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We approximately solve the deformed Dirac equation for a new improved Hulthén plus a class of
Yukawa potential including a Coulomb-like tensor interaction (IHCYPCTI for short) in the context
of extended relativistic quantum mechanics ERQM symmetries including an improved Coulomb-like
tensor interaction with an arbitrary spin-orbit coupling quantum number k. Within the framework
of the spin and pseudospin (p-spin) symmetry, we obtain the global new energy eigenvalue which
equals the energy eigenvalue in usual relativistic QM plus the corrected energy induced by three
infinitesimal additive parts of the Hamiltonian corresponding to the spin-orbit interaction, the new
modified Zeeman and the rotational Fermi term by using the parametric of Bopp’s shift method
and standard perturbation theory with an approximation to the centrifugal term. The new values
that we got appeared sensitive to the quantum numbers (5, k,1,1, s, 5, m, m), the mixed potential
depths (A, B), the range of the potential §, and noncommutativity parameters (0, o, x). The mixed
potential which in some particular cases gives solutions of different potentials: the improved Hulthén,
the improved Yukawa potential and the improved Coulomb-like problem along with their bound state
energies are obtained.

Key words: Dirac equation, Hulthén plus a class of Yukawa potential, noncommutative geometry,

Bopp’s shift method and star products.
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I. INTRODUCTION

The relativistic Dirac equation DE is an effective tool
that researchers use to study various high-energy physi-
cal systems that have spin-1/2 especially in nuclear,
atomic physics, and hadronic physics. This equation
plays a significant role in various fields of physics. It
expands to include very important physical symmetries
under various potentials. The solutions of these potenti-
als in 3D and multidimensional space have attracted
attention since the beginning of the study of relativistic
quantum mechanics RQM. The Hulthén and inversely
quadratic Yukawa potentials are the most important
potentials in the field of strong quantum physics. The
first potential is considered a short-range potential,
extensively used to study the bound states of the
interaction systems such as atomic, nuclear and parti-
cle physics, while the second potential studies the strong
interactions between nucleons. We have noticed many
works that deal with the study of the two potentials
in relativistic and nonrelativistic regimes. Hamzavi and
Rajabi obtained the approximate analytical bound states
of the DE for scalar-vector-tensor Hulthén potentials in
the presence of spin and pseudospin (p-spin) symmet-
ries (s(p)pin-sy) with any arbitrary spin-orbit coupl-
ing number ASOCN-£, using the Pekeris approximation
and the generalized parametric Nikiforov-Uvarov method
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(NUM), and obtained both energy eigenvalues and
corresponding wave functions in their closed forms [1].
In 2013, Aydogdu et al. obtained solutions of the relati-
vistic DE for the scalar and vector Hulthén potentials
with the Yukawa-type tensor potential using the NUM
for s(p)pin-sy with the Yukawa-type tensor potential for
an ASOCN-k, and they deduced the energy eigenvalue
equations and corresponding upper and lower spinor
wave functions in both s(p)pin-sy cases [2]. Ikhdair et al.
solved the DE approximately for the attractive scalar and
repulsive vector Hulthén potentials including a Coulomb-
like tensor potential with ASOCN-j and obtained the
analytic energy spectrum and the corresponding two-
component upper and lower spinors of the two Dirac
particles through the NUM within the framework of the
s(p)pin-sy concept [3]. Ikhdair and Falaye obtained the
approximate relativistic bound state of a spin-1/2 parti-
cle in the field of the Yukawa potential and a Coulomb-
like tensor interaction with ASOCN k under the s(p)pin-
sy using the asymptotic iteration method and obtained
energy eigenvalues and the corresponding wave functi-
ons [4]. Ikhdair and Hamzavi solved approximately the
DE for a generalized inversely quadratic Yukawa potenti-
al IQYP including a Coulomb-like tensor interaction
with ASOCN-k within the framework of the s(p)pin-
sy and obtained the energy eigenvalue equation and the
corresponding eigenfunctions, in a closed form with the
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help of the parametric NUM [5]. Ikot et al. solved the
DE for the energy-dependent Yukawa potential includ-
ing a tensor interaction term within the framework of
the s(p)pin-sy limits with ASOCN-k and obtained expli-
citly the energy eigenvalues and the corresponding wave
function using the NUM [6].

Recently, the phenomenon of combining different
potentials has appeared, as it has become a source of
interesting research inspiration for researchers. The real
goal is to search for more applications in various physi-
cal and chemical fields alike. We will confine ourselves
to mentioning three models of paramount importance.
Magu et al. solved the DE for Manning—Rosen plus
a class of Yukawa potential including a Coulomb-like
tensor potential with ASOCN-k within the framework of
the spin and p-spin symmetry and obtained the energy
eigenvalue equation and the corresponding eigenfuncti-
ons in a closed form by using the NUM [7]. Ikot et
al. presented the DE for the Mobius square-Yukawa
potentials including the tensor interaction term within
the framework of s(p)pin-sy limit with ASOCN-k and
obtained the energy eigenvalues and the corresponding
wave functions using the supersymmetry method [8].
Ahmadov et al. examined the bound state solutions of
the DE under the s(p)pin-sy for Hulthén plus a class
of Yukawa potential including a Coulomb-like tensor
interaction, they employed an improved scheme to deal
with the centrifugal (pseudo centrifugal) term and obtai-
ned the relativistic energy eigenvalues and associated Di-
rac spinor components of wave functions using the NUM
and SUSYQM methods [9]. In our current research, we
will focus on the latter to shed more light on it. We
will process it in a space that includes wider symmetri-
es in order to discover more applications and powers.
This space is known to researchers as noncommutati-
ve quantum mechanics or extended quantum mechanics
EQM and deformation quantum mechanics DQM. Why
do we resort to the option of conducting the study in
this expanded space? Considering the successes achieved
by adopting the principles of quantum mechanics known
in the literature, there are still many problems without
solutions such as the quantum gravity, string theory and
the divergence problem of the standard model. There are
J

promising indications that it is possible to find solutions
to these problems [10-19]. In addition to the well-known
postulate [Z,%p,] # 0, physicists have extended the
symmetries of quantum mechanics QM to include more
new postulates such as [2,,3Z,] # 0 and [p,p,] # 0. The
idea of DQM is old and dates to the early years of QM,
where the idea was proposed by Snyder [20] in 1947 and
its geometric analysis was introduced by Connes in 1991
and 1994 [21, 22]. Seiberg and Witten extended earlier
ideas about the appearance of NC geometry in string
theory with a nonzero B-field and obtained a new versi-
on of gauge fields on noncommutative gauge theory[23].
In the context of some deformed canonical commutation
relations leading to isotropic nonzero minimal uncertai-
nties in the position coordinates, Quesne and Tkachuk
(2005) solved exactly the DE for the Dirac oscillator
using supersymmetric quantum mechanical and shape-
invariance methods to derive both the energy spectrum
and wavefunctions in the momentum representation [24].
In the next year, the same authors generalized the
D-dimensional (8, 8')-two-parameter deformed algebra
with minimal length, which was introduced by Kempf
to a Lorentz-covariant algebra in a (D + 1)-dimensional
quantized spacetime that reproduces the Snyder algebra
case for D = 3 and 8 = 0 [25]. There were multi-
ple contributions to the study of the Hulthén potential
or Yukawa potential singly or combined with another
potential in relativistic and nonrelativistic regimes in
the symmetries of deformation quantum mechanics
[26-31], but as regards the combination of Hulthén
with IQYP in the symmetries of deformed Dirac theory
DDT, no researcher has yet addressed it, to the best of
my knowledge. I hope that this study will help to di-
scover more investigations in the sub-atomic scales and
gain more scientific knowledge of elementary particles
in the field of Nano-scales. The research reported in
the present paper was motivated by the fact that the
study of the improved Hulthén plus a class of Yukawa
potential including a Coulomb-like tensor interaction
(IHCYPCTI, in short) in the DDT symmetries has not
been reported in the available literature. In this work, the
vector and scalar IHCYPCTI model (Vicy (7), Shey (7))
to be employed is defined as:

Lo+ 0 (@2) = V& (r) for spin-sy,

Viey (7) = Vhey (r) — =220 ] (L)
2r or LO+0 (0?%) = Vi (1) for pspin-sy,
and
2\ _ Qs T
Shey (T) = Shey (1) — iShL(r) { E@ e (@ ) - ShCy () for spin-sy: (1.2)
2r or LO + O (©?%) = SE, (r) for pspin-sy,

where (Viey (1) , Shey (r)) are the vector and scalar potentials [9] according to the view of RQM known in the literature:
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Ze2§ exp (—or)

