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I. INTRODUCTION

It is known that one has to deal with complex
di�erence-di�erential equations when considering a
relativistic classical dynamics of a system of interacting
charges [1, 2]. This is even more the case for scalar [2],
gravitational [3] or non-Abelian [4] interactions where
the dynamics is governed by integro-di�erential equati-
ons. Such a hereditary dynamics is neither solvable nor
appropriate for the Hamiltonian description. In order
to avoid these di�culties, Staruszkiewicz [5], Rudd and
Hill [6] invented the model describing the following time-
asymmetric interaction of two pointlike charged parti-
cles: the advanced �eld of the �rst particle acts on the
second particle, the retarded �eld of the second parti-
cle acts on the �rst particle, and a radiation reacti-
on is neglected. This model is built of the action-at-a-
distance Tetrode�Fokker variational functional [7, 8] via
replacing its integrand, the symmetric Green function of
d'Alembert equation, with the retarded (or advanced)
one. In this way the model was reformulated to the
Lagrangian form and then to the Hamiltonian form [9]
which was shown integrable [10] due to exact Poincar�e-
invariance. The Staruszkiewicz�Rudd�Hill model was
generalized for a variety of non-electromagnetic time-
asymmetric interactions (scalar, gravitational, con�n-
ing etc.) [11�13], and corresponding quantum versions
[14, 15] revealed their physical adequacy, despite an arti-
�cially broken causality of interactions.
The purpose of this work is a generalization of the

Staruszkiewicz�Rudd�Hill model, formulated primarily
in a �at space-time, to the case of de Sitter space-
time. The construction of this model presumes that
the interaction between particles spreads at the speed
of light, i.e., along the light-cone surface. This is not
the case in the curved space-time where an additi-
onal slow �tail� component of the interaction arises
[16]. The present paper shows that in the special case
of de Sitter space-time the �tail� contribution from
the electromagnetic Green function can be reduced
to an equivalent on-light-cone contribution. This fact
suggests a relevant two-particle model with the time-

asymmetric electromagnetic interaction [17]. Actually,
here a family of two-particle models in de Sitter space-
time is presented. It includes also the system with scalar
interaction and models with various phenomenological
interactions.
An even more important issue raised in this paper

is the integrability of the presented models. This
point is relevant since, to the author's knowledge,
solvable examples of dynamics of interacting particles in
a curved space-time are unknown. The time-asymmetric
models are, by construction, invariant with respect to
the de Sitter group O(1,4), and formulated by means of
a variation principle which is reduced to the Lagrangi-
an form and then to the Hamiltonian form. Based
on the Noether theorem and the structure of the Lie
algebra of O(1,4), there exist a su�cient number of
integrals of motion to ensure the integrability of a two-
particle system in quadratures. In practice, however, the
problem appears too cumbersome to be solved by means
of commonly used methods, such as the Hamilton�
Jacobi one. Instead, the representation of de Sitter
space-time as a hyperboloid in the 5-dimensional Min-
kowski space M5 is used to apply Dirac's canonical
formalism with constraints. Besides, the technique of
projection operators built in terms of conserved canoni-
cal generators of O(1,4) is elaborated. These tools are
used to solve the Hamiltonian equations of motion in
quadratures.
The paper is organized as follows. In Section II, a si-

ngle particle dynamics is used to introduce elements of a
5-dimension representation. In Section III, the Tetrode�
Fokker variational principle for 2-particle systems with
electromagnetic, scalar, and other interactions in de Si-
tter space is formulated. It is then appropriately modi�-
ed in Section IV to generate a family of time-asymmetric
models and to put their description into the Lagrangi-
an formalism and then (in Section V) into the canonical
formalism with constraints. This transform is detailed in
Appendix A. The system of two free particles as a time-
asymmetric model is not manifestly separable and thus
it is particularly considered in Appendix B. In Section
VI, the canonical equations of motion are derived and
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solved by means of the projection operator techniques
developed in Appendix C. Main results and prospects of
the work are presented in Section VII.

