Journal of Physical Studies 26(3), Article 3401 [4 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.3401

POROUS ZINC OXIDE PLATE WITH MICRO- AND NANOELEMENTS OF THE SURFACE STRUCTURE FOR HETEROGENEOUS PHOTOCATALYSIS

L. Hrytsak1 , B. Turko1 , V. Vasil'yev1, R. Serkiz1 , A. Kostruba2 

1Ivan Franko National University of Lviv,
50, Drahomanov St., Lviv, UA–79005, Ukraine,
2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies,
50, Pekarska St., Lviv, UA–79010, Ukraine,
e-mail: tyrko_borys@ukr.net

Received 18 June 2022; in final form 04 August 2022; accepted 09 August 2022; published online 19 September 2022

The zinc oxide porous plate with micro- and nanoelements of the surface structure was obtained by sintering metallic zinc powder, characterized and tested for the photodegradation of model organic dye (methyl orange) in water. The kinetics of dye photodegradation was studied via measurement of variation of the optical density at the maximum observed for the dye at $465$ nm. After $30$ min of illumination, the photodegradation efficiency of methyl orange was found to be about $100$ \% when the ZnO plate with overall dimensions of $\mathrm{35 mm \times 7 mm \times 1 mm}$ was used. The reaction rate constant calculated using the first-order approximation was equal to $\mathrm{2.7 · 10^{-4} sec^{-1}}$. It is necessary to point out that the sample keeps its integrity after multiple experiments, which is important for practical applications. The obtained results evidently demonstrate the potential of the method of sintering metallic zinc powder for the production of efficient catalysts.

Key words: zinc oxide, heterogeneous photocatalysis, photodegradation, methyl orange, absorption spectroscopy.

Full text


References
  1. L. Toporovska, B. Turko, V. Kapustianyk, M. Rudko, R. Serkiz, J. Phys. Stud. 24, 3701 (2020);
    Crossref
  2. L. Toporovska et al., J. Phys. Stud. 22, 1601 (2018);
    Crossref
  3. L. Toporovska et al., Opt. Quantum Electron. 52, 21 (2020);
    Crossref
  4. L. Toporovska et al., Opt. Quantum Electron. 49, 408 (2017);
    Crossref
  5. V. Kapustianyk, B. Turko, V. Rudyk, B. Kulyk, M. Rudko, J. Appl. Spectrosc.82, 153 (2015);
    Crossref
  6. K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Water Research. 88, 428 (2016);
    Crossref
  7. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A. Moshfegh, Thin Solid Films 605, 2 (2016);
    Crossref
  8. N. Kislov et al., Langmuir 25, 3310 (2009);
    Crossref
  9. M. Gowda, S. Kumar, Int. J. Curr. Res. 6, 8089 (2014).
  10. X. Ai, S. Yan, L. Ma, Nanomaterials 12, 1124 (2022);
    Crossref
  11. P. Kumari et al., Sep. Purif. Technol. 258, 118011 (2021);
    Crossref
  12. S. Baruah, M. Khan, J. Dutta, Environ. Chem. Lett. 14, 1 (2016);
    Crossref
  13. N. A. Savastenko et al., J. Appl. Spectrosc. 83, 757 (2014);
    Crossref
  14. R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 3, 6565 (2015);
    Crossref
  15. Nanostructured Zinc Oxide: Synthesis, Properties and Applications, edited by K. Awasthi (Elsevier, Amsterdam, 2021);
    Crossref