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The two-particle models in de Sitter space-time with time-asymmetric retarded-advanced
interactions are constructed. Particular cases of the field-type electromagnetic and scalar interacti-
ons are considered. The manifestly covariant descriptions of the models within the Lagrangian and
Hamiltonian formalisms with constraints are proposed. It is shown that the models are de Sitter-
invariant and integrable. An explicit solution of equations of motion is derived in quadratures by

means of the projection operator technique.
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I. INTRODUCTION

It is known that one has to deal with complex
difference-differential equations when considering a
relativistic classical dynamics of a system of interacting
charges [1, 2|. This is even more the case for scalar [2],
gravitational [3] or non-Abelian [4] interactions where
the dynamics is governed by integro-differential equati-
ons. Such a hereditary dynamics is neither solvable nor
appropriate for the Hamiltonian description. In order
to avoid these difficulties, Staruszkiewicz [5], Rudd and
Hill [6] invented the model describing the following time-
asymmetric interaction of two pointlike charged parti-
cles: the advanced field of the first particle acts on the
second particle, the retarded field of the second parti-
cle acts on the first particle, and a radiation reacti-
on is neglected. This model is built of the action-at-a-
distance Tetrode—Fokker variational functional [7, 8] via
replacing its integrand, the symmetric Green function of
d’Alembert equation, with the retarded (or advanced)
one. In this way the model was reformulated to the
Lagrangian form and then to the Hamiltonian form [9]
which was shown integrable [10] due to exact Poincaré-
invariance. The Staruszkiewicz—Rudd-Hill model was
generalized for a variety of non-electromagnetic time-
asymmetric interactions (scalar, gravitational, confin-
ing etc.) [11-13], and corresponding quantum versions
[14, 15] revealed their physical adequacy, despite an arti-
ficially broken causality of interactions.

The purpose of this work is a generalization of the
Staruszkiewicz—Rudd—Hill model, formulated primarily
in a flat space-time, to the case of de Sitter space-
time. The construction of this model presumes that
the interaction between particles spreads at the speed
of light, i.e., along the light-cone surface. This is not
the case in the curved space-time where an additi-
onal slow “tail” component of the interaction arises
[16]. The present paper shows that in the special case
of de Sitter space-time the “tail” contribution from
the electromagnetic Green function can be reduced
to an equivalent on-light-cone contribution. This fact
suggests a relevant two-particle model with the time-
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asymmetric electromagnetic interaction [17]. Actually,
here a family of two-particle models in de Sitter space-
time is presented. It includes also the system with scalar
interaction and models with various phenomenological
interactions.

An even more important issue raised in this paper
is the integrability of the presented models. This
point is relevant since, to the author’s knowledge,
solvable examples of dynamics of interacting particles in
a curved space-time are unknown. The time-asymmetric
models are, by construction, invariant with respect to
the de Sitter group O(1,4), and formulated by means of
a variation principle which is reduced to the Lagrangi-
an form and then to the Hamiltonian form. Based
on the Noether theorem and the structure of the Lie
algebra of O(1,4), there exist a sufficient number of
integrals of motion to ensure the integrability of a two-
particle system in quadratures. In practice, however, the
problem appears too cumbersome to be solved by means
of commonly used methods, such as the Hamilton—
Jacobi one. Instead, the representation of de Sitter
space-time as a hyperboloid in the 5-dimensional Min-
kowski space My is used to apply Dirac’s canonical
formalism with constraints. Besides, the technique of
projection operators built in terms of conserved canoni-
cal generators of O(1,4) is elaborated. These tools are
used to solve the Hamiltonian equations of motion in
quadratures.

The paper is organized as follows. In Section II, a si-
ngle particle dynamics is used to introduce elements of a
5-dimension representation. In Section III, the Tetrode—
Fokker variational principle for 2-particle systems with
electromagnetic, scalar, and other interactions in de Si-
tter space is formulated. It is then appropriately modifi-
ed in Section IV to generate a family of time-asymmetric
models and to put their description into the Lagrangi-
an formalism and then (in Section V) into the canonical
formalism with constraints. This transform is detailed in
Appendix A. The system of two free particles as a time-
asymmetric model is not manifestly separable and thus
it is particularly considered in Appendix B. In Section
VI, the canonical equations of motion are derived and
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solved by means of the projection operator techniques
developed in Appendix C. Main results and prospects of
the work are presented in Section VII.

II. MANIFESTLY COVARIANT TEST
PARTICLE MECHANICS IN DE SITTER SPACE

Let us start with the action integral determining the
dynamics of a test particle of the mass m in a curved
space-time:

I[=-m /dT Vo a@)in()irn) s (@21

here 7 parameterizes points x(7) of a particle world line,
i.e., the geodesic, 2#(7) (u =0,. .., 3) are particle coordi-
nates, and g,,(x) is a metric tensor in a chosen chart
of the space-time considered. The action (2.1) is invari-
ant with respect to an arbitrary change of the evolution
parameter: 7 — 7/ = f(7), since the parametrization of
geodesics has no physical meaning. For de Sitter space-
time [18], geodesics were studied from different view-
points [18-21] in many coordinate charts introduced for
this space-time [21-23].

It is convenient to consider de Sitter space-time as a
4-dimensional hyperboloid H:

manvy™My™ =02 - (') - = (¥")? = -R* (2.2)

in the 5-dimensional Minkowski space M5 with coordi-
nates y™ (M = 0,1,...,4) and the metrics |[nyn]|| =
diag(+, —,...,—); [21, 24]. The constant R determines
the scalar curvature R of the de Sitter space, and it is
related to the cosmological A-constant: R = 12/R? =
4A; the speed of light is put ¢ = 1.

The hyperboloid H is invariant with respect to de
Sitter group O(1,4) represented in M by standard li-
near pseudoorthogonal transformations. Thus, we will
use standard notations for O(1,4)-invariants y - z :=
nunyMzY and y? = y -y built of arbitrary 5-vectors
Y, z € M.

The embedding H — Mjs implies, in terms of local
coordinates z* in de Sitter space, a set of appropriate
functions y™ (z) turning the equation (2.2) into identi-
ty [21-23]. Then the pseudo-Euclidian O(1,4)-invariant
metrics is pulled back naturally from My onto H:

pla, ') == (y—y')|y (2.3)
This endows de Sitter space with a causal structure of
the ambient Minkowski space:

e the interval between points z, 2’ € H is timelike if
plx,2') > 0, ie., if y¥ € H C M lies inside the
light cone with a vertex y € H C M5 (or the same
with y and y’ permuted);

e the interval is spacelike if p(z,2") < 0, i.e., if y' lies
outside the light cone;
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e the interval is isotropic if p(z,z’) = 0, i.e., if ¥’ lies
on the light cone hypersurface.

For infinitely closed 5-vectors y and 3y = y + dy,
the function (2.3) yields the pseudo-Riemannian metrics
involved in the action integral (2.1) for the case of de
Sitter space:

ds? = nyydy™ dy™v |lHI = g (z)dzFda”.