Ae—ér Be—26r

e @
Shey (1) = 725625 exp (—or) B Ao B B.e~ 207
hey \1) = = exp (—or) r r2

where A/As and B/Bj are the depths of the studied potential, ¢ is the screening parameter, (7 and r) is the distance
between the two particles in deformation of the Dirac theory symmetries and QM symmetries, respectively. The

two couplings L® and LO are the scalar product of the usual components of the angular momentum operators
(L(Ly, Ly, L) or L (Lx, L,, Lz)) and the modified noncommutativity vector © (612, 023, 613) /2 which presents the

noncommutativity elements parameter. The modified algebraic structure of covariant canonical commutation relations
MASCCCRs, Lie structure and quantum plane in the DDT in the representations of Schrédinger, Heisenberg, and
interactions pictures, as follows (we have used the natural units i = ¢ = 1) [32-42]:

o580, 5] < i, > [55: 5] = i o

(S7H71)*§(SVH7I)}

0, with 6, € IC, Canonical _structure,

v € 1C, Lie_structure,

iCo‘ﬁi&S’H’I)i(ﬁs’H’I)with C’ﬁ‘f € IC, Quantum_plane

and
H,1 H,1
[mgs, D S ,)} — 0 — [
= ife,@d™Y with
nv
; ~(SHI &S ~H Al ~(S,H,I)
with 7, = (x“, xwxncu) and py

(ﬁsu, ;Z)\I:, ﬁ) are the generalized coordinates and the
corresponding generalizing coordinates in the DDT
symmetries while IC' denotes the complex number fi-
eld. The uncertsainty relations will be changed to the
following formula in the new symmetries as follows:

Am&S’H’I)Apf,S’H’D > hd/2

=

AE&S,H,I)A}?’(}S,H,I) > eitOm /2,
- (5)

A%\LS,H,I)AZ/;(VS,H,I) ‘ewj‘ /2

It is important to note that Eqs. (3) and (4) are covari-

ant equations (the same behavior of %LS’H’I)) under the
Lorentz transformation, which includes boosts and/or
rotations of the observer’s inertial frame. We have
extended the MASCCCRs to include the Heisenberg and
interaction pictures in DDT. Here h.g = h is the effective
Planck constant, 6, = €,,0 (0 is the non-commutative
parameter, and €,,is just an antisymmetric number, for
example €10 = €13 = €3 = —€3 = —€1 = —€31
= 1, €11 = €29 = €33 = 0) which is an infinitesimal
parameter if compared to the energy values and elements
of antisymmetric (3 x 3) real matrices, and J,, is the
Kronecker symbol. The symbol * denotes the Weyl-

[

Moyal star product, which is generalized between two
ordinary functions h(z)g(x) to the new deformed form

A

h(f)g(f) which is expressed with the Weyl-Moyal star
product A(x) x g(x) in the symmetries of deformation of
the Dirac theory symmetries as follows [43-53]:

h(z) * g(x)

exp (ie“”@@ﬁaff) (hg) (z),
canonical _structure,

i (S,H,I car oz
exp (38 gr (105,102) ) (h) (@),
Lie structure,

(6)

igC U P00 b (u,0) g (!, 0 0
quantum__plane

with
v 1 v pla
ga(k7p):_kupu k +6kupu(pa_ka)fl .fm +....

In the current paper, we apply the modified algebraic
structure of covariant canonical commutation relations
MASCCCRs in the DDT, which allows us to rewri-
te to the following simple form at the first order of
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noncommutativity parameter e/ as follows [49-53]:
(h*g) (x)
~ (hg) (z) -

1€ 0
2

OLhOLg|on=er + O (7). (7)

The indices (u,v =1,2,3) and O (6%) stand for the
second and higher-order terms of the NC parameter.
Physically, the second term in the last equation
presents the effects of space-space noncommutativity.
The purpose of this paper is to investigate the (k,[)-
states solution of the deformed Dirac equation within
Bopp’s shift and standard perturbation theory methods
to generate an accurate new energy spectrum in the
deformation of the Dirac theory symmetries and the
deformation of the Schrédinger theory symmetries. Our
current work is structured into five sections. The first
section includes the scope and purpose of our investi-
gation, while the remaining parts of the paper are
structured as follows. A review of the DE with Hulthén
plus a class of Yukawa potential including a Coulomb-
like tensor interaction is presented in Sect. II. Section IIT
is devoted to studying the deformed Dirac equation by
applying the usual Bopp’s shift method and the like
Greene and Aldrich approximation for the centrifugal
term to obtain the effective potential of the improved
Hulthén plus a class of Yukawa potential including a
Coulomb-like tensor interaction in DDT symmetries.
Furthermore, via standard perturbation theory, we find
the expectation values of some radial terms to calculate
the corrected relativistic energy generated by the effect of
the perturbed effective potential of the improved Hulthén
plus a class of Yukawa potential including a Coulomb-
like tensor interaction, we derive the global corrected
energy with the improved Hulthén plus a class of Yukawa
potential including a Coulomb-like tensor interaction in
the deformed Dirac symmetries. We will also treat some
important special cases, including the study of nonrelati-

J

{ Lk (k+1)r 2+ UL (1) = (M + Bug, — Dney (7)) (M = By + Shey (1)) +

vistic cases as a nonrelativistic limit. The last section is
devoted to a summary and conclusion.

II. REVISED DE UNDER HCYP INCLUDING A
COULOMB-LIKE TENSOR INTERACTION

This section is devoted to a brief review of a physical
system that interacted with the Hulthén plus a class of
Yukawa potential HCYP including a Coulomb-like tensor
interaction; this system can be described by the following
equation:

ap + B (M + Shey (r)) — iB7U (r)
\Ifnk (’/’, Q) = O

(8)
The vector potential Vi, (1) due to the four-vector
linear momentum operator A* (Viey (r), A =0) and
the space-time scalar potential Shey (1) due to the
mass, FE,, represents the relativistic eigenvalues,
(n,k) represent the principal and spin-orbit coupli-
ng terms, respectively. U (r) is the tensor interacti-
0 oy ~ Izx2 0
on, a; = , B = and
ag; 0 0 —IQXQ
o; are the usual Pauli matrices. Since the Hulthén
plus a class of Yukawa potential have spherical
symmetry, allowing the solutions of the known form

Ve (1,9) = (B (1) V1, (Q) G (1) YL, () ),
Foi (r) and Gpy (r) that represent the upper and lower
components of the Dirac spinors U, (r, Q) while lem (Q)

— (Enk — Vhey (1))

and lem (Q) are the spin and pseudospin spherical
harmonics and m is the projection on the z-axis. The
upper and lower components Fy,;. (r) and Gy, (r) satisfy
the following second-order differential equations:

dApcy (1)
dr

(dE+5-UM) | B, (r)=0
M+Ep,—Apcy (1) ’

d? -2 ct dzhjy(r) (%*&JrU(T)) G _
Gz —k(k=1)r?+US% (1) = (M + Eng — Aney (1) (M — Enp, + ey (1)) + Y B o srue o) nk (1) =
(10)
Here USE (r) = ka(r) - d%—ff) —U?(r)and U (r)= -4 H = Z;EZ;, Yhey (1) and Apey (7) are determined by:
e?5 exp(—dr —ér —26r
Shey (1) = Vhey (1) + Shey () = — 222200 Ae 0 pe 2
and m%w =0 (A =Csp) for spin sy limit,
(11.1)
VA 25 xp(—& e—ér e—zér
Bney (1) = Vaey (1) = Shey (1) = ~F55E G — 45— = 25

and dEhd%,;,(r) =0 (X = Cps) for p-spin sy limit.