II. MANIFESTLY COVARIANT TEST
PARTICLE MECHANICS IN DE SITTER SPACE

Let us start with the action integral determining the
dynamics of a test particle of the mass m in a curved
space-time:

I = −m
τ2∫

τ1

dτ
√
gµν(x(τ))ẋµ(τ)ẋν(τ) ; (2.1)

here τ parameterizes points x(τ) of a particle world line,
i.e., the geodesic, xµ(τ) (µ = 0, . . . , 3) are particle coordi-
nates, and gµν(x) is a metric tensor in a chosen chart
of the space-time considered. The action (2.1) is invari-
ant with respect to an arbitrary change of the evolution
parameter: τ → τ ′ = f(τ), since the parametrization of
geodesics has no physical meaning. For de Sitter space-
time [18], geodesics were studied from di�erent view-
points [18�21] in many coordinate charts introduced for
this space-time [21�23].
It is convenient to consider de Sitter space-time as a

4-dimensional hyperboloid H:

ηMNy
MyN := (y0)2 − (y1)2 − · · · − (y4)2 = −R2 (2.2)

in the 5-dimensional Minkowski space M5 with coordi-
nates yM (M = 0, 1, . . . , 4) and the metrics ||ηMN || =
diag(+,−, . . . ,−); [21, 24]. The constant R determines
the scalar curvature R of the de Sitter space, and it is
related to the cosmological Λ-constant: R = 12/R2 =
4Λ; the speed of light is put c = 1.
The hyperboloid H is invariant with respect to de

Sitter group O(1,4) represented in M5 by standard li-
near pseudoorthogonal transformations. Thus, we will
use standard notations for O(1,4)-invariants y · z :=
ηMNy

MzN and y2 := y · y built of arbitrary 5-vectors
y, z ∈ M5.
The embedding H ↪→ M5 implies, in terms of local

coordinates xµ in de Sitter space, a set of appropriate
functions yM (x) turning the equation (2.2) into identi-
ty [21�23]. Then the pseudo-Euclidian O(1,4)-invariant
metrics is pulled back naturally from M5 onto H:

ρ(x, x′) := (y − y′)2
∣∣
H . (2.3)

This endows de Sitter space with a causal structure of
the ambient Minkowski space:

� the interval between points x, x′ ∈ H is timelike if
ρ(x, x′) > 0, i.e., if y′ ∈ H ⊂ M5 lies inside the
light cone with a vertex y ∈ H ⊂ M5 (or the same
with y and y′ permuted);

� the interval is spacelike if ρ(x, x′) < 0, i.e., if y′ lies
outside the light cone;

� the interval is isotropic if ρ(x, x′) = 0, i.e., if y′ lies
on the light cone hypersurface.

For in�nitely closed 5-vectors y and y′ = y + dy ,
the function (2.3) yields the pseudo-Riemannian metrics
involved in the action integral (2.1) for the case of de
Sitter space:

ds2 := ηMNdyM dyN
∣∣
H = gµν(x)dx

µdx ν .

Thus, the test particle dynamics in de Sitter space
can be reformulated to some variational principle with
a constraint, de�ned in the con�guration space M5 [21,
25, 26]. The simplest version is [21]:

I = −
∫

dτ
{
m
√
ẏ2(τ)− λ(τ)(y2(τ) +R2)

}
, (2.4)

where the condition (2.2) is taken into account as a
holonomic constraint by means of the Lagrange multipli-
er λ(τ). The Euler�Lagrange equation for 5-vector y(τ)
representing the particle position x(τ) ∈ H can be wri-
tten down in the following manifestly covariant form

d

dτ

ẏ√
ẏ2

−
√
ẏ2

y

R2
= 0 (2.5)

which is invariant with respect to both the O(1,4) group
and an arbitrary change of the evolution parameter τ .
The solution of the geodesic equation (2.5) is

y(τ) = y(0) cosh
s(τ)