Thus, the test particle dynamics in de Sitter space
can be reformulated to some variational principle with
a constraint, defined in the configuration space M5 [21,
25, 26]. The simplest version is [21]:

1= [dr {mVFE - MO + B} 24)

where the condition (2.2) is taken into account as a
holonomic constraint by means of the Lagrange multipli-
er A(7). The Euler-Lagrange equation for 5-vector y(7)
representing the particle position z(7) € H can be wri-
tten down in the following manifestly covariant form

d 9y y2i
dr /12 R?

which is invariant with respect to both the O(1,4) group
and an arbitrary change of the evolution parameter 7.
The solution of the geodesic equation (2.5) is

(7) y(0) . . s(7)
R + R 20) sinh I

=0 (2.5)

y(7) = y(0) cosh >

(2.6)

where the constant 5-vectors y(0) and y(0) are subjected
to constraint (2.2) and its differential consequence y-§ =
0, and s(7) is the proper time elapsed from y(0) to y(7):

s(r) = ATdTm .

The proper time as a function of 7 cannot be determi-
ned from equation (2.5), due to reparametrization invari-
ance, but it can be chosen manually for convenience. For
example, with the proper time parametrization s(7) := 7
we have 92> = 1, and the equation (2.6) reproduces the
de Sitter geodesic found in Ref. [21].

Due to de Sitter symmetry, there exist 10 integrals
of motion collected in the skew-symmetric angular 5-
momentum tensor:

(2.7)

JuN =YmMTN —YNTM = —INM, (2.8)

where

T = myn /5P

are components of 5-momentum.

At this point one can develop the covariant Hamil-
tonian description on the phase space T*Ms with vari-
ables yM, mn (M,N = 0,...,4) and standard Poisson
brackets: {y™,yN} = 0, {mar,7n} = 0, {yM,7n} =
611\\,4 . The integrals of motion Jy;ny become canonical

(2.9)
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generators of O(1,4) group while the Legendre transform
(2.9) is degenerated due to the reparametrization invari-
ance of action (2.4). Thus, the canonical Hamiltonian
vanishes while the mass-shell constraint arises, 72 —
m? = 0, apart from the holonomic constraint (2.2). Both
constrains are primary ones according to Dirac’s termi-
nology of canonical formalism with constraints [27]. They
form Dirac’s primary Hamiltonian: Hf) = A\(7? — m?) +
A1 (y? + R?), where A and \; are Lagrange multipliers.
The compatibility conditions

{y? + R%, H)} = 4)hy -7 ~ 0,
{n® —m? H\} = —4\y -7~ 0,

give rise to the secondary constraint y - 7 = 0, so
that Dirac’s Hamiltonian at this stage takes the form:
H{ = H}, + A2y - 7. Reexamining compatibility conditi-
ons gives no new constraints but fixes partially Lagrange
multipliers: A\; = 0. Putting then Xy = —y - 7/y?
yields Dirac’s final Hamiltonian Hp = A(7)¢(y,n)
with the unspecified Lagrange multiplier A(7) (due to the
reparametrization invariance) and the function ¢(y,7)
which determines the modified mass-shell constraint

¢:=n1 —m?=1J%/y* —m® =0; (2.10)
Y- o N][V YN
2 YM = —ps
0) and J? := JynJMN. Symbol “ ~ 7 denotes a “weak
equality”; i. e. by virtue of the holonomic constraint (2.2);
[27].

Let us note that the set of constraints (2.2) and (2.10)
are the 1st class [27], i.e., they satisfy the identity: {y? +
R?,¢} = 0. Together with Dirac’s Hamiltonian Hp =
M@, these constraints endow effectively the system with
three degrees of freedom (as it should). Henceforth the
quantity y - 7 is not involved in the dynamics, and the
secondary constraint y - # = 0 can be abandoned.

The Hamiltonian equation for the particle position 5-
vector y reads:

here 7 pr i= 7y — (so that y -7, =

. 2\

y=My, ¢} =2 1, = ﬁJ Y. (2.11)
Note that the matrix J := |[JM|| = |[nMEJLwn]| is
conserved, thus, equation (2.11) is linear. Its formal

solution follows immediately: y(7) = e%Jy(O), where
the unspecified function s(t) = 2m fj dr A(7) is the
Hamiltonian image for the proper time function (2.7).
The Cauchy problem becomes solved after matrix J is
expressed in terms of initial values y(0) and y(0) by the
equalities (2.8), (2.9) and their consequences Jy ~ mR?v,
Jv = my, where v = y/\/9% Then expanding the
exponent in power series reproduces solution (2.6).

It may seem unreasonable to use of a 5-dimensional
reparametrization invariant description together with
Dirac’s formalism with constraints in order to derive
geodesics in de Sitter space. These tools, however, appear
effective when considering two-body problems in the
following sections.

III. ACTION-AT-A-DISTANCE DYNAMICS OF
TWO PARTICLES IN DE SITTER SPACE

Within  framework of the Wheeler-Feynman
electrodynamics [1, 2, 28, 29|, a system of charged
point-like particles is described by the Tetrode—Fokker
action-at-a-distance variational principle [7, 8]. This
formalism was generalized for a curved space-time by
Hoyle and Narlikar [28] and others [29, 30].

For a system of two charged particles of masses m, and
charges e, (a = 1,2), the Tetrode—Fokker action integral
has the form:

2
I = Iee + Iint, where Inee=—» mq / ds,, (3.1)
a=1

ds0 = \/ g (ra(ma) Hh(ra) s (ra) AT, (32)

Lint = 747‘(6162//(193? das G (x1, z2); (3.3)
here z#(r,) (@ = 0,...,3) are space-time coordi-
nates of particle world lines parameterized by evoluti-
on parameters 7, (¢ = 1,2). Free-motion terms Ifce
of action (3.1) have form (2.1) for each particle. An
integrand of the interaction term (3.3) is the symmetric
Green function G,/ (z,2") of the covariant wave equati-
on OA, +R,"A, = 0 for the electromagnetic potential
A, [16, 31]; here O is the d’Alembertian in a curved
space-time considered, and R," is the Ricci tensor. For
a curved space-time, G,/ (z,2’) is a bi-vector function,
whose construction in general is a complicated problem
[16].

For de Sitter space-time, the symmetric Green functi-
on is known from Ref. [32]'. It is presented here in
geometric terms, which are indifferent to the choice of
a coordinate chart:

G (z,2") =G (x,2") + G, (z,2');  (3.4)
here
1
qu’ (.T,S(}/) = Eg,ul/’(m7$/) (5(,0(33,:5/)), (35)
e no_ 1 11y
G (@,0) = =5\ \Z + 272 ) 9w
R2
+ 7102002 [o0e ) 60

G (2,2) = —2R2{8H8,,/Z - ;(8MZ)(6V/Z)} ,(3.7)

Z(x,2') =1+ Lp(e, ')/ R, (3.8)

where g,/ (x,2’) is the parallel propagator [16, 31|, and
the metric function p(z,z’) is defined by (2.3). We note

L An earlier proposal [31] is unappropriate as it does not meet
demands of de Sitter-covariance.
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that the Green function (3.4) consists of two parts. The
local part (3.5) is proportional to the Dirac J-function
and, thus, supported by the light cone surface p(z,z’) =
0. The non-local part (3.6) is proportional to the Heavi-
side ©-function and, thus, supported by the light cone
interior p(x,z’) > 0. This is a common feature of curved
space-times [16], contrary to the Minkowski space-time,
where Green functions of massless fields have a local part
only. But in the present case of de Sitter space-time,
the non-local contribution (3.6) of the Green function
(3.4) in integral (3.3) can be effectively reduced to a local
one [17].