We obtain the following second-order Schrodinger-like equation in RQM symmetries, respectively:
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d2 — c S S |
| s = RO )7+ Uk () = (M + B3 = ) (M = B+ Sy ()

d2 — C S S |
[ = (= 17 4 U () = (O B2 = By () (M = 25 + Cp)

Fog (r) =0, (11.2)

Gor (r) =0, (11.3)

with k(k—1) and k (k + 1) equal to Z(Flvf 1) and [ (I 4+ 1), respectively. The authors of Refs. [9] use the NU and

SUSYQM methods and the Greene—Aldrich approximation for the centrifugal term to obtain the expressions for the
wave function as hypergeometric polynomials o Fy (—n, 28"k 4 2¢"F 4 ny 1 + 267F; s) in RQM symmetries as follows:

Fo(s) = D7 (1= 5)<" oF) (=0, 287 +2C7F 4+ n; 1+ 287%;5) | (12)
~ ~nk Tnk ~ ~ ~
Goio () = DP2sP™ (1 - 9)¢" LRy (fn, 9287 1+ 20" 4 ;1 + 267 5) (13)
. s T (n+28"% 41 ~ T (n+28"%"41) =ps
with Db = WCZ% , DY = WC’EZ , 8 = exp (—2dr) and:
482 = (M = ER? — Cop (M — ER)) 572,
452 — (M2 = BI + Cpo (M + EF})) 072, »

2("k = \/1/4—B(M +EY —Cs) + (k+ H) (k+ H + 1),

20" = \/1/4+ B(M — EX + Cpe) + (k+ H) (k + H — 1),

where C7} and C?} are the normalization constants:

(n 4 (k)T (267k=) T (n 4 287k 4+ 1) T (n + 2¢"F)

oo \/ 25n! (n + (" + Brk—) T (280k— + 1) T (n + 267k— + 2("k)
nk —

)

— - = = (15)
_ 20n! (n + ¢k + Bnk—) r (26“— + 1) r (n + 24nk— + 2@’6)
(n+ )T (287 ) T (n+ 280 +1) T (n+207%)
For the spin symmetry and the p-spin symmetry, the equations of energy are given by:
2 nk 72
+k+H)(E+H+1) 2(2n+1)¢
M2—E®2_C (M—E®)=— |2 — 1
nk CP( nk) |: n+1/2+2<nk n+1/2+2<nk ’ ( 6)
~ 2
, 2+ (k+H)(k+H-1 2(2n+1)¢mk
M2 Cp (M4 B = — | R HZL)  2@nt e (17)
n+1/2+ 2("k n+1/2+ 2("k

(26Ze*+2A58) (M+ES, —Cyp)

2 (20Ze*+2A58) (M—EP5 +Cpe )
15 :

~
and a° = 152

with o? =
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III. THE NEW SOLUTIONS OF DDE UNDER ITHCYPCTI IN THE DDT SYMMETRIES

A. Review of Bopp’s shift method

Let us begin this subsection by finding the DDE in the symmetries of extended RQM under IHCYPCTI. Our
objective is achieved by applying the new principles which we described in the introduction, Egs. (4) and (7),
summarized in new relationships MASCCCRs, and the notion of the Weyl-Moyal star product. These data allow us
to rewrite the usual radial Dirac equations in Eq. (8) in the DDT symmetries as follows:

(ap + B(M + Shcy (’I“)) - ZB\?U (T) - (Enk - thy (r))) * \I’nk (7"7 Q) =0. (18)

Thus, the upper and lower components F,,x (r) and G,k () satisfy the following second-order differential equations

in the DDT symmetries:

d2
(-

and

dr?

Among the possible paths to finding solutions to Eqs.
(19) and (20) is the application of the Connes method
[21, 22|, or the Seiberg and Witten map [23, 54]. Speci-
alists know that the star product can be translated
into an ordinary product known in the literature
using what is called Bopp’s shift method. Bopp was
the first to consider pseudo-differential operators obtai-
ned from a symbol by the quantization rules (z,p)
— (F=2—-1%0,, p=p+ %0,) instead of the ordinary
correspondence (z, p) — (E =z, p=p+ %896), respecti-
vely. This procedure is known as Bopp’s shifts and
this quantization procedure is known as Bopp’s quanti-
zation [55-58]. This method has achieved considerable
success in recent years. For illustrations of its applicati-
on in treating the nonrelativistic deformed Schrédinger
equation NR-DSE over a significant number of typical
potentials, see references [27, 51, 59—64]. The success
of this method was not limited to the DSE, but
extended to the study of various relativistic physics
problems, for example the deformed Klein—Gordon
equation DKGE (see references [28-32, 65-73]), for the
DDE (see references [26, 50, 52, 53, 74]) and the deformed
Duffin-Kemmer—Petiau equation DDKPE [75, 76]. Thus,
Bopp’s shift method BSM is based on reducing second-
order linear differential equations of the DSE, DKG,
DDE and DDKPE with the Weyl-Moyal star product
to second-order linear differential equations of SE, KGE,
DE, and DKPE without the Weyl-Moyal star product
with simultaneous translation in the space-space. It is
worth motioning that BSM permutes to reduce the above
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k(k—&—l)r*Q—&—Ugftf(r)—(M—FEfl%—

2
(d—k;(k;—l)r_Q—&—Ugftf(r)—(M—l-EgZ

Csp) (M — EN + ey (r))) *« Fop (r) =0 (19)

~ By () (M = 25+ Co) ) G (1) =0 (20)

(

equations to the simplest form:
(dd —k(k+1)72 4+ U (7)

—(M+ E} —Csp) (M — EXN + Sy (7)) )Fnk (r)y=0

(21)
and

(j;—k(k—l)r“2+U§1§f(?)

(M 4 B~ Mgy (7)) (M — EP + cps>)ank (") =0.

(22)
The MASCCCRs with the notion of the Weyl-Moyal star
product in Eqs. (4) become new MASCCCRs with an
ordinary product known in literature as follows (see, e. g.,
[55-58]):

[QLS,H,I)’ ﬁij,H,I)} = ifiegtO,
(23)
[E000, FR0] — o,

The generalized positions and momentum coordinates

f,(LS’H’I) and ﬁfLS’H’I) in the symmetries of extended RQM

are defined as [63-66]:

3
~(S,H,I) _ (S,H,I) 10, (S,H,I)
T =T — E — s
K H = 2 Pv (24)

S,H,I S,H,I
ﬁL ) _ pEt )7
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(S,H,I) _ ( S . H I (S,H,I)
i =

here z a5, i, ) and py = (pS.plp)) 1° —L®) for spin symmetry and p-spin, respectively [26,

are corresponding coordinates in the RQM symmetries. 50, 52, 53, 74| while the new operators Vi, (7), US (7),
This allows us to find the operator 72 equal (r? — L®, k(k+1)7 2and k(k—1)7"2 in the DDT symmetries,
are expressed as:

J

T

s P~ OVhey (7
Vi, M) =V (r) - 2L 4§ (g2)
fou 9 1cy (T L
VE (7)) =V (r) - 21O 4 0 (9?),

Usk® (7) = Ugk (r) - 25058 4 0 (02),

€

- (25)
U (7) = Ugh (r) = 255252 +0(82),
k(k+1)72=k(k+1)r2+k(k+1)r*LO+0 (6?%),
k(k—1)72=k(k—1)r2+k(k—1)r*LO+0(0?).
Substituting Eqs. (25) into Egs. (21) and (22), we obtain the following two Shrédinger-like equations:
d2 k k J’» 1 Cct-S S S er
[er - % +USES (1) = (M + B — Cup) (M — E + Sy (1)) — SO (r)] Fu(r)=0  (26)
and
d2 k (k — 1) ct-p ps ps pert
ar? r2 + U’ (r) = (M + E} — Aney (1)) (M — Epy + Cps) — Ahcy (r)| Gk (1) =0 (27)
with
UL (r)LO  k(k+1) oV (r) LO
pert _ eff ~Y _ Sp —
EhCy (r) = or o rd LO — (M + E; - Csp) or o (28)
and
AUSEP (MLO  k(k—1)= oV (r) Le
pert _ eff = _ __ b .
Ahcy (T) - Ir 2 + ré Lo (M Enk + CPS) or o . (29)

By comparing Egs. (11.1) and (11.2) and Egs. (26) and (27), we observe two additive potentials Eﬁi;t (r) and

Aﬁi}r’t (r). Moreover, these terms are proportional to the infinitesimal noncommutativity parameter ©. From a physical

point of view, this means that these two spontaneously generated terms Eﬁs;t (r) and Aﬁi;t (r) as a result of the
topological properties of deformation space—space can be considered very small compared to the fundamental terms
OVhey (1) U (1)

i as follows:

They (1) and Apey (), respectively. A direct calculation gives and

OVhey (1) 4Ze?0% exp (—20r) | Ze?0” exp (—40r) 3 2A5e207  Ae—20r N 4Be 20" N 2Be40r
o (1—exp(—20r)) (1 — exp (—26r))? r 72 r2 r3

oUY (r) H
or r2 (31)
It should be noted that for convenience, we substitute § — 24 in the Hulthén potential. Substituting Eq. (30) and

31) into Egs. (28) and (29), we obtain spontaneously generated terms X2 (r) and AP®" (1) as follows:
hcy hcy

27e2%5% exp(—267) 2Ze?62 exp(—46r)

+
er S r(1—exp(—207)) r(1—exp(—267))>2 k (k + 1) H
Py (== (M+ Bl = Cop) e e | O (7«4 ~ 55 |LO+0(87)
__ Ade .»4627,3 + Béde 4 Be

2 3 por:}

(32)
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and
27Ze26% exp(—267) 27e%5% exp(—46T)
+ 3
er s r(1—exp(—26r r(l1—exp(—24r =~ k(k—1 H\ =~
AT () = — (M — TS 1 Gy [ 7O o) L@+((4)—2T3)L@+O(62).