R
+R

ẏ(0)√
ẏ2(0)

sinh
s(τ)

R
, (2.6)

where the constant 5-vectors y(0) and ẏ(0) are subjected
to constraint (2.2) and its di�erential consequence y · ẏ =
0, and s(τ) is the proper time elapsed from y(0) to y(τ):

s(τ) :=

∫ τ

0

dτ
√
ẏ2(τ) . (2.7)

The proper time as a function of τ cannot be determi-
ned from equation (2.5), due to reparametrization invari-
ance, but it can be chosen manually for convenience. For
example, with the proper time parametrization s(τ) := τ
we have ẏ2 = 1, and the equation (2.6) reproduces the
de Sitter geodesic found in Ref. [21].
Due to de Sitter symmetry, there exist 10 integrals

of motion collected in the skew-symmetric angular 5-
momentum tensor:

JMN = yMπN − yNπM = −JNM , (2.8)

where

πM = mẏM/
√
ẏ2 (2.9)

are components of 5-momentum.
At this point one can develop the covariant Hamil-

tonian description on the phase space T∗M5 with vari-
ables yM , πN (M,N = 0, . . . , 4) and standard Poisson
brackets: {yM , yN} = 0, {πM , πN} = 0, {yM , πN} =
δMN . The integrals of motion JMN become canonical
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generators of O(1,4) group while the Legendre transform
(2.9) is degenerated due to the reparametrization invari-
ance of action (2.4). Thus, the canonical Hamiltonian
vanishes while the mass-shell constraint arises, π2 −
m2 = 0, apart from the holonomic constraint (2.2). Both
constrains are primary ones according to Dirac's termi-
nology of canonical formalism with constraints [27]. They
form Dirac's primary Hamiltonian: H ′

D = λ(π2 −m2) +
λ1(y

2 + R2), where λ and λ1 are Lagrange multipliers.
The compatibility conditions

{y2 +R2, H ′
D} = 4λy · π ≈ 0,

{π2 −m2, H ′
D} = −4λ1y · π ≈ 0,

give rise to the secondary constraint y · π = 0, so
that Dirac's Hamiltonian at this stage takes the form:
H ′′

D = H ′
D + λ2 y · π. Reexamining compatibility conditi-

ons gives no new constraints but �xes partially Lagrange
multipliers: λ1 = 0. Putting then λ2 = −y · π/y2
yields Dirac's �nal Hamiltonian HD = λ(τ)ϕ(y, π)
with the unspeci�ed Lagrange multiplier λ(τ) (due to the
reparametrization invariance) and the function ϕ(y, π)
which determines the modi�ed mass-shell constraint

ϕ := π2
⊥ −m2 ≡ 1

2
J2/y2 −m2 = 0; (2.10)

here π⊥M := πM − y · π
y2

yM ≈ J N
M yN
R2

(so that y · π⊥ ≡

0) and J2 := JMNJ
MN . Symbol � ≈ � denotes a �weak

equality�, i. e. by virtue of the holonomic constraint (2.2);
[27].
Let us note that the set of constraints (2.2) and (2.10)

are the 1st class [27], i.e., they satisfy the identity: {y2+
R2, ϕ} ≡ 0. Together with Dirac's Hamiltonian HD =
λϕ, these constraints endow e�ectively the system with
three degrees of freedom (as it should). Henceforth the
quantity y · π is not involved in the dynamics, and the
secondary constraint y · π = 0 can be abandoned.
The Hamiltonian equation for the particle position 5-

vector y reads:

ẏ = λ{y, ϕ} = 2λπ⊥ ≈ 2λ

R2
J y. (2.11)

Note that the matrix J := ||JM
N || := ||ηMLJLN || is

conserved, thus, equation (2.11) is linear. Its formal

solution follows immediately: y(τ) = e
s(τ)

mR2 Jy(0), where
the unspeci�ed function s(τ) = 2m

∫ τ

0
dτ λ(τ) is the

Hamiltonian image for the proper time function (2.7).
The Cauchy problem becomes solved after matrix J is
expressed in terms of initial values y(0) and ẏ(0) by the
equalities (2.8), (2.9) and their consequences Jy ≈ mR2v,
Jv = my, where v = ẏ/

√
ẏ2. Then expanding the

exponent in power series reproduces solution (2.6).
It may seem unreasonable to use of a 5-dimensional

reparametrization invariant description together with
Dirac's formalism with constraints in order to derive
geodesics in de Sitter space. These tools, however, appear
e�ective when considering two-body problems in the
following sections.