In order to show this, let us first introduce the relati-
ve position 5-vector r = y; — yo, the particle unit 5-
velocities v, = ¥a/+/92, and the dimensionless scalars

(-

Then, applying the integration-by-part formula:

J

_ dsidss

vivy
o
daf day G (21, 22) = y

2Z

+00 +00 +00 +0o0
/ / dsy; dsy wF(p) =

400 +oo

= 72R2 / /dSl dSQ 1Z0%)

—0o0 —O0

)6(p)—<2Z+lw—Z+1

of these 5-vectors vy - v and 7 - v,/R (a = 1,2),
which are homogeneous functions of degree zero of deri-
vatives 97 and 7o. It is convenient for a subsequent
interim calculation to present these scalars as follows:

1d2
W= Vol = _77p(x1,x2)

2 dSl dSQ (39)
T g (=) dp(z1,22)
a ‘= = - ) = 17 2a
v R lm 2R ds,

where the function p(z1,22) and the interval elements
ds, are defined by egs. (2.3) and (3.2), respectively. Note
that the differentiation over ds; (or dss) acts on x1(71)
(or xa(72)).

In these terms, the integrand of the interaction term
(3.3) of action (3.1) reads:

O(p)
12R?

Z? z3

1 d?p
—— dsydsy ——F
2 / / 1G5 d81 d82 (p)

s1=+oc

dF(P) 1 / sg=-+oo
——1|[dpF

dp 2{ pE@|

S2=7OO

which holds for any function F(p), to the Tetrode-Fokker integral (3.3), one obtains:

Lt = —471'6162/ dr dm '3y G (z1, 22) ~ —6162/ dsy dsy wi(p),

where symbol “ ~

(3.10)

” denotes an equality up to boundary terms which do not contribute in variational problem.

It is remarkable that the only local (i.e., light cone surface) contribution of the Green function remains in the
Tetrode-Fokker integral (3.10); this structure is a necessary starting point for a construction of the model of

Staruszhkiewicz—Rudd—Hill type in the next section.

Similarly, one can consider a particle system with the scalar interaction. The interaction term of the Fokker-type

action (3.1) in this case has the form [28]:

(3.11)

Iiny = —47T9192/ dsydsy G(x1,x2),

where g, (a = 1,2) are scalar “charges” of particles, and the bi-scalar function G(z,z’) is the symmetric Green
function of the wave equation Op = 0 for a scalar field ¢ mediating the interaction and minimally coupled to
gravitation [16]. For de Sitter space-time, the Green function G(z,z’) was found by Narlikar [31]:

Gz,7) = GO(z,2') + GO (,2") = i {5(,0) + 2RQ@(,O)} .

In contrast to the case of electromagnetic interaction,
the nonlocal contribution G®(z, ") of the Green functi-
on (3.12) is essential: it cannot be removed from action
(3.11) by means of the integration by parts or another
equivalent transformation.
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! (3.12)

The Penrose—Chernikov—Tagirov equation (4R /6)p
= 0 corresponds to a conformal coupling of the scalar
field to gravitation [33, 34]. In the case of de Sitter space-
time, the scalar curvature R = 12/R? is constant, and
the Green function can be found easily using of distri-
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butional methods [16]. It appears purely local:

G(z,2') = GO(z,2) :== i5(/)).

- (3.13)

The electromagnetic (3.10) and scalar (3.11), (3.13)
interaction terms of the Fokker-type action admit the
obvious de-Sitter-invariant generalization:

Iy = *//dsl dsy f(v1,v2,w)d(p), (3.14)

where ds, are defined in (3.2), and f(v1,v9,w) may
be an arbitrary function of its three scalar arguments
(3.9), so it is a homogeneous function of degree zero of
71 and yo. Thus, expression (3.14) possesses both the
de Sitter invariance and the double reparametrization
invariance. It comprises a variety of interactions which
may have a field-theoretical nature or can be introduced
phenomenologically.

IV. TIME-ASYMMETRIC MODELS IN DE
SITTER SPACE-TIME

Staruszkiewicz [5, 9], Rudd and Hill [6] replaced in
the Tetrode-Fokker action integral the symmetric Green
function G of d’Alembert equation with the retarded
G™) or advanced G(~) Green function: G (zy, z5) =
20[+ (29 — 29)]G (21, x2). This led them to a two-particle
model with the time-asymmetric retarded-advanced
interaction. Following this idea, one should insert the
factor 20[n(2Y — 29)] = 20[n(yY — y9)], where n = +1 or
-1 in the general interaction term (3.14) of the Fokker-
type action (3.1). Then, similarly to the singe-particle
case considered in Section II, it is convenient to present
this Fokker-type action via global variables in the ambi-
ent Minkowski space Ml5. One, thus, obtains:

Iint:_/ dTldTQ
X VIRV f(v1,v0,0) 20(r°) (%) [z, (4.1)

where the integrand in r.-h.s. of (4.1) is constrained on

H? = H x H, i.e., the particle position 5-vectors y,(7,)

(a = 1,2) are subjected to the hyperboloid conditions for
each particle:

2 2 _ _

¥+ R2=0, a=1,2 (4.2)

An integrand of the double integral I, in (4.1) is non-

zero provided

= (y1—y2)? =0, =) —y9) > 0. (4.3)

This condition can be treated as the equation of the past
or future light cone, depending on the value n = +1 and
on which point, y; or yso, is the vertex of the cone. If the
time-symmetric action (3.14) is invariant under a particle
permutation, the invariance of the corresponding time-
asymmetric action (4.1) is provided by the additional
change n — —n.

From a physics viewpoint, the choice of the sign factor
7 = =1 is unimportant. Both cases correspond to the
electromagnetic interaction with a “spoiled” causality.
They lead to distinguished two-body problems which di-
ffer from one another and from those of the Wheeler—
Feynman or retarded electrodynamics. It is worth noting
that in the case of the flat-space Staruszkiewucz—Rudd-
Hill model, the particle world lines corresponding to di-
fferent n = £1 are distinguishable only in a highly relati-
vistic domain [5, 13].