A5€726T AE*ZJT B667467‘ B€745T
r2 + r3 +

273 rd

(33)

For spin symmetry, we first consider Eq. (26), which contains the improved Hulthén plus a class of Yukawa and also

an improved Coulomb-like tensor potential in the deformation of Dirac theory symmetries. It can be solved exactly

only for £ =0 and k = —1 in the absence of tensor interaction H = 0, since the two centrifugal terms (proportional

to k(k+1)r=2 and k (k + 1) r~*) vanished. In the case of arbitrary k, an appropriate approximation needs to be

employed on the centrifugal terms. We apply the following improved approximation which was applied by Greene
and Aldrich [77]:

~ —
~

= —
(I—e2r)?  (1-s)® "1 1l-s

For p-spin symmetry, we now consider Eq. (27) and will follow similar steps with the spin symmetry case in the
deformation of the Dirac theory symmetries. In a similar way as mentioned earlier, Eq. (27) cannot be solved exactly
for k = 0 and k = 1 without tensor interaction, since the two centrifugal terms (proportional to &k (k —1)r~2 and
k (k — 1) r=%) vanish. Applying the approximations Eq. (34) to the centrifugal terms of Eqs.(32) and (33), the general

form of the additive potentials Eﬁj;t (r) and Aﬁi;t (r) will be as follows:

1 452207 4625 1 20s1/2
= . (34)

1sp _3/2 2sp 5/2 3sp s .3 4sp 7/2 5sp 4
L. s / LVs / L77ds L. Vs / Ls

EpertT:
") ((1—3)2 (1= (1-9* (1-9° (1-9)"

hcy

6sp 2 Sp .3/2
L, s L).s

TSNS .
and
age ) = (BES | LD Lo | LR L
(1-s5)" (1-=s)" (1-s5" (1-95)" (1-s)
6s S
(fij; (Ll”e“f;i JLO + 0 (62) -
with
LI = ~A2E%6° (M + B, - Cu).
Lk = —46% (Ze* + A) (M + B = Cup)
L = SAS (M + B, — Cy),
L = 880" (M + B, ), )
L = —16B6 (M + B — Ciy).
LY =16k (k + 1) 04,
L, = Ly = —43°H.
while

LI = —47¢25% (M — EP, + Cys),

L2 = —48% (Ze? + A) (M — EP, + Cs),
L7 = 8A8% (M — EP5 + Cy),

LY = —8B&* (M — E™, + Cpe),

L% = —16B6* (M — EP5 + Cps),

L% =16k (k — 1) 5%

(38)
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It is important to mention here that the above approxi-
mations are valid in short when dr < 1 is satisfied. We
have replaced the term k(k+1)r=* and k(k—1)r—*
with the approximation in Eq. (34). The Hulthén plus
a class of Yukawa potential including a Coulomb-like
tensor interaction is extended by including new terms
83/2 35/2 83

(1—8)2 9 (1—8)3 ) (1_5)2 I
s3/

e and a ;)3 to become the improved

proportional to the radial terms
$7/2 st §2
(1—-8)%7 (1—s)*7 (1—
Hulthén plus a class of Yukawa potential including an
improved Coulomb-like tensor interaction in extended
RQM symmetries. The generated new effective potenti-
als Zﬁi;t (r) and Aﬁce;t (r) are also proportional to
the infinitesimal vector ©®. This allows us to consi-
der the new additive parts of the effective potenti-
al Ypot(r) and ARG (r) as a perturbation potential
compared with the main potentials Xy (1) and Apey (1)
(the parent potential operator in the symmetries of
extended RQM, that is, the inequality has become achi-
eved Eﬁi;t (r) € Xhey () and Aﬁs;t (r) < Aney (7).
That is all physical justifications for applying the
time-independent perturbation theory become satisfied.
This allows us to give a complete prescription for

J

determining the energy level of the generalized n'" exci-
ted states.

B. The expectation values under IHCYPCTI in
the DDT for spin symmetry

In this subsection, we want to apply the perturbati-

ve theory. In the case of extended RQM symmetries, we

sp-hecy
find the expectation values AsP-hey — <(53/2 >

1(nlm) 1—s)? (nlm) ’

sp-hey  _ $5/2 sp-hey sp-hey  _ < &3 >sp-hcy
MQ(nlm) = < (1—s)® >(nlm) ’ M3("lm) o\ (1-9)? (nlm)’
sp-hey  _ R sp-hcy sp-hey  _ <L>sp-hcy
My im) = <(1—s)3>(nlm)’ Msnimy = (T (nim)’

sphey _ [ g2\ sp-hey <i>3p_hcy
MG(nlm) - <(1—s)4 >(nlm) and M7(”lm) T \(1-s)? (nlm)

for the spin symmetry taking into account the wave
function which we have seen previously in Eq. (12). Thus,
after straightforward calculations, we obtain the follow-
ing results:

+oo
Mf?n}ll% = ngf / 2P/ (1- S)zgnk_2 [2F1 (—n, 26°K 4 2¢™F 4 n; 1+ 2675 s)]2 dr, (39.1)
0
+oo
n nk _
M;?n}l‘% = DZ‘;CZ / §287+5/2 (1-— S)QC 3 [2F1 (—n, 267K £ 2¢™F 4 n;1 4 287k, s)]z dr, (39.2)
0
+oo
nk nk_
Mg?nlll:ny) = D3R / 20" 1-s)*" 72 [2Fy (—n, 28™ + 20" + ny 1+ 26", s)]2 dr, (39.3)
0
+oo
n nk _
MEPheY = D3R / 20T (1= )2 Ry (-0, 287 4+ 2¢7F 1+ 2675 5) ] dr (39.4)
0
—+o00
nk nk _
MY = D32 / PO (L= )X GF) (—n, 28 20 i 1 428755 dr, (39.5)
0
“+oo
n nk_
MR = D3R / 202 (1= 52T SR (<0, 287 4 20 +my 14287 5) ] dr, (39.6)
0
and
+oo
n nk_
MRS — DR / 202 (1 )2 R (-, 287 4 207 41 42675 8) ] dr (39.7)

0

sp-hcy

We have used useful abbreviations <R>(nlm) = (n,l,m R n,l,m) to avoid the extra burden of writing equations.