III. ACTION-AT-A-DISTANCE DYNAMICS OF
TWO PARTICLES IN DE SITTER SPACE

Within framework of the Wheeler�Feynman
electrodynamics [1, 2, 28, 29], a system of charged
point-like particles is described by the Tetrode�Fokker
action-at-a-distance variational principle [7, 8]. This
formalism was generalized for a curved space-time by
Hoyle and Narlikar [28] and others [29, 30].
For a system of two charged particles of massesma and

charges ea (a = 1, 2), the Tetrode�Fokker action integral
has the form:

I = Ifree + Iint, where Ifree = −
2∑

a=1

ma

∫
dsa , (3.1)

dsa :=
√
gµν(xa(τa))ẋ

µ
a(τa)ẋνa(τa) dτa , (3.2)

Iint = −4πe1e2

∫ ∫
dxµ1 dx

ν
2 Gµν(x1, x2); (3.3)

here xµa(τa) (µ = 0, . . . , 3) are space-time coordi-
nates of particle world lines parameterized by evoluti-
on parameters τa (a = 1, 2). Free-motion terms Ifree
of action (3.1) have form (2.1) for each particle. An
integrand of the interaction term (3.3) is the symmetric
Green function Gµν′(x, x′) of the covariant wave equati-
on □Aµ +Rµ

νAν = 0 for the electromagnetic potential
Aµ [16, 31]; here □ is the d'Alembertian in a curved
space-time considered, and Rµ

ν is the Ricci tensor. For
a curved space-time, Gµν′(x, x′) is a bi-vector function,
whose construction in general is a complicated problem
[16].
For de Sitter space-time, the symmetric Green functi-

on is known from Ref. [32]1. It is presented here in
geometric terms, which are indi�erent to the choice of
a coordinate chart:

Gµν′(x, x′) = Gδ
µν′(x, x′) +GΘ

µν′(x, x′); (3.4)

here

Gδ
µν′(x, x′) :=

1

4π
ḡµν′(x, x′) δ(ρ(x, x′)), (3.5)

GΘ
µν′(x, x′) := − 1

24πR2

{(
1

Z
+

1

2Z2

)
ḡµν′

+
R2

Z3
(∂µZ)(∂ν′Z)

}
Θ(ρ(x, x′)); (3.6)

ḡµν′(x, x′) := −2R2

{
∂µ∂ν′Z − 1

Z
(∂µZ)(∂ν′Z)

}
, (3.7)

Z(x, x′) := 1 + 1
4
ρ(x, x′)/R2, (3.8)

where ḡµν′(x, x′) is the parallel propagator [16, 31], and
the metric function ρ(x, x′) is de�ned by (2.3). We note

1 An earlier proposal [31] is unappropriate as it does not meet
demands of de Sitter-covariance.

3002-3



A. DUVIRYAK

that the Green function (3.4) consists of two parts. The
local part (3.5) is proportional to the Dirac δ-function
and, thus, supported by the light cone surface ρ(x, x′) =
0. The non-local part (3.6) is proportional to the Heavi-
side Θ-function and, thus, supported by the light cone
interior ρ(x, x′) > 0. This is a common feature of curved
space-times [16], contrary to the Minkowski space-time,
where Green functions of massless �elds have a local part
only. But in the present case of de Sitter space-time,
the non-local contribution (3.6) of the Green function
(3.4) in integral (3.3) can be e�ectively reduced to a local
one [17].