The Fokker-type action integral (3.1), (4.1) is invariant
with respect to an arbitrary change of each parameter 74
and 3. Thus, two of the ten variables yM (71), y37(72)
(M =0,...,4) to be found remain undetermined within
the variational problem. It is profitable to fix partially
this functional arbitrariness manually as follows. Let us
choose one of the variables, say y9(72), in such a way that
condition (4.3) turns into an identity at 73 = 75. This
implies that both particle world lines are parameterized
by a common evolution parameter, say 7y, and the si-
multaneous events y;(71) and yo(71) lie on the isotropic
light cone surface (4.3). Using the equality (see [9])

2@{77@?(71) - yS(Tz))} 5[(91(71) - y2(72))1
_ d(m1 — 12)
‘yg(Tg) . (y1(7'1) - 92(7'2)>‘

in the interaction term (4.1) and integrating over 7o
reduces the Fokker-type action (3.1) to the single-time

form
I= /dT L

with the Lagrangian L := L|rg, where

(4.4)

2
L= - YmiE - VIEVBIEEEE )
a=1

The Lagrangian L is defined on the tangle bundle TK
over the 7-dimensional configuration manifold K C H? C
M2 = Mjs x Mj described by conditions (4.2), (4.3).
The corresponding variational problem gives rise to the
second order differential equations of motion and, thus,
the transition to the usual Hamiltonian description is
straightforward.

The Lagrangian L (as well as L) is the first degree
homogeneous function of particle velocities. Thus, action
(4.4) has a residual invariance with respect to an arbi-
trary change in the common evolution parameter: 7. This
symmetry allows one to fix the remaining timelike vari-
able manually and, together with conditions (4.2), (4.3),
enables to arrive at the ordinary Lagrangian description
in the 6-dimensional configuration space Q. In practi-
ce, however, the explicit elimination of redundant vari-
ables, say 3V, yi, ¥3, v3, breaks a manifest 5-dimensional
Lorentz-covariance, and makes the subsequent treatment
cumbersome. As usual, a success in solving equations of
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motion is predetermined by an appropriate parametri-
zation of the configuration space, which is not evident in
the case of Q.

An alternative way is the use of a manifestly covari-
ant Lagrangian description in the 10-dimensional confi-
guration space MZ2. In this case, an unconditional
extremum problem of action (4.4) is modified in favor
of an equivalent conditional extremum problem of

I =/dT {L +F20r? + Y Aaly? + R?)} (4.6)

a=1

with the Lagrangian function (4.5) defined on TMZ.
The Lagrangian multipliers Ag(7), A4 (7) take conditions
(4.3), (4.2) into account as holonomic constraints; the
unilateral constraint nr® > 0 is implied as well.

De Sitter invariance of Lagrangian (4.5) and constrai-
nts (4.2), (4.3) provides the existence of ten Noether
integrals of motion, collected in the angular 5-momentum
tensor:

2

TN =Y (YaMTaN = YaNTar) (4.7)
a=1
where
Tanr = OL/OYM,  a=1,2. (4.8)
Besides, Lagrangian (4.5) satisfies the identity:
2
> ama — L =0, (4.9)
a=1

due to the reparametrization invariance of action (4.6).

V. CANONICAL FORMALISM WITH
CONSTRAINTS

The Lagrangian description in the configuration space
M2 enables a natural transition to the manifestly covari-
ant Hamiltonian description with constraints [27]. The
corresponding 20-dimensional phase space T*MZ with
the particle canonical variables y™, mn (a,b = 1,2;
M,N =0,...,4) is endowed with the standard Poisson
brackets: {yéwvyzﬁv} =0, {ﬂ'aMaﬂ'bN} =0, {yclzv[vﬂ'bN} =
SapdM.

Components of the conserved angular 5-momentum
tensor (4.7) become, within the Hamiltonian descripti-
on, the generators Jy;n of the canonical realization of
the de Sitter group, i.e., they satisfy the canonical relati-
ons of the Lie algebra of O(1,4):

{Iun,Jox} =nmrIng + N Imr
—NurJINL —INLIMK- (5.1)

Due to identity (4.9), the Legendre transformation
(4.8) is degenerated, the canonical Hamiltonian vani-
shes, while the additional constraint arises [27], simi-
larly to the mass-shell constraint in the single particle
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case. The function determining this constraint consti-
tutes (together with the holonomic constraints (4.2),
(4.3)) Dirac’s primary Hamiltonian.

The subsequent procedure is similar to that of the
single particle case in Section II. The compatibility
conditions of the dynamics with primary constraints gi-
ve rise to secondary constraints which then are combi-
ned with the primary constraints in the secondary Di-
rac’ Hamiltonian etc. In the final compatible form, the
dynamics is generated by Dirac’s Hamiltonian Hp =
A(T)®(yq, ™) where A(7) is an unspecified Lagrange
multiplier (due to the reparametrization invariance), and
constraint ®(y,,m) = 0 is the first class with respect to
the holonomic constraints (4.2), (4.3), i.e., the function
D (yq, ) satisfies the equalities:

{®,r*} =0, {®,y;+ R’} =0,

Besides, this constraint must be de Sitter invariant since
the angular momentum tensor (4.7) must be conserved.

We will refer to ®(y,,m) = 0 as the dynami-
cal constraint for two reasons. Firstly, the function
®(y,,mp) generates an evolution via Dirac’s Hamiltoni-
an. Secondly, a specific form of ®(y,,m) is determined
by Lagrangian (4.5), in particular, by the form of the
interaction function f(vq, v, w) chosen. However, equati-
ons (5.2) and de Sitter invariance requirements are suffi-
cient to outline a general structure of the dynamical
constraint and the corresponding Hamiltonian mechani-
cs.

Let functions of canonical variables ¢(y,,m) which
satisfy conditions (5.2) be referred to as observables in
Dirac’s meaning [27]. We will use sometimes the collecti-
ve canonical variables:

YM =1y + )", oM =yl -yt

a=1,2.(52)

Oy =mm +mom, 7 = 3(miv —man). (5.3)

The components of position 5-vectors Y, r are
the observables. Solving equations (5.2) yields other
observables, the momentum-type 5-vectors II,, m; wi-
th the components:

Y Jpm Y -IDYy+ (Y -m)rum
L N TMHT L YNYL
T M = <5M_ HJ_Mr‘) (51\[—}/2 T, (55)

which are not all independent due to the identities: II -
Y=0,n,-Y=0,1I,-7, =0.

A set of functions @(Y,r,II,, 7)) constitutes a
complete algebra of observables, which is closed with
respect to Poisson brackets. Indeed, if ¢; and o are
observables then {¢1, @2} is observable due to the Jacobi
identity. The particle positions gy, and the dynami-
cal constraint ®(Y,r,II,, 7, ) are observable, thus, the
algebra of observables is sufficient to formulate equations
of motion generated by Dirac’s Hamiltonian Hp = A®.
Aforementioned secondary constraints are not observable
and can be abandoned, similarly to the single particle
case.
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The requirement of the dynamical constraint to be de
Sitter invariant yields the following general structure:

O3, 732, U-r, w-r) =0, (5.6)

where ® may be an arbitrary function of its scalar
arguments: 12, 72 and II-r ~ I, -7, m-r &~ 7 -7; here
the use of weak equality “~” by virtue of the holonomic
constraints (3.1), (3.4) simplifies the dynamical constrai-
nt but does not affect the dynamics of observables.