Furthermore, we have applied the property of the spherical harmonics, which has the form [ Y™ (Q') YZT”’ () d*Q =
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011/ Oy - We have s = exp (—2dr), this allows us to obtain dr = —1/2%. From the asymptotic behavior of s when
(r = 0) (y — +1)and when (r — +o00) (y — 0), this allows us to reformulate Eqgs. (39,i =1,7) as follows:

+1
DP? k_q_
MR — i /szﬁ /21 (1 )X Ly (2, 287K 20 4oy 1 4287 5)] P ds, (40.1)
0
S +1
sp-hcy Dnr;f 25"’“4—5/2—1 2("’“*2*1 nk— nk . nk— . 2
Myimy = —55 [ ¢ (1—5s) [oFy (—n, 28" +2¢™ 4+ n; 1+ 2871 5)] " ds, (40.2)
0
o1
sp-hcy D;I;f 28"k 43-1 2¢mk—1-1 nk— nk nk— 2
M) = 5 [ 5 (1-5s) [2F1 (—n,28™ +2¢" +n; 1+ 28" 5)] " ds, (40.3)
0
+1
sp-hcy DSI;? 28™* +7/2-1 2¢"F 21 nk— nk nk— 2
M4(nlm) = 277:5 s (1-23s) [gFl (fn, 268™T + 2" +n; 1+ 28 ,5)] ds, (40.4)
0
S +1
sp-hey Dnr;f 28™k 141 2" —3-1 nk— nk . nk—. \12
M5(nlm) =25 /3 (1—29) [2F1 (—n, 26™T +2¢C"" +n;1 428 ,s)] ds, (40.5)
0
S +1
Msp—hCy . an;f 28"k 121 (1 . )2(’Lk—4 [ F (_ 26111(— +2<nk+ .1+2I8nk—. )]2d (40 6)
6(nim) — o5 [ s 241 (—n, n; ;S S, )
0
and
S +1
sp-hey _ an;f 28™F43/2—-1 2¢"F—2-1 nk— nk . nk—, _\12
Mzt = 55 | 8 (1—s) [2F1 (—n,28™ +2¢" + n; 1+ 28" 5)| " ds. (40.7)
0

We can evaluate the above integrals either in a recurrence way through the physical values of the principal quantum
number (n = 0,1,...) and then generalize the result to the general n*® excited state, or we use the method proposed
by Dong et al. [78] and applied by Zhang [79], to obtain the general excited state directly. We calculate the integrals
in Egs. (40,7 = 1,7) with the help of the special integral formula:

+1

/ZQ?1 (1- y)ﬂ_l [2F1 (c1,c9; ¢35 z)]2 dz =
0

INCIRNE)

F(O[—I-B) 3F2(Cl,62,6;63,ﬁ—|—04;1), (41)

here o F} (c1,¢o;c3;y) is the generalized hypergeometric function and 3F (¢1,co, 5;¢3, 8 + «; 1) is determined from
+oo

3Fy (c1,¢0,0503,0 +&1) = % while T' («) denotes the usual Gamma function. By identified Eq. (41)

with the integrals, we obtain the following results:

DF?T (28"% 4+3/2) T (2¢"F — 1)

My = 58 NGRESYD) sFy (—n, @5, 20" — 1,14+ 28™ D% +1/2;1), (42.1)
nk
! DSP2T (2™ +5/2) T (2¢"F — 2 o o ks
MQS?"};;?) - 2%]6 ( r(oh )+ 1(/2) ) 32 (_n’ Qnr;v’ 2¢ " 2;,1+28 k7 anl)c +1/2; 1) ) (42.2)
nk
i DT (2™ 4+ 3) T (2¢"F -1 n n
k) = 55 : r (sz +(2) L oFs (<, Q220" — 114 267, DB+ 21), (42.3)
nk
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DT (287F +7/2) T (2¢™F — 2)

St = 55 FOT 1372 3By (—n, Q20" — 2,1+ 26" D% 43/2:1), (42.4)
Mot = ngf - (26"??;%%1(25)% =) o (o, @207 — 314 267, D, 4 151). (42.5)
gty - S L (wnkrfzif)z{_@zc)nk R (cn@ 20 a1 25 D), (426)

and
gty = G, (QBFj(LDg/Q )+F1(/22ink 2 oy (o0, @20 — 214 25 D+ 1/21) (427)

with Q% = 2" +2¢"F + n and D} = 2p"F + 2("F,

C. The expectation values under IHCYPCTI in
the DDT for p-spin symmetry

In this subsection, we want to apply the
perturbative theory. In the case of extended
RQM symmetries, we find the expectation values

ps-hey < $3/2 >ps—hcy ps-hey _ < $5/2 >ps—hcy

l(nfﬁ@) - (1—5)2 (nrﬁ%)7 2(n7771) - (1—s)3 (’I’LT’I’FL),
ps-hey < $3 >ps—hcy ps-hey < $7/2 >ps—hcy
3(ntm) — \NO=97/(nfm)" ~ 4(nlm) — \NO=97/ (nim)’

ps-hey st ps-hey ps-hcy :< 52 >sp—hcy
Ms(nfm) - <(1—s)4>(nl~ﬁ,)’ MG(nZNﬁL) T N9/ (im)
3/2

d st = (2 A\ try with
an 2od) = <W>(nl~ﬁz) or p-spin symmetry wi |

Bt (287 +3/2) T (2¢™ 1)

tensor interaction taking into account the wave function
which we have seen previously in Eq. (13). By examining
the two expressions of the two wave functions shown in
Egs. (12) and (13), we note that there is a possibility
of moving from the upper wave function F,x (r) to
the other lower wave function Gy (r) by making the
following substitutions:

D« DP* "% o grkand ¢"F o (M (43)

which allows us to obtain the expectation values for
p-spin symmetry from Eqs. (42,4 = 1,7) without re-
calculation, as follows

ps-hcy I (_ ASP ornk 1. ank 1ysSp .
ey _ 3Py (—n, Q% 20 —1;1+ 23 ,an+1/2,1), (44.1)
1(nlm) 20 T (D;I;c + 1/2)
~ ank nk
pe2T (m + 5/2) r (24 _ 2) o o
pehey ok - 3Py (—n, G35, 20 — 214 25", D, +1/251)), (44.2)
(nim) — 29 r (D +1/2)
w2 T (25“ n 3) r (2an - 1) o o
ef)(s;gg) = 55 3y (—m Q5. 2¢" = 1,14 28™ D% +2; 1) , (44.3)

r (D +2)
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pre2 T (287 +7/2) T (207 - 2)

ps-hcy F (_ ASP o nk o, ank 1P .
hey _ sFy (—n, Q207 — 2.1 + 2" D +3/2; 1), (44.4)
A(ntm) 26 r (D3 +3/2)
ﬁspQ T (2Enk -+ 4) I (2Enk — 3) - - ~ ~
prhey . Dnk _ 3Py (—n, G5, 207 = 314 25", D, +151)), (44.5)
(ntm) 20 r (fo,’c + 1)
55})2 IR (QEnk =+ 2) I (QEnk — 4) ~ ~ ~ ~
gs_llliy = nk P 3F2 (-'I’L, Q;I;w 2C7Lk - 4a 1+ QBnka D;I])ca 1) ) (446)
(niim) =29 r (D3 -2)
and
1 2T (25”’c + 3/2) r (QZ"k - 2) o _
S-NC, n S n n S
P = = 3P (—n, Q3 20" — 2,1+ 2", D, +1/2;1) (44.7)

r (D +1/2)

with é;‘; and ﬁfgf are taken the values 28" + 20" 4+ p
and 28"F + 2("*, respectively.

D. The corrected energy for the IHCYPCTI in
extended RQM symmetries

The global corrected relativistic energy for the
THCYPCTI model in extended RQM symmetries is
composed of three principal parts. The first one is
generated from the effect of the perturbed spin-orbit
effective potentials P (r) and AP (r) corresponds
to spin symmetry an(i’ pseudospin symmetry. These
perturbed effective potentials are obtained by replaci-

ng the coupling of the angular momentums (L and
L ) operators and the NC vector © with the new
equivalent couplings OLS and OLS for spin-symmetry
and p-spin-symmetry, respectively(with ©2 = 02, +
©3; + ©%,). This degree of freedom is possible consi-
dering that the infinitesimal NC vector © is arbi-

trary. We have oriented the spins- (S,§> of the fermi-

onic particles to become parallel to the vector © whi-
ch interacted with the improved Hulthén plus a class
of Yukawa potential including a Coulomb-like tensor
interaction. Moreover, we replace the new spin-orbit
couplings OLS and OLS with the corresponding physi-
cal form (©/2) G? and (0/2) G2, with G = J? — L2 —
S2 and G2 = J2 — L2 — 82 for spin-symmetry and
p-spin-symmetry, respectively. Furthermore, in RQM,
the operators (HPY, J2, L2, S? and J, ) form a
complete set of conserved physics quantities, the ei-

genvalues of the operators G2 and G2 are equal to
the values F (j,Ly) = [+ 1)—i(+1)—3/4)] /2

and 1 (j,0y) = [5G+1) =10 -1)=3/9)] /2, with

2001-12
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1—1/2<j< [I+1/2] and "ll 1/2‘ <j< ’z~+ 1/2’
for spin-symmetry and p-spin-symmetry, respectively.
As a direct consequence, the partially corrected
energies AEfE'ySp (n,0,A,B,H,0,5,1,5) = AE; P and

hcy
AB (n,6,4,8,1,0,j,15) = AB™ due to the

hcy
perturbed effective potentials Ype* (r) and AP (r)
produced for the n'" excited state, in extended RQM

symmetries are as follows:

AEP =0 (j(j+1) —k(k+1) - 3)

(2 (0,6, 4B, H).
A;Ehg"y =0 (j(i+1) —k(k—1)-3) (45)
<Z>(nlm) (n,6,A, B, H) .
The global two expectation values
(2)' ) (n,6,A,B,H) and <Z>znfm (n,8, A, B, H)

for spin-symmetry and p-spin-symmetry, respectively
are determined from the following expressions:

7
hc . "
(Z) (nimy (0,6, A, B, H) = ZlLkaMZI()nlfg),
'u,:

46
~\ by r ups 3 rps-hcy ( )
<Z> (n,8,A, B, H) = S LMD M

(nl~’r7L) =1 u(nliﬁ)’

where L7 and L!7"are determined from Eqs. (37)

. 'h -h —
and (38), while MZI(’M% and Mi?nl% (n=T1,7) are

determined from Egs. (42,4 = 1,7) and Eqs. (44,7 =
1,7 ), respectively. The second main part is obtained
from the magnetic effect of the perturbative effective
potentials Eﬁi}r’t (r) and AP () under the THCYPCTI

hcy
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model in the deformation of the Dirac theory symmetri-
es. These effective potentials are achieved when we
replace both (LO and ©;2) with (oRL, and oRN),
respectively; here (N and o) symbolize the intensi-
ty of the magnetic field induced by the effect of the
deformation of space-space geometry and a new infini-
tesimal noncommutativity parameter, so that the physi-
cal unit of the original noncommutativity parameter
©12 (length)? is the same unit of oX. We also need
to apply (n/,U'y)m’ L, n,l,m) = mbpymdydnn and

', U',m' L, n,l,m) =md—~ _0570nm, (=1 <m <[ and
—1 < m <) for spin-symmetry and p-spin-symmetry,
respectively. All of these data allow for the discovery
of the new energy shift AERS™ (n,d, A, B, H,0,m)
and AEDEP® (n,6,A,B,H,0,m) due to the perturbed
Zeeman ei%ect created by the influence of the improved
Hulthén plus a class of Yukawa potential model for
the n'h  excited state in extended RQM symmetries as
follows:

AEM P (n,6,A, B, H,0,m)

hcy

= oN <Z>h0y )(TL,(S,A,B,H)TR,

(nlm

4
AE™S™ (o 5. A, B, H, 0, ) (47)

hcy

~\ hcy
— o <Z>( iy (10 A, BLH)

Now, for our purposes, we are interested in finding a
new third automatically important symmetry under the
IHCYPCTI model in DDT symmetries. This physical
phenomenon is induced automatically from the influence
of perturbed effective potentials P! (r) and AP (r),
which we have seen in Egs. (36) and (37). We consi-
der that the fermionic particles undergo rotation wi-
th angular velocity € if we make the following two si-
multaneous transformations to ensure that the previous
calculations are not repeated:

(io)

will be replace by:

LQ: for spin-sy
X .

LQ: for p-spin-sy (48)

Here x is just an infinitesimal real proportional constant.
We can express the effective potential E;pe'rrtc’t (s) and
AP (s) which induced the rotational movements of

the fermionic particles as follows:

Zsp—rot (8)

pert

Aps—rot (8)

pert

3

L2

usp 3 rps-hey
X LM
1

m(nim)

“w

7
s -hc,
X (Mz_:lLl;:kpMZl()nl:Z)> LO

To simplify the calculations without compromising
physical content, we choose the rotational velocity €2
parallel to the (Oz) axis. Then we transform the spin-
orbit coupling to the new physical phenomena as follows:

Esp—rot (S) LO Esp—rot (S) L
pert = =10 pert 1z
(S ia) e (05 ) ®
All of these data allow for the discovery of the

new corrected energy AEE(;;'SP (n,d0, A, B,H,x,m) and

AERP (n,6,A,B,H,x,m) due to the perturbed

effective potentials 321" (s) and AP (s), which is
generated automatically by the influence of the improved
Hulthén plus a class of Yukawa potential for the n*® exci-

ted state in DDT symmetries as follows:

ABPY® (n, 5, A, B, H, x,m)

hey

AERT™ (n,0, A, B, H,x, )

hc
<Z>(n?’m) (nn,d, A, B,H)m

= XQ ~\ hecy » . (51)
(Z), _ (n,6,4,B,H)m

(nlﬁz)
It is worth mentioning that the authors in Ref. [80]
studied rotating isotropic and anisotropic harmonically
confined ultra-cold Fermi gas in a two and three-
dimensional space at zero temperature, but in this
study, the rotational term was added to the Hamiltoni-
an operator, in contrast to our case, yvvhere this rotati-
on term 21" (5) L and APSY (s) LQ automatically
appears due to the large symmetries resulting from the
deformation of space-space.

We have seen that the eigenvalues of the operators
G2 = J2-L%2-52 and G2 = J2—L2-82 are equal to
the values F (j,1,s) = [j(j+ 1) —1(l+ 1) —3/4] /2 and
F(5L3) = [5G +1) — 10— 1) = 3/4] /2 thus, for the
case of spin-1/2, the possible values of j are | £ 1/2
and [ & 1/2 for spin symmetry F (4,1, s) and pseudospin
symmetry f (j,l~, 5), which allows us to get their values
as follows:

FGG=1+1/2,5=1/2)

1 (! Up polarity: j=1+1/2
T2 { —(l+1) Down polarity: j = 1 —1/2 2
and
F(ji=T+1/25=1/2)
. I Up polarity: j=141/2
_ 2 (53)

2] - (l~+ 1) Down polarity: j = [ — 1/2.
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The new relativistic energy EP(n,d, A, B,0©,0,X,
J,l,s,m) and EP%(n,d, A, B,0O,0,X,j,1,s,m) for the case

of spin-1/2 with the improved Hulthén plus a class of

Yukawa potential, in the DDT symmetries, correspond-
ing to the generalized n'® excited states is:

Efslg (n7 67 'A7 B7 H7 97 0-7 X?j? l? 87 m) = <Z>hcy ) (n7 5’ A? B7 H) (UN + XQ) m

{200

(nlm)

(nvévAaBaH)§

and

B (n §,A,B,H,0,0,x,j,1.5, m)
+(2),_ (n.6,4,B,m) o

where E’) and EY} are usual relativistic energies under
the Hulthén plus a class of Yukawa potential includ-
ing a Coulomb-like tensor interaction obtained from the
equations of energy in Eqgs. (16) and (17), while k and &
are determined from the following relations:

ki=—(+1)=1+1/2
For 81/2, p3/2. Cey etc.
j=1+1/2 Aligned spin k < 0,

k= (56.1)
kh=—-(0+1)=1+1/2
For 81/2, p3/2. Cey etc.
j=1-—1/2 Aligned spin k > 0,

and
ky=—l=—j—1/2
For s1/9, p3/2- .., etc.
~ j=1-—1/2 Aligned spin k < 0,
k= (56.2)
ki=—-l—-1=1+1/2
For 81/2, pg/g. ey etc.
j=1—1/2 Un aligned spin k > 0.

E. Study of relativistic particular cases:

In this section, we are about to examine some parti-
cular cases regarding the new bound state energy ei-
genvalues in Egs. (54) and (55). We could derive some
particular potentials, useful for other physical systems,
by adjusting relevant parameters of the THCYPCTI
J

EISII(;_ihp (n7 57 HJ 67 U? X7j? l’ 87 m) = <Z>Sp

(nlm)

A2 (6, ) T

(nlm)

2001-14

@{l Up polarity: j=1+1/2

2| - (ZN—i— 1) Down polarity: j = - 1/2

(nlm

Enk (54)

—(I4+1) Down polarity: j = [ —1/2

<'Z“>psl-) (n,8, A, B, H) (0X + Q) i

| Up polarity: j =1+ 1/2

+ EPY, (55)

[

model in the deformation of the Dirac theory symmetri-
es in both cases, such as the improved Dirac—Hulthén
problem model, the improved Hulthén potential, the
improved Dirac—Yukawa problem, the improved Dirac—
Coulomb-like problem, the improved Dirac—inversely
quadratic Yukawa problem, and the improved Dirac—
Kratzer—Fues problem.