In order to show this, let us �rst introduce the relati-
ve position 5-vector r ≡ y1 − y2, the particle unit 5-
velocities va ≡ ẏa/

√
ẏ2a, and the dimensionless scalars

of these 5-vectors v1 · v2 and r · va/R (a = 1, 2),
which are homogeneous functions of degree zero of deri-
vatives ẏ1 and ẏ2. It is convenient for a subsequent
interim calculation to present these scalars as follows:

ω := v1 · v2|H = −1

2

d2ρ(x1, x2)

ds1 ds2
,

(3.9)

νa :=
r · va
R

∣∣∣
H
= − (−)a

2R

dρ(x1, x2)

dsa
, a = 1, 2,

where the function ρ(x1, x2) and the interval elements
dsa are de�ned by eqs. (2.3) and (3.2), respectively. Note
that the di�erentiation over ds1 (or ds2 ) acts on x1(τ1)
(or x2(τ2)).
In these terms, the integrand of the interaction term

(3.3) of action (3.1) reads:

dxµ1 dx
ν
2 Gµν(x1, x2) =

ds1 ds2
4π

{(
ω − ν1ν2

2Z

)
δ(ρ)−

(
2Z + 1

Z2
ω − Z + 1

Z3
ν1ν2

)
Θ(ρ)

12R2

}
.

Then, applying the integration-by-part formula:

+∞∫
−∞

+∞∫
−∞

ds1 ds2 ωF (ρ) = −1

2

+∞∫
−∞

+∞∫
−∞

ds1 ds2
d2ρ

ds1 ds2
F (ρ)

= −2R2

+∞∫
−∞

+∞∫
−∞

ds1 ds2 ν1ν2
dF (ρ)

dρ
− 1

2

[∫
dρF (ρ)

] s1=+∞
s2=+∞

s1=−∞
s2=−∞

,

which holds for any function F (ρ), to the Tetrode�Fokker integral (3.3), one obtains:

Iint = −4πe1e2

∫ ∫
dτ1 dτ2 ẋ

µ
1 ẋ

ν
1 Gµν(x1, x2) ≃ −e1e2

∫ ∫
ds1 ds2 ωδ(ρ), (3.10)

where symbol � ≃ � denotes an equality up to boundary terms which do not contribute in variational problem.
It is remarkable that the only local (i.e., light cone surface) contribution of the Green function remains in the

Tetrode�Fokker integral (3.10); this structure is a necessary starting point for a construction of the model of
Staruszhkiewicz�Rudd�Hill type in the next section.
Similarly, one can consider a particle system with the scalar interaction. The interaction term of the Fokker-type

action (3.1) in this case has the form [28]:

Iint = −4πg1g2

∫ ∫
ds1 ds2 G(x1, x2), (3.11)

where ga (a = 1, 2) are scalar �charges� of particles, and the bi-scalar function G(x, x′) is the symmetric Green
function of the wave equation □φ = 0 for a scalar �eld φ mediating the interaction and minimally coupled to
gravitation [16]. For de Sitter space-time, the Green function G(x, x′) was found by Narlikar [31]:

G(x, x′) = Gδ(x, x′) +GΘ(x, x′) :=
1

4π

{
δ(ρ) +

1

2R2
Θ(ρ)

}
. (3.12)

In contrast to the case of electromagnetic interaction,
the nonlocal contribution GΘ(x, x′) of the Green functi-
on (3.12) is essential: it cannot be removed from action
(3.11) by means of the integration by parts or another
equivalent transformation.

