Crossref
  52. S. I. Drapak, S. V. Gavrylyuk, Z. D. Kovalyuk, O. S. Lytvyn, Appl. Surf. Sci. 254, 2067 (2008);
    Crossref
  53. S. I. Drapak, Z. D. Kovalyuk, Semiconductors 41, 1197 (2007);
    Crossref
  54. K. A. Askerov, A. Z. Abazova, F. K. Isaev, Appl. Phys. (Prikl. Fiz.), No. 4, 94 (2004).
  55. K. A. Askerov, V. I. Gadzhieva, B. Sh. Barkhalov, High Energy Chem. 44, 105 (2010);
    Crossref
  56. K. A. Askerov, V. I. Gadzhieva, B. Sh. Barkhalov, Appl. Phys. (Prikl. Fiz.), No. 5, 109 (2008).
  57. Powder diffraction file, Joint Committee on Powder Diffraction Standards (JCPDS), ASTM, PA, 1994, Card No: 5-642.
  58. Powder diffraction file, Joint Committee on Powder Diffraction Standards (JCPDS), ASTM, PA, 1994, Card No: 34-1000.
  59. R. Guinebretiere, X-ray Diffraction by Polycrystalline Materials (ISTE, London, 2007).
  60. A. Schneider, G. Heymer, Z. Anorg. Allg. Chem. 286, 118 (1956);
    Crossref
  61. Von H.-G. Jerschkewitz, K. Menning, Z. Anorg. Allg. Chem. 319, 82 (1962/63);
    Crossref
  62. The Materials Project. Materials data on Se$_2$O$_5$ by Materials Project. United States (U.S. Department of Energy. Office of Scientific and Technical Information), ID: mp-27358 (2020);
    Crossref
  63. K. Tripathi, M. Husain, M. Zulfequar, Chalcogenide Lett. 9, 517 (2009).
  64. A. A. Gaynanova et al., Fundamental Res., No. 1, 784 (2013).
  65. A. I. Gusev, Nanomaterials, Nanostructures and Nanotechnologies (Fizmatlit, Moscow, 2005).
  66. B. D. Culity, S. R. Stock, Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, New York, 2001).
  67. E. H. Kisi, C. J. Howard, Applications of Neutron Powder Diffraction (Oxford University Press, New York, 2008).
  68. R. E. Ornelas et al., Appl. Surf. Sci. 258, 5753 (2012);
    Crossref
  69. Z. Liu, X. Tang, S. Xu, X. Wang, J. Nanomaterials 2014, 690514 (2014);
    Crossref
  70. A. Monshi, M. R. Foroughi, M. R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012);
    Crossref
  71. R. M. Chellab, K.H. Harbbi, AIP Conf. Proc. 2123, 020044 (2019);
    Crossref
  72. B. Marinkovic, R. R. de Avillez, A. Saavedra, F. C. R. Assunсаo, Mat. Res. 4, 71 (2001);
    Crossref
  73. A. R. Stokes, A. J. C. Wilson, Proc. Phys. Soc. 56, 174 (1944);
    Crossref
  74. M. Hassan et al., Appl. Phys. A 123, 352 (2017);
    Crossref
  75. S. E. Shirsath, M. L. Mane, Y. Yasukawa, X. Liua, A. Morisakoa, Phys. Chem. Chem. Phys. 16, 2347 (2014);
    Crossref
  76. A. K. Zak, W. H. Abd. Majid, M. E. Abrishami R. Yousefi, Solid State Sci. 13, 251 (2011);
    Crossref
  77. K. R. Beyerlein, R. L. Snyder, M. Li, P. Scardi, Philos. Mag. 90, 3891 (2010);
    Crossref
  78. Б. Б. Гуляев, Теория литейных процессов (Машиностроение, Ленинград, 1976).
  79. Г. В. Несветаев, Бетоны (Феникс, Ростов-на-Дону, 2013).
  80. В. Ю. Туханова, Т. П. Тихонова, И. В. Федотова, Методы оценки потребительских свойств материалов и конструкций узлов швейных изделий при инженерном конфекционировании (Академия Естествознания, Москва, 2017).
  81. О. А. Агеев, В. В. Петров, В. М. Мамиконова, В. Н. Котов, О. Н. Негоденко, Информационно-измерительная техника и электроника. Преобразователи неэлектрических величин (Юрайт, Москва, 2018).
  82. J. J. Reed, J. Res. Natl. Inst. Stand. Technol. 125, 125007 (2020);
    Crossref
  83. Б. В. Некрасов, Основы общей химии (Химия, Москва, 1974).
  84. A. V. Eletskii, A. O. Erkimbaev, V. Yu. Zitserman, G. A. Kobzev, M. S. Trakhtengerts, High Temp. 50, 488 (2012);
    Crossref
  85. С. И. Венецкий, О редких и рассеянных (Мир, Москва, 1990).
  86. C. N. Reid, Deformation geometry for materials scientists (Pergamon Press, Oxford–New York, 2016).
  87. J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, Chinese Phys. B 17, 1565 (2008);
    Crossref
  88. P. M. Shafi, A. C. Bose, AIP Adv. 5, 057137 (2015);
    Crossref
  89. V. Ramamurthy, J. Phys. Chem. Solids 47, 1109 (1986);
    Crossref