F. Deformed Dirac-improved Hulthén potential

For A = B =0, the IHCYPCTI model turns into the
improved Hulthén potential Vip, (r) in the deformation
of theory symmetries:

Ze28 exp (—or)
Vi (1) = = o (=on).
476252 exp(—26T) o
(1—exp(—267)) L 9
B Ze262 exp(—46r) o +0 (@ ) - 67
(1—exp(—267))2

It should be noted that the first term denotes the
Hulthén potential in usual relativistic QM symmetri-
es which are used in atomic physics, chemical physi-
cs, and solid-state physics [81]. Using Eqgs. (54) and
(55), we make the corresponding parameter replacements
and obtain the energy equation for the improved
Hulthén potential including the improved Yukawa tensor
interaction in the spin and p-spin symmetries of the
deformed Dirac theory as:

(n,d, H) (o® 4+ xQ)m

! Up polarity: j=1+1/2 . Es%_hp (58)
— (I +1) Down polarity: j = [ —1/2 "
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and

Epsine (n,é, H,0,0,x,7,1,3, m) — <§>

A e

where Efﬁ;hp and Eﬁi’hp are the energy equations for
the Hulthén potential including the Yukawa tensor
interaction in the spin and p-spin symmetries of the
Dirac theory as obtained from Eqs. (16) and (17) by
replacing each A = B = 0 from[9] and directly from
[1]. The new expectation values (Z)Wm) (n,0,H) and

<Z>I()SZ~N) (n,d,H) are determined from Eqs. (49) and

(50) by applying the compensation referred to above at
the beginning of the current subsection as follows:

(nlm) u(nlm)

(Z)PPP (n, 6, H) = z BIsPpR-he
n=

~\ bs-hp
Z> _ (n,6H APPENT ps-hp
< (niim) ( )= Z p(nlm)

with BSP = 4Ze28% (M + EP - Oy),
BXP = 48322 (M +E® - C.), B =
S A3 (M + EZI;C _ C«Sp)’ijcp _ Bzip — Bigs — 3525 =0,
B = 16k (k+1)5, B By = —48°H
while 'P° = _47¢25% (M — EP 4 Cp), B® =

~483Ze* (M — EP; + Cps) and B = 16k (k — 1) 5%

ESPWP (n,6, A, H,0,0,X,j,1,5,m) =

+(2) (n5AH)@{’_(

nlm)

and

Eg(s:_iyp (n’ 60,4,H,0,0, X7ja7a s, ﬁ]‘) - <Z>

+ <2>:m) (n,0, 4, H) g { lN—

where E7¥Pand EP}PP are the energy equation for the
Yukawa potential including the Yukawa tensor interacti-
on in the spin and p-spin symmetries of the Dirac
theory as obtained from Egs. (16) and (17) by replac-
ing each B = 0; it is detailed in the two Eqs. (4.9)

o l Up polarity: j = I+ 1/2

— <l~+ 1) Down polarity: j = - 1/2

(Z)n

Up polarity: j=1+1/2
{+1) Down polarity: j = 1 —1/2

Up polarity: j =1+ 1/2

(T—i— 1) Down polarity: j = = 1/2

ps

(i) (n,d,H) (R + xQ) m

+ BBy, (59)

G. Deformed Dirac-improved Yukawa problem

If we replace B = 0, the IHCYPCTI model turns into
the improved Yukawa potential Vi, () in the deformati-
on of the Dirac theory symmetries:

Ae—ér
Viyp (r)=— .
67267” 2567267“ LO
- A — — 2). 1
r2 r 2r +0 (6 ) (61)

It should be noted that the first term denotes the
Yukawa potential in usual QM symmetries used in
nuclear physics, atomic physics, solid-state physics, and
astrophysics[82]. Using Eqs. (54) and (55), we make
the corresponding parameter replacements and obtain
the energy equation for the improved Yukawa potenti-
al including the improved Yukawa tensor interaction in
the spin and p-spin symmetries of the deformed Dirac
theory as:

(n,6,A, H) (R + xQ)m

(nlm)

+ EYP (62)

pPs

(nii) (n,8, A, H) (X + xQ) m

+ EREP, (63)

[

and (4.10) in Refs. [81, 82], while the new expectati-

on values (Z)3% (n,5, A, H) and <Z>T'yp) (n,6, A, H)

are determined from Egs. (49) and (50) by applying the
compensation referred to above at the beginning of the
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current subsection as follows:

7
h 1S -
<Z>(7i§]m) (7?,, 0, A’ H) = lngizkpMZI()n}ﬁn)’

(64)
<Z>hp (0,6, A, H) = 3" BIPS)osho
(nim) P 2 Pk (i)
with AP = —47¢%3% (M + EP — Cy,),
OSP),

3ps
Ank:

AZP = 453 (Ze® + A) (M + B —
3
AP

5ps
Ank

4sp _ 5sp 4ps _
Lnk - Lnk Ank -

0, A% = 16k(k+1)6* and A, =
L = ~48°H while A} = ~4Z¢%° (M — EVj + Cp),
AP = 453 (Ze® + A) (M — EP5 + Cys) and L =
16k (k — 1) 6%

. i O (1
sp-icp __ Sp-cp
B = @3 s Am S { L

H. Deformed Dirac-improved Coulomb-like
problem

If we replace B = 0, we ignore the Hulthén potential,
and taking the limit 6 — 0, the IHCYPCTI model turns
into the improved Coulomb-like potential Vig, (r) in the
deformation of the Dirac theory symmetries:

A A

It should be noted that the first term denotes
the Coulomb-like potential in usual QM symmetries.
Using Eqgs. (54) and (55), we make the corresponding
parameter replacements and obtain the energy equation
for the improved Coulomb-like potential including the
improved Yukawa tensor interaction in the spin and p-
spin symmetries of the deformed Dirac theory as:

Up polarity: j=1+1/2
I+ 1) Down polarity: j = 1 —1/2

A2 (Cyp —me) +4me (n+ k+ H +1)°

FZYPP (6, A H) (o + Q) m + 66

Z) i) ( )( ) A2 4 4(n+k+H+1)° (66)
and
) __\ PS-Cp o1l Up polarity: j = I+ 1/2
ps-icp _ hie ~ ~
Eie <Z>(nz~m) (n, 3, A, H) 2 { - (l + 1) Down polarity: j = 1 —1/2

__\ PS-C A2 —4 H+1 2

(2 (64 H) (o84 x4 A G Eme) et RA HA D) (67

(nim) A2 —4(n+k+H+1)

The last two terms in Egs. (66) and (67) are the
energy equation for the Coulomb-like potential includ-
ing the Yukawa tensor interaction in the spin and p-spin
symmetries of the Dirac theory obtained from Eqs. (16)
and (17) by replacing each B = 0. It is detailed in the two
Egs. (4.9) and (4.10) in Ref. [85] while the new expectati-

~ S
on values <Z)?£’lﬁ% (n,d, A, H)and <Z>p ~y~p (n,d8, A, H)

are determined from Egs. (49) and (50) by applying the
compensation referred to above at the beginning of the
current subsection as follows:

(nlm n(nlm)?

7
<Z>hcy ) (TL, 5) Aa H) = E BZLZPMSP'YP
=t (68)

7\ 5. AH) — 3 Brespeshy
(2) ) (10 A = 2 BIMTCE

with BYP = —47¢25% (M + EP — Cy,),

szf = f5453 (Ze? +3A) (M + 1«2;1 - Osp),5 BX =
S s S S S
Bnkp = Bnkp = an = an = Bni = 0’
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(

B® = 16k(k+1)6* and BY = B =
—46°H while B™ = —4Z¢%5% (M — E™ + Cps),
B = —48° (Ze? + A) (M — EP; + Cys) and B =
16k (k — 1) 5.

I. Deformed Schrédinger equation for improved
Hulthén plus a class of Yukawa potential problems
in NREQM symmetries

To realize a study of the nonrelativistic limit, in
extended nonrelativistic quantum mechanics of the
improved Hulthén plus a class of Yukawa potential, two
steps must be made. The first step corresponds to the
nonrelativistic limit, in usual nonrelativistic quantum
energy which is indicated in Ref. [9]. This is done by
taking the following steps: we replace H, Cs,, EP) + p,
Ezz_ﬂa 2A7 2B7 k(k+1)7 Fnk? (’I") by07 07 2:“’7 E:LLIT7 A7 B7

I(I1+1), Ry (1), respectively, which allows us to obtain
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the nonrelativistic energy levels as [9]:

2
phey __ L —pAEZE 4 (20 4 1) Ay + i (69)
nl 24 n+1/2+ Ay

with Ay (B) = /B2+1+1/4—2uB and 7, =
I(1+1) + n(n+1) + 1/2. Now, the second step
corresponds to the coefficients L)} (i = 1,7) in relativi-
stic spin symmetry, those that convert to the new formula
R™ by applying the data we referred to as:

R = —8Ze?63p,

R2 = —86% (Ze* + A) p,

R = 16A6%y,

R = —16Bdy,

R = —32Bd*y,

RO =161 (1 + 1) 0* and R}5, = 0.