The Penrose�Chernikov�Tagirov equation (□+R/6)φ
= 0 corresponds to a conformal coupling of the scalar
�eld to gravitation [33, 34]. In the case of de Sitter space-
time, the scalar curvature R = 12/R2 is constant, and
the Green function can be found easily using of distri-
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butional methods [16]. It appears purely local:

G(x, x′) = Gδ(x, x′) :=
1

4π
δ(ρ). (3.13)

The electromagnetic (3.10) and scalar (3.11), (3.13)
interaction terms of the Fokker-type action admit the
obvious de-Sitter-invariant generalization:

Iint = −
∫ ∫

ds1 ds2 f(ν1, ν2, ω)δ(ρ), (3.14)

where dsa are de�ned in (3.2), and f(ν1, ν2, ω) may
be an arbitrary function of its three scalar arguments
(3.9), so it is a homogeneous function of degree zero of
ẏ1 and ẏ2. Thus, expression (3.14) possesses both the
de Sitter invariance and the double reparametrization
invariance. It comprises a variety of interactions which
may have a �eld-theoretical nature or can be introduced
phenomenologically.

IV. TIME-ASYMMETRIC MODELS IN DE
SITTER SPACE-TIME

Staruszkiewicz [5, 9], Rudd and Hill [6] replaced in
the Tetrode�Fokker action integral the symmetric Green
function G of d'Alembert equation with the retarded
G(+) or advanced G(−) Green function: G(±)(x1, x2) =
2Θ[±(x01−x02)]G(x1, x2). This led them to a two-particle
model with the time-asymmetric retarded-advanced
interaction. Following this idea, one should insert the
factor 2Θ[η(x01 −x02)] = 2Θ[η(y01 − y02)], where η = +1 or
�1 in the general interaction term (3.14) of the Fokker-
type action (3.1). Then, similarly to the singe-particle
case considered in Section II, it is convenient to present
this Fokker-type action via global variables in the ambi-
ent Minkowski space M5. One, thus, obtains:

Iint = −
∫ ∫

dτ1 dτ2

×
√
ẏ21
√
ẏ22 f(ν1, ν2, ω) 2Θ(ηr0) δ(r2)|H2 , (4.1)

where the integrand in r.-h.s. of (4.1) is constrained on
H2 = H × H, i.e., the particle position 5-vectors ya(τa)
(a = 1, 2) are subjected to the hyperboloid conditions for
each particle:

y2a +R2 = 0, a = 1, 2. (4.2)

An integrand of the double integral Iint in (4.1) is non-
zero provided

r2 := (y1 − y2)
2 = 0, ηr0 := η(y01 − y02) > 0. (4.3)

This condition can be treated as the equation of the past
or future light cone, depending on the value η = ±1 and
on which point, y1 or y2, is the vertex of the cone. If the
time-symmetric action (3.14) is invariant under a particle
permutation, the invariance of the corresponding time-
asymmetric action (4.1) is provided by the additional
change η → −η.

From a physics viewpoint, the choice of the sign factor
η = ±1 is unimportant. Both cases correspond to the
electromagnetic interaction with a �spoiled� causality.
They lead to distinguished two-body problems which di-
�er from one another and from those of the Wheeler�
Feynman or retarded electrodynamics. It is worth noting
that in the case of the �at-space Staruszkiewucz�Rudd�
Hill model, the particle world lines corresponding to di-
�erent η = ±1 are distinguishable only in a highly relati-
vistic domain [5, 13].
The Fokker-type action integral (3.1), (4.1) is invariant

with respect to an arbitrary change of each parameter τ1
and τ2. Thus, two of the ten variables yM1 (τ1), yM2 (τ2)
(M = 0, . . . , 4) to be found remain undetermined within
the variational problem. It is pro�table to �x partially
this functional arbitrariness manually as follows. Let us
choose one of the variables, say y02(τ2), in such a way that
condition (4.3) turns into an identity at τ1 = τ2. This
implies that both particle world lines are parameterized
by a common evolution parameter, say τ1, and the si-
multaneous events y1(τ1) and y2(τ1) lie on the isotropic
light cone surface (4.3). Using the equality (see [9])

2Θ
[
η
(
y01(τ1)− y02(τ2)

)]
δ

[(
y1(τ1)− y2(τ2)

)2
]