The dynamical constraint (5.6) determines implicitly
one of the argument of ® as a function of three other
arguments. Since this function can be regarded arbitrary
within a general consideration, the Hamiltonian formali-

J

o =7 + I 4+ —

411%2 ((771 ) (72-T)

— Qe

ae> (Il — dare) —

sm with constraints (4.2), (4.3), (5.6) embraces a variety
of two-particle systems as wide as the original Fokker-
type or Lagrangian formalism with the arbitrary functi-
on f(v1,v2,w) does, except, perhaps, for some special
cases.

The procedure of how to obtain the dynamical
constraint, given the interaction function f(v1,ve,w) in
Lagrangian (4.5), is described in detail in Appendix A. In
practice, however, elementary algebraic operations impli-
ed there can be rarely finished in a closed form.

Fortunately, two physically motivated examples,
considered in Section III, are the cases. For the
electromagnetic time-asymmetric interaction, one puts
in (4.5) f = aew, where a, := ejes, and arrives at the
following dynamical constraint:

m% T T + m% T

For the scalar interaction f = ag := ¢192, and the dynamical constraint has the form:

dy =7 + I3 + -

Both constraints (5.7) and (5.8) reduce in the free-particle limit o — 0 to the constraint:

nll-r II-r

Hﬁ_ — m% — m% 9 m% n m% —0 (5.7)

nIl-r CA\nmr—oe  MT2T — Qe ’ ’
(m1-r)(meer)  mimer +m3mr + 2nagmymy 0 .
o = =0 5.9

M (1 _ >
(my-r) (7o)

(m1-r)(m2r) m?2 wy-r + m3 T (5.9)

(pfree = 7T2l + iHZL +

This case of the time-asymmetric system with no
interaction (i.e., f = 0) deserves a particular considerati-
on. The free-particle dynamical constraint (5.9) is not an
additive function in variables of different particles. The
reason is that this constraint is concerted with the light
cone constraint (4.3), which, in turn, binds in an isotropic
interval the positions of even free particles. In Appendix
B, the dynamics of two free particles is manifested from
this tangled description.

The system determined by the set of 1st-class constrai-
nts (4.2), (4.3), and (5.6) has 6 degrees of freedom.
Besides, as it follows from the structure of the Lie
algebra (5.1) of de Sitter group [35], of ten components
of the conserved angular momentum tensor (4.7) one
can construct six integrals of motion, which are in an
involution in terms of Poisson brackets. This is sufficient
for the system to be integrable in the Liouville sense. The
next natural step would be a transition to the description
on a reduced 12-dimensional phase space, and separati-
ng degrees of freedom by choosing appropriate canoni-
cal variables. It turned out more constructive to analyze
the system within the manifestly covariant description

4R?

II-r

(

on the 20-dimensional phase space T*MZ2 where de Si-
tter symmetry is realized in a transparent way.

VI. EQUATIONS OF MOTION AND THEIR
INTEGRATION

Useful integrals of motion arise from two Casimir
functions of the de Sitter algebra (5.1):

J? = —tr(J?) = JynJMY, V2=V VM, (6.1)
where the following 5-pseudo-vector
Vi = gGMABCDJABJCD (6.2)

is introduced by means of the Levi-Chivita symbol
EMABCD- Then using the equalities

1

1?7 ~ ~ 72 (%J2 + (71'-7")2) ,
w2 - (H-r1)2R2 (V2 L(rr)2J% — (x-1)") (6.3)
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recasts arguments of the dynamical constraint (5.6) into
an equivalent set,

®(-r, mr; J*, V) =0, (6.4)

which is more convenient for a dynamical analysis.
Let us consider the equation of motion for the relative
position 5-vector r:

i =X{r,®IL-r, mr; J?, Vz)}

o 0P 0P
_ 4222 k) .
A(aw 02 " v )r’ (6.5)
here J := ||JM || and
K= [[KM | = ||6MNABCVAJBC|| (6.6)

are conserved matrices while the Lagrangian multiplier
A(7) as a function of 7 is unspecified and can be chosen
for convenience.

If the variable II-r = ¥(7) was known as a functi-
on of 7, then m-r = () could be found from the
dynamical constraint (6.4) as a solution of the algebraic
equation: ®(U(7),9(7);J2, V) =0 = (1) =
Y(U(r); J2,V?) (since J2, V? are conserved).

In turn, the Hamiltonian equation for ¥(r),

T = \{T, 0}

0P(V, »(¥;J2,V?); J2,V?) v

oY ’
is self-sufficient, separable in 7 and ¥, and reduces obvi-
ously to quadratures. Note that the resulting function
U(7) depends on the choice of the Lagrange multiplier
A(7). Alternatively, one can choose ¥(7) and then fi-
nd A(7) from eq. (6.7) without integration. The choice

of the function ¥(7) implies a fixing of the evolution
parameter 7.

=A

(6.7)

J

FA () == (4% + 2528(1)) (7)== (43@ o2 02 > .

0J? ov?2

Then formal solutions of equations (6.11)—(6.12) are:

q¥ (1) = eXp{F(i)(T)J}T(i) (0), where F® (1) := / dr f(i)(T), 1=2,85,0.
0

At this point, equation (6.5) becomes a closed li-
near equation with respect to 5-vector y, with known
7T-dependent matrix coefficients. The substitution

_ Y(n)
) = gy 90) (63)
simplifies this equation to the form:
0P 0P
j=-M4=— —K|q. )
q A<8J2J+8V2 )q (6.9)

A subsequent integration procedure is based on the
projection operator techniques described in Appendix
C. The structure and the action of projection operators
depend on eigenvalues of matrix J, which, in turn, depend
on the values of the Casimir functions (6.1). Here we
suppose J2 < 0 and V2 < 0 so that J possesses the

following eigenvalues: +% := £,/3%, £i§ = +,/%2
and 0, where % are defined in (C.3). Other cases can
be treated similarly; they are omitted here.

Let us decompose the 5-vector ¢ (and then other posi-

tion 5-vectors) by means of projection operators (C.12)-
(C.13) defined in Appendix C:

g= (0D £ 06) L PO)g .= ¢® 1 ¢ 4 4O (6.10)

Projectors (C.12)—(C.13) commute with matrix J. Using
this fact and the properties (C.16) of matrix (6.6) per-
mits one to split equation (6.9) into the set:

(1) = £ (1)1 gD (7), i=1%,5,0, (6.11)

where () (1) =0,

ENE 72 (6.12)

(6.13)

Matrix exponents in these solutions can be unraveled by means of eqs. (C.14):

¢®(r) = (cosh (EF@)(T)) + %sinh (zF@)(T))) r®(0),

¢S (r) = <cos (sFS () + %sin (s (T))) 5)(0),

¢ (r) = r©(0).
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A convolution of 5-vector 7 with the angular
momentum tensor (4.7) expressed in terms of collecti-
ve variables (5.3) yields the equality for the 5-vector Y:

-y
\I/ T.