We can reexport the relativistic expectation values
(Z)?;?’m) (n,0,A,B,H) of spin symmetry in Eq. (46)
from the corresponding nonrelativistic expectation
J

Erl;lg—};lr (nv(staBaHa@707X7j7l737m) =

+ <Z> hcy-nr l

(nlm)

©
(0N+XQ)m+2{

It should be noted that the corrected energy AELSY

expressed in Eq. (72) is due to the effect of the perturbed
potential VY (r):

nr-pert

4 1 OViey (1)
hcy _ 4 hcy
‘/nr—pert (7") - <l (l + 1) r o or >

xLO+0 (07). (74)

The first term in Eq. (74) is due to the centrifuge term
I(I+1)72 in ENRQM symmetries which equals the
usual centrifuge term [ (I + 1) r~2 plus the perturbative
centrifuge term [ (I + 1) 7~ %LO, while the second term
is produced with the effect of the improved Hulthén
plus a class of Yukawa potential. This is one of the
most important new results of this research. It is worth-

2

Up polarity: j=1+1/2
—(I+1) Down polarity: j= 1 —1/2 |-

values (Z)'Y™ (n,§, A, B, H) as:

(nlm)

(nlm) p(nlm):

7
<Z>hcy-nr (TL, 5, A, B, H) — ZRzZPMsp-hcy (71)
p=1

This permuted expressing the nonrelativistic correction
energy AEYY (n,8,A,B,H,0,0,x,j,1,5,m) produced

nc-nr
by the improved Hulthén plus a class of Yukawa potential

problems is:

AEhCy

nc-nr

(n’5’A7B7H7@70-7X7j7l787m) =

(Z)(ernt (n, 6, A, B, H) (o8 + x2) m

S
+(Z)( (n, 6, A, B, H) 5

! Up polarity: j=1+4+1/2, (72)
—(I4+1) Down polarity: j = [ —1/2.
The global nonrelativistic energy
ErY (n,8,A,B,H,0,0,%,j,1,s,m) produced with

the improved Hulthén plus a class of Yukawa potential
in ENRQM symmetries as a result of the topological
properties of deformation space-space is the sum of usual
energy Eﬂ?y in Eq. (69) under the Hulthén plus a class of
Yukawa potential in NRQM symmetries and the obtai-
ned correction AEMY (n,0, A, B, H,0,0,x,j,1,5,m) in

nc-nr

Eq. (72) as follows:

2
1 _,UA+TZEQ + (27’L + 1) )‘nl +7nl
n+1/24 Ay

(73)

(

while to mention that for the three simultaneous limits
(©,0,x) = (0,0,0), we recover the results in Ref. [9].

IV. SUMMARY AND CONCLUSIONS

In this work, we have solved the deformed Dirac
equation of a spin-1/2 particle in the field of the
improved Hulthén plus a class of Yukawa potential
including a Coulomb-like tensor interaction within the
framework of the parametric of Bopp’s shift method
and standard perturbation theory with an approxi-
mation to the centrifugal term. By using a suitable
approximation scheme, we have presented in detail
the corrected energy eigenvalues for both the spin
symmetry and pseudospin symmetry. The corrected
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eigenvalue appeared sensitive to the quantum numbers
(J,k,1,1,s,8,m,m), the potential depths (A, B) of the
studied potential, the range of the potential §, and
noncommutativity parameters(©, o, x) under the condi-
tion of spin and pseudospin symmetry. Special cases
of the potential are also reported. Our results could
find usefulness in both atomic and molecular physics.
Finally, the new relativistic spin symmetry in the
absence of tensor interaction is reduced to the deformed
Schrédinger solutions for the improved Hulthén plus

a class of Yukawa potential. The present results are
in excellent agreement with the previous result. It is
worth mentioning that, for all cases, to make the three
simultaneous limits (0,0,%) — (0,0,0), the ordinary
physical quantities are recovered in refs. [9]. Finally,
given the effectiveness of the methods that we used in
achieving our goal in this research, we advise researchers
to apply the same methods in other studies, whether in
the relativ[-6ptlistic or nonrelativistic regimes for other
potentials.
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A. MAIRECHE

PEJISITUBICTCHKI CUMETPIi JIE®@OPMOBAHOI'O PIBHSIHHS JIPAKA YEPE3
IMOKPAIIIEHNUI IIOTEHIIIAJI T'FOJIBTEHA ILJIFOC KJIAC IIOTEHIITAJIIB FOKABH
3 KYJIOHOIIOAIBHOK TEH30PHOIO B3AEMO/IIEIO

B JE®OPMOBAHIN KBAHTOBIN MEXAHIIII

Ab6penpmazkia Maiipem
Jlabopamopia Pisuru ma Timii mamepianris, diduuHe 6100ineHHA,
Daxyavmem npupodnuvur nayk, Yuieepcumem Mciau, BP 239 Ille6inia-Mcina, Anotcup,
abdelmadjid.maireche Quniv-msila.dz

Mu nabauxkeHno po3s’sa3yemo aedopmoBane piBHgHHS Jlipaka ajs HOBOTO 3apOIOHOBAHOIO MTOKPAIIE-
Horo noreniiany [osnbrena miroc kiac noreniianis FOkasu 3 Kys10HOIOMIGHOI TEH30PHOIO B3a€MOIE0 (3
JIOBLIbHUM CHiH-OPOITA/IbHUM KBAHTOBUM HYUCJOM k) y KOHTEKCTI CUMerpiil pO3LupeHol pesisTuBiCTCbKOL
KBAHTOBOI MEXAHIKU. Y M€KaX CIIIHOBOI Ta MCEBIOCIIHOBOI CHUMETPIl MU OTPUMYEMO TT00AJIbHE HOBE BJIa-
CHe 3HAYEHHS eHeprii, SKe TOPIBHIOE BJIACHOMY 3HAUYEHHIO €HePTil y 3BUYaliHiil peIaTUBICTCHKiif KBAHTOBI
MeXaHiIli IJIF0C MOIPAaBKa, 1HyKOBaHA TPhOMa HECKIHYEHHO MAJIUMHU aJIUTUBHUMU YACTUHAMU TaMiTbTOHI-
ana, K1 BIAMOBIIAIOTH CHiH-OpOiTaIBHIN B3aEMOIil, HOBOMY MOANMDIKOBAHOMY 3€€MaHIBCHKOMY JIOIAHKOBI
it obepranmbaOMy momanHkoBi @epwmi. s oTpuMaHHS i€l TMOMPABKH BUKOPUCTAHO MeTOAy 3cyBy bBorma
i cTaHZApPTHY Teopilo 30ypeHb i3 HAOIUKEHHSM JJISL BIIIEHTPOBOIO dJeHa. Orpumani HOBI 3HAYEHHSHA
BUSBUJINCH YYTJAMBUMU JI0 KBaHTOBuX uucen (j,k,l,1,s,5,m,m), 3mimani riubunu norenuniamis (A, B),
Jiana3oH moreHmiady 0 Ta napamerpu HekommyTaruHocTi (©,0,X). OTpuMmano 3mimanuil norenmias,
AKHH y JeIKUX KOHKPETHUX BHUIIAIKAX A€ PO3B’A3KH /s PI3HUX MMOTEHINAIB, IOKPAIEHOTO HOTEHITIATy
ltonbrena, mokpareHoro morenIiany KOkaBu Ta mOKpaIeHoi KyJIOHOMOMIOHOT 33134l pa30oM 3 eHeprisiMu
BiATIOBiIHUX 3B’S3aHUX CTaHIB.

Karouosi ciaoBa: piBusinas [lipaka, morenmian ['fosibrena mioc kiaac noredrianis KOkasu, Hekomy-
TATUBHA T€OMeTPisi, MeTo 3cyBy Bomma ta 3ipkoBi m00yTKH.
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