=
δ(τ1 − τ2)∣∣∣ẏ2(τ2) · (y1(τ1)− y2(τ2)

)∣∣∣
in the interaction term (4.1) and integrating over τ2
reduces the Fokker-type action (3.1) to the single-time
form

I =

∫
dτ L̃ (4.4)

with the Lagrangian L̃ := L|TK, where

L = −
2∑

a=1

ma

√
ẏ2a −

√
ẏ21
√
ẏ22
f(ν1, ν2, ω)

|ẏ2 · r|
. (4.5)

The Lagrangian L̃ is de�ned on the tangle bundle TK
over the 7-dimensional con�guration manifold K ⊂ H2 ⊂
M2

5 ≡ M5 × M5 described by conditions (4.2), (4.3).
The corresponding variational problem gives rise to the
second order di�erential equations of motion and, thus,
the transition to the usual Hamiltonian description is
straightforward.
The Lagrangian L̃ (as well as L) is the �rst degree

homogeneous function of particle velocities. Thus, action
(4.4) has a residual invariance with respect to an arbi-
trary change in the common evolution parameter: τ . This
symmetry allows one to �x the remaining timelike vari-
able manually and, together with conditions (4.2), (4.3),
enables to arrive at the ordinary Lagrangian description
in the 6-dimensional con�guration space Q. In practi-
ce, however, the explicit elimination of redundant vari-
ables, say y01 , y

4
1 , y

0
2 , y

4
2 , breaks a manifest 5-dimensional

Lorentz-covariance, and makes the subsequent treatment
cumbersome. As usual, a success in solving equations of
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motion is predetermined by an appropriate parametri-
zation of the con�guration space, which is not evident in
the case of Q.
An alternative way is the use of a manifestly covari-

ant Lagrangian description in the 10-dimensional con�-
guration space M2

5. In this case, an unconditional
extremum problem of action (4.4) is modi�ed in favor
of an equivalent conditional extremum problem of

I =

∫
dτ

{
L+ λ0r

2 +

2∑
a=1

λa(y
2
a +R2)

}
(4.6)

with the Lagrangian function (4.5) de�ned on TM2
5.

The Lagrangian multipliers λ0(τ), λa(τ) take conditions
(4.3), (4.2) into account as holonomic constraints; the
unilateral constraint ηr0 > 0 is implied as well.
De Sitter invariance of Lagrangian (4.5) and constrai-

nts (4.2), (4.3) provides the existence of ten Noether
integrals of motion, collected in the angular 5-momentum
tensor:

JMN =
2∑

a=1

(yaMπaN − yaNπaM ) , (4.7)

where
πaM = ∂L/∂ẏMa , a = 1, 2. (4.8)

Besides, Lagrangian (4.5) satis�es the identity:

2∑
a=1

ẏa ·πa − L = 0, (4.9)

due to the reparametrization invariance of action (4.6).

V. CANONICAL FORMALISM WITH
CONSTRAINTS

The Lagrangian description in the con�guration space
M2

5 enables a natural transition to the manifestly covari-
ant Hamiltonian description with constraints [27]. The
corresponding 20-dimensional phase space T∗M2

5 with
the particle canonical variables yMa , πbN (a, b = 1, 2;
M,N = 0, . . . , 4) is endowed with the standard Poisson
brackets: {yMa , yNb } = 0, {πaM , πbN} = 0, {yMa , πbN} =
δabδ

M
N .