Then egs. (6.8), (6.10), (6.14)—(6.17) lead to the expressi-
ons for particle positions

y) () = ﬁo) {J—0(7) = 3(=)U(1)} ¢V (), (6.18)
a=1,2,

i=1%,8,0,

Y ~ (6.17)

where all the quantities in r.-h.s. are known functions of
T at this point.

In order to have a complete solution of the Cauchy
problem, it is sufficient to express the angular momentum
matrix J and its invariants X, S in terms of initial
values y,(0), 9,(0) by eqgs. (4.7), (4.8) and (6.1), (6.2),
(C.3). If the initial point belongs to TK, i.e., the ini-
tial values y,(0), y,(0) are subjected to the conserved
holonomic constraints (4.2), (4.3) and their differenti-
al consequences (see also (A.7), (A.8)), then the parti-
cle world lines (6.18) lie in K by construction. The
momentum-type variables (5.4), (5.5) are subsidiary and
not important within the classical consideration.

VII. CONCLUSION

Green functions of massless fields in the Minkowski
space-time are located on the light cone surface. This
field-theoretical outcome was basic for a construction
of the original Staruszkiewicz-Rudd-Hill model and its
non-electromagnetic generalizations.

In a curved space-time, the Green function of
electromagnetic and other massless fields has a non-
local tail spread in the light cone interior [16]. It is
shown here that in particular case of de Sitter space-
time the nonlocal contribution of the electromagnetic
Green function in the Tetrode-Fokker action integral
can be converted to a dynamically equivalent local
contribution. The nonlocal contribution of the scalar
Green function is unavoidable, if the theory of minimal
coupling is implied. Instead, the Green function of the
scalar field conformally coupled to de Sitter metrics is
shown to be purely local. These two examples of field-
theoretical nature are included in a wide class of time-
asymmetric models built from general requirements of de
Sitter symmetry and self-consistency of the Hamiltonian
dynamics.

Every time-asymmetric model has 6 degrees of freedom
and 6 integrals of motion in involution, which are
independent functions of canonical generators Jyn
of O(1,4) group [35]. Thus, these dynamical systems

are integrable in the Liouville sense. In practice, the
integrability presupposes a choice of appropriate canoni-
cal variables in terms of which degrees of freedom
separate. In the case of curved de Sitter space-time, this
task encounters technical difficulties when constructing
the description in a 12-dimensional phase space.

Thus, in the present paper the time-asymmetric
models are treated as constrained systems in 20-
dimensional phase space T*MZ. de Sitter invariance
of all the constraints admits a formulation of equati-
ons of motion in a manifestly covariant 5-dimensional
form. Moreover, there exists some analogy between
the dynamics of a relativistic particle in a constant
electromagnetic field [36, 37] and the present problem.
As the Maxwell tensor in the first case, the conserved
angular 5-momentum tensor in the second case is
skew-symmetric, treated as constant and covariantly
“mounted” into equations of motion. Thus the projecti-
on operator technique, used in the first case [36, 37], is
adapted here to the present 5-dimensional case. In such
a way, the equations of motion are split and solved in
quadratures.

It was noted in the Introduction that the
Staruszkiewicz—Rudd-Hill model in a flat space-time
endows corresponding two-particle systems with physi-
cally meaningful features. What distinguishes the model
from the retarded or Wheeler-Feynman electrodynam-
ics is the time-asymmetric retarded-advanced causal
structure of interaction, a price for the solvability of the
model. Even so, the classical model represents properly
relativistic effects in a system of two charged particles
within the moderately relativistic domain where the
radiation reaction is minor. The quantum versions of
this model and some other time-asymmetric models
yield relativistic spectra, which accord well with the
results of the quantum field theory [14] and actual
meson spectroscopy [15].

A study of de-Sitter-relativistic effects in systems of
single gravitating bodies and test particles [21, 25, 26]
deepen our understanding of the expanding Universe.
The next step in this direction would be a prospecti-
ve elaboration of de Sitter invariant two-particle models
with electromagnetic and other interactions. Quantizati-
on of time-asymmetric models in de Sitter space can be
focus of future works.
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APPENDIX
A. The relation between the Lagrangian function and the dynamical constraint of time-asymmetric models

Having chosen the sign n = 1 or n = —1 in the model (see Section IV), let us present the Lagrangian (4.5) in the
equivalent form:

L =9F(v,v9,w), (A1)
Vi=ngi-r =nY2-r =0 +92) - r/2 >0, (A.2)
2
Mg, f(ylay27w)
Fi=— — A3
oyt Rl/a R2l/11/2 ( )

where F' is a function of the scalar arguments (3.9) and, thus, is a homogeneous function of degree zero of particle
velocities ,. The scalar factor ¥ is homogeneous of degree one and positive on timelike world lines. It is presented
in (A.2) diversely by accounting a differential consequence g; - ¥ = g - 7 of the light cone constraint (4.3). In this
regards, an apparent particle asymmetry of the interaction term of the Lagrangian (4.5) is seen.

In terms of functions (A.2), (A.3) and the collective variables (5.3), the Legendre transform (4.8) acquires the
manifestly covariant 5-vector form:

II= STL, = A(Vl,lfzaw)% +B(V1,V2,w)% + D(vy, v, w)nr, (A4)
AL Y P
T = a—y :B(I/l,VQ,w)g-FC(Vl,I/Q,UJ)E, (A.5)
where
o A - Ay A of
A= Ay + A, B'_T’ C._Z-i-a—w,
p. | L 1 of 10f
TR2 |1ye  veldry  vi10v
Va v:of Vg af a=1,2,
Aa = —T]Rmal/a - 7§f+ %aya + |:Vﬁw — 1:| %, i—=3—a. (AG)

The right-hand side of eqs. (A.4), (A.5) is evidently zero-degree homogeneous in Y, 4; thus, the Legendre transform
is degenerated.

We are interested in relations between scalars on T*M? and TK, where TK C TM? is described by the holonomic
constraints (4.2), (4.3) and their differential consequences expressed for convenience in terms of the collective variables

(5.3):

Y? = —R% Y .r=0; r? =0, g > 0; (A.7)
Y Y =0; Y r=—r-Y; -r=0. (A.8)
Multiplying eqs. (A.4), (A.5) by r and Y and accounting (A.7), (A.8) yields the relations:
I r =nA(v, ve,w); 7w -r=nB(v1,vs,w); (A.9)
II'Y = —nB(vi,vs,w); m-Y = —nC(v1,va,w). (A.10)
Among these scalars on T*M2, two of them, IT - r and - r, are observables, and they are arguments of dynamical
constraint (5.6). Squaring eq. (A.4), one can express scalar 112 in terms of vy, vo, w. Scalars IT- Y, 7 - Y and 1% are
not observables, but they are related to the third argument 112 of (5.6) via the following equality derived by squaring
eq. (5.4): II2 =112 + [(I1- Y)? + 2(IL - r)(7 - Y)]/R?. Using this and previous equations yields:

1 [A2 A2 A A
m? = — |21 4 22 19,272 L B2 94C| 4 24D. Al
TR |03 + v3 e V1Vo + + (A.11)
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In general, three equations (A.9) and (A.11) can be inverted yielding v+, v, and w as functions of IT-7, 7 -7 and 113 .
For these functions we will use notations oy, s, w, and A := A(1,0e,@0) =nll-r, ..., D := D(i1,5,®) etc. At this
point, the set of equations (A.4), (A.5) can be formally inverted yielding velocities in terms of canonical variables:

vy C _ B i A B _
. _Z(I-D _ = —=—g—-=(II—=D A12
= Sm-Dy) -2, L=fx T D), (A12
where A := AC — B2. Then the Lh.-s. of eq. (4.9) can be regarded as the Hamiltonian, proportional to the dynamical
constraint: Hp o< ® = 0. Inserting expressions (A.12) for particle velocities g, =Y — $(—)%" (a = 1,2) into Lh.-s. of
eq. (4.9) yields the dynamical constraint of the form (5.6):
C? C (7 1)? A(F + D)
2 2
“+m+mwhf'm -

T (A.13)
It determines the scalar observable 72 via three other arguments I - 7, 7 - r and II? of dynamical constraint (5.6).
In the free-particle case f = 0, we arrive at eq. (5.9).

One can obtain other relations between canonical variables, such as II- Y + 7 - r = 0, following from (A.9), (A.10).
These relations represent secondary constraints, mentioned in Section V, which involve unobservable quantities and,
thus, do not have a physical meaning.

B. The free-particle system

The free-particle dynamical constraint (5.9) can be presented diversely:

o T T T
Dproe ¥ —— —— ¢ =0 B.1
free ¥ T 1+ oor ¢2 =0, (B.1)
where ¢, 1= 72, —m2 and T, =7, — ya.i;aya (a = 1,2). This form is more convenient here. It does not imply,
a
however, that both expressions ¢; and ¢ vanish (as one could opine from Section II), so that ¢_ := 3(¢1 — ¢2) # 0.

The Hamilton equations for the position 5-vectors read:

g T o a=1,2,
.a:)\ aaq)ree N2 —— a —)' = y _ B.2
o= Mo Bk =TT (4 () TR (B.2)
and yield the expressions for the unit 5-velocities of particles:
Yo . 1 o O
Vg = yg ~ mia <7TaL + (—) I_ITT> (BS)

which are free of the unspecified Lagrangian multiplier \; here symbol “ &= ” denotes a weak equality by virtue of all
the constraints (4.2), (4.3) and (5.9).

Differentiating equalities (B.3) and using the Hamiltonian equations (B.2) and corresponding equations for =,
yields the expressions for derivatives 0,:

52
g T Ya

Vg = 2\

*Ya.- B4
IT-r m, Ry (B-4)

From (B.2) and (B.4) the 2nd-order equations of motion follow:

d g = Ya

dr \/E_ ya?

They are split in variables of different particles, and coincide for each particle with the test body equation (2.5). The
solutions y,(7) have forms (2.6), and (2.7) for each particle a = 1, 2.

=0, a=12 (B.5)

C. The angular 5-momentum tensor and projection operators

Components of the angular 5-momentum tensor form the skew-symmetric odd-dimensional matrix ||Jpn ||, thus,
one of its eigenvalues is zero. The same is true for the matrix J := ||JMy|| := |[pMEJn||. In order to find other
eigenvalues of J, one can use the Hamilton-Cayley theorem and construct the characteristic equation for J. It obviously
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includes odd degrees of J up to five with de Sitter invariant coefficients. Then by direct calculations one arrives at
the desirable identity:

P+ 1lrr4vi=o, (C.1)

where J? and V2 are two Casimir functions of de Sitter algebra, defined by eqs. (6.1), (6.2). The l.-h.s. of (C.1) can
be formally factorized:

where (-2 -x2))=0, (C.2)

=-172£VD, D:=J'/16-V (C.3)

Thus, matrix J has 5 eigenvalues £, +%_ 0.
Projection operators onto 1-dimensional subspaces corresponding to eigenvalues j of J can be introduced by a
standard technique; see for example [37]:

-/
PO = [[ 1L, j=s4v,,45 0 (C.4)
il Y
here j' in the product runs over all eigenvalues except j.

In general, the Casimir functions J? and V? and, thus, the discriminant D can acquire arbitrary real (positive
or negative) values, so that the eigenvalues j can be real or complex. Here, however, we limit this arbitrariness by
natural physical restrictions.

For the single-particle case J? ~ —m?R?, while V = 0. In the case of two free particles, one obtains from (4.7),
(4.8) and (4.5) (with f = 0):

J2
= —_—— — — CS
Py yegpny ol +w — vy, (C.5)
X = v =v? 4 v2 — 1w + ViVD, (C.6)

m2m2RA
S — 2 2y (b +w)® —vi — V3 — 2uns, (C.7)

m2m3R4

where w and v, (a = 1,2) are defined by eq. (3.9), and j := 1[ZL 4 2] > 1,

mo mi -

Let us evaluate J2 and D (or s and §) on the time-like world lines, for which v2 =1, v0 > 1 (a = 1,2). Since the
of (C

)-
5)—(C.7) at

Casimir functions are integrals of motion and O(1,4)-invariants, it is sufficient to evaluat e r.h.-s.
the initial moment 7 = 0 in an arbitrary reference frame.

We will use the 3-vector notations for 5-vectors: y = {3°,y*,y2, 9%, v*} :== {¢°, v, v*}.

Let us start with the case n = +1, i.e., y{ > 9.

The action of the group O(1,4) on the hyperboloid H is transitive [21]. Thus, there exists a reference frame where
the starting 5-position y; of the 1st particle and its 5-velocity v; are as follows:

y1 = 10,0, R}, v ={1,0,0}. (C.8)

Thus, w = v9 > 1. Besides, it follows from (C.8) and constrains (4.2), (4.3) that: y3 = R, yJ = —|yz| with arbitrarily
chosen 3-vector yo, i.e.,

yo = {—|y2|, y2, R}. (C.9)

Now, using the differential consequence s - v2 = 0 of constrains (4.2) yields v5 < 0. Thus, v; = —ya-v1 = |y2|/R > 0,
VQZyl'UQZ—U§>O, andw2—1/§21,w—y2>0.

Finally we impose the additional condition 3° 4+ y* > 0. It selects a half of the hyperboloid H which corresponds
to the flat exponentially expanding Friedmann universe [21]. It is obviously from (C.8) 3 + y# > 0. If the second
particle belongs to the same universe, i.e., y9 4+ y3 > 0, then the restriction |ys| < R follows from (C.9). Thus vy < 1.
Using all these inequalities yields the estimates:

x=put+w—1rvy>utw—rvy> U,

S=(p+w)?—vi—vi—2umnre> (p+w)?—w? —2uw = pu?
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so that

J? < =2(mi+m3)R*> <0, D> (mi+m3)’R*'/4>0= X3 > (mi+m3)R*>0 (C.10)

while 2 can be negative or positive.

For n = —1 the same estimates can be obtained by the particle permutation 1 > 2.

If an interaction of particles is present but not too strong to close up the gaps o< m? +m3 in (C.10), the inequalities
J? <0, D > 0 may hold, and we have again X% > 0 and X2 < 0.

Here we consider the case Ei =32 >0, ¥2 := —8? < 0 in detail. The matrix J has 5 eigenvalues: £%, +i 5
(where ¥ > S > 0) and 0.

Projection operators (C.4) onto 1-dimensional subspaces corresponding to these eigenvalues have the form:

(JEX)(J? +52)J (xis) . (E15)(J*—%%)]

(%) ._
P ey 0 7 257 (X2 4 57) (C.11)
0. 2+ -%?)
pO) . _ 253 (C.12)
Instead of projectors (C.11), it is convenient to use analogs of Fradkin operators [36, 37]:
2 21 |2
) . pn) 4 p-x) _ S+ 57
o .=p +P ST 1 57
2 2y |2
() . p(+is) | p—isy _ T =% 1
ow .=p +P 2037 1 57 (C.13)

which project onto the corresponding 2-dimensional subspaces. We note the important properties of these operators:

2o® =x20® 2o = _g20)  Jp® =, (C.14)

In order to derive important properties of matrix K defined by eq. (6.6), it should be simplified. Accounting (6.2)
in (6.6) and unraveling the convolution of Levi-Civita symbols € e in terms of products of Kronecker symbols
0 --- 9 yields the formula:

K =2J34 J?J. (C.15)
The action of projectors (C.12), (C.13) onto (C.15) results in the relations:
OPK =2520%)), 09K =—-25209y,  pOK =0, (C.16)

Properties (C.14) and (C.16) are used in Section VII for the integration of the system.

The case Ei > 0, ¥2 > 0 can be considered similarly.
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IHTEIT POBHI IBOYACTUHKOBI CUCTEMHI 3 YACOACUMETPUYHVMU B3AEMOAIIMN
B ITPOCTOPI JE CITTEPA

A. Oysipsk
Inemumym gisuru xwondencosanur cucmem HAH Yrpainu,
eya. Ceenuyiyvkozo 1, Jlveis, UA-79011, Ykpaina

V mexax esmekrpomguaamiku Binepa-®@eiinmana pesiaTUBICTCHKY CHCTEMY B3aEMOIINHUX /IBOX 3aPsAIiB
OTHCAHO PI3HUIEBO-TU(EPEHITIHHUMY PIBHAHHAMU PyXy, siki BUMINBAOTH i3 aii Terpome—®Pokkepa. 3
TaKOI0 BapialifHO TPODJIEMOI0 BAyKKO BIIOPATHUCS, BOHA MOTAHO NMPUCTOCOBAHA [0 TaMiIbTOHI3amii Ta

KBaHTYBaHHM.

[Mlo6 yuukayTu mux tpyasoris, Crapymkesud, a takoxk Pymr i Tin saminwmm B mil cumerpuany
dynkmito T'pirma pipmamns Makcsena na cmizmeny(abo sumepenny). Ile mazo 3mory mepedbopmymiosari
JWHAMIKY B JIAI DAHKEBY, & TAKOXK 1 TaMiJIbTOHOBY (hOpMY, SKa BUSBUJIACH iIHTEI'DOBAHOIO 3ABAAKYN TOYHIH
nmyankape-iaBapianTaocTi. @i3W9HO 1T MOJETb OMKUCYE TaKy TaCOACHMETPUIHY B3AEMOJIIIO TBOX 3apsIKe-
HUX YACTUHOK: BUIIEPEHE I10JI€ [IEPIIO] YACTUHKHU JIi€ HA JPYTY YaCTUHKY, CIII3HEHE I10J1€e JIPYTOl YaCTUHKU
Jli€ Ha TEPIITy YACTUHKY, & PEAKIIIE€I0 BUTPOMiHIOBaHHS 3HexTyBaHo. Mogens Crapymkesnaa—Pynma—Timra
OyJ/1a y3arajbHEHa JJId IHIIUX 9aC0aCUMETPUYHUX B3aE€MO/Iili (CKaJIAPHOT, I'PaBITAIIIHHOL, yTPUMHOI TOIIIO),
a BiamoBimHI KBAHTOBI Bepcii BUABWIN (PI3UIHY 3MiCTOBHICTD.

Bapiamiitauit npuaiun Terpoge—®okkepa MOXKHA y3araJbHUTH HA KPUBI 1acOPOCTOPH, SKIMO Bizoma
Bigmosinma dyuxmis I'pina. das mpocropy me Cirrepa enexTpomarmerny by I pina moGymoBam
lNirydi i Yeonr, BoHa CKJIAQJTAETHCA 3 JABOX YACTHUH: JIOKAJIBHOI 3 HOCIEM HA Till€PIIOBEPXHI CBITIOrO KO-
HyCa 1 HEJIOKAJIbHOI — y #oro o6’emi. ¥ miii poboTi mOKa3aHO, IO BHECOK HEJIOKAJIHHOI YaCTUHU B [II0
MOXKHA, 3BECTH JI0 €KBIBAJIEHTHOI'O JIOKAJBbHOIO BHECKY. lle /1a710 3MOry CBO€IO 4€Proi0 CKOHCTPYIOBATU
gecitrepiBcbkmii anasor moaeni Crapymkesnda—Pynna—Tiiina ta y3araapautu i1 HA MTAPOKWIA KJIAC Y-
COCHMETPUYHHUX B3AEMOJIi#l, BKIIOYHO 3 €IEKTPOMATHETHO), CKAISIPHOIO Ta iHITNMU.

3o6pazkennsi mpocropy e Cirrepa sk rimepbosoiza B 5-BumipHOMYy npoctopi MiHKOBCBKOrO mOIy-
ckae (POPMYIIIOBAHHST YACOACUMETPUYHUX MOJIENe y MeXKax JIAarPaH’KeBOTO, a TaKOXK i TaMiJIbTOHOBOTO
dbopmanismy 3 B’s3amu. Tunavika imapianTua momo rpynu ge Cirrepa O(1,4). Tomy € 10 imrerpasis
pPyXy, 3i0panux y 5-BUMIipHi#i KococHMeTpUYHI# MaTpuri MmomenTy immysnbcy J. Po3s’s30k piBHSHB pyxy
3arajbHOI 1aCOACHMETPUIHOI MO TOOYI0BAHO ¥ KBAIPATYPaX 33 JOIIOMOIOI0 MPOEKITIHHIX OIIEPATOPiB,

CKOHCTPYHOBAHUX y TepMiHaX MATPUIL J.

KurrouoBi cioBa: mpocrip ne Cirrepa, 9acoacuMerpudHi MOIEN, iHTerPOBHI CHCTEMH.
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