Components of the conserved angular 5-momentum
tensor (4.7) become, within the Hamiltonian descripti-
on, the generators JMN of the canonical realization of
the de Sitter group, i.e., they satisfy the canonical relati-
ons of the Lie algebra of O(1,4):

{JMN , JLK} = ηMLJNK + ηNKJML

− ηMKJNL − ηNLJMK . (5.1)

Due to identity (4.9), the Legendre transformation
(4.8) is degenerated, the canonical Hamiltonian vani-
shes, while the additional constraint arises [27], simi-
larly to the mass-shell constraint in the single particle

case. The function determining this constraint consti-
tutes (together with the holonomic constraints (4.2),
(4.3)) Dirac's primary Hamiltonian.
The subsequent procedure is similar to that of the

single particle case in Section II. The compatibility
conditions of the dynamics with primary constraints gi-
ve rise to secondary constraints which then are combi-
ned with the primary constraints in the secondary Di-
rac' Hamiltonian etc. In the �nal compatible form, the
dynamics is generated by Dirac's Hamiltonian HD =
λ(τ)Φ(ya, πb) where λ(τ) is an unspeci�ed Lagrange
multiplier (due to the reparametrization invariance), and
constraint Φ(ya, πb) = 0 is the �rst class with respect to
the holonomic constraints (4.2), (4.3), i.e., the function
Φ(ya, πb) satis�es the equalities:

{Φ, r2} = 0, {Φ, y2a +R2} = 0, a = 1, 2. (5.2)

Besides, this constraint must be de Sitter invariant since
the angular momentum tensor (4.7) must be conserved.
We will refer to Φ(ya, πb) = 0 as the dynami-

cal constraint for two reasons. Firstly, the function
Φ(ya, πb) generates an evolution via Dirac's Hamiltoni-
an. Secondly, a speci�c form of Φ(ya, πb) is determined
by Lagrangian (4.5), in particular, by the form of the
interaction function f(ν1, ν2, ω) chosen. However, equati-
ons (5.2) and de Sitter invariance requirements are su�-
cient to outline a general structure of the dynamical
constraint and the corresponding Hamiltonian mechani-
cs.
Let functions of canonical variables φ(ya, πb) which

satisfy conditions (5.2) be referred to as observables in
Dirac's meaning [27]. We will use sometimes the collecti-
ve canonical variables:

YM = 1
2
(yM1 + yM2 ), rM = yM1 − yM2 ,

ΠM = π1M + π2M , πM = 1
2
(π1M − π2M ). (5.3)

The components of position 5-vectors Y , r are
the observables. Solving equations (5.2) yields other
observables, the momentum-type 5-vectors Π⊥, π⊥ wi-
th the components:

Π⊥M :=
Y LJLM

Y 2
≈ ΠM +

(Y ·Π)YM+(Y · π)rM
R2

,(5.4)

π⊥M :=

(
δNM − rMΠN

⊥
Π⊥ · r

)(
δLN − YNY

L

Y 2

)
πL (5.5)

which are not all independent due to the identities: Π⊥ ·
Y ≡ 0, π⊥ · Y ≡ 0, Π⊥ · π⊥ ≡ 0.
A set of functions φ(Y, r,Π⊥, π⊥) constitutes a

complete algebra of observables, which is closed with
respect to Poisson brackets. Indeed, if φ1 and φ2 are
observables then {φ1, φ2} is observable due to the Jacobi
identity. The particle positions ya and the dynami-
cal constraint Φ(Y, r,Π⊥, π⊥) are observable, thus, the
algebra of observables is su�cient to formulate equations
of motion generated by Dirac's Hamiltonian HD = λΦ.
Aforementioned secondary constraints are not observable
and can be abandoned, similarly to the single particle
case.
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The requirement of the dynamical constraint to be de
Sitter invariant yields the following general structure:

Φ(Π2
⊥, π

2
⊥, Π·r, π ·r) = 0, (5.6)

where Φ may be an arbitrary function of its scalar
arguments: Π2

⊥, π
2
⊥ and Π ·r ≈ Π⊥ ·r, π ·r ≈ π⊥ ·r; here

the use of weak equality � ≈ � by virtue of the holonomic
constraints (3.1), (3.4) simpli�es the dynamical constrai-
nt but does not a�ect the dynamics of observables.

The dynamical constraint (5.6) determines implicitly
one of the argument of Φ as a function of three other
arguments. Since this function can be regarded arbitrary
within a general consideration, the Hamiltonian formali-

sm with constraints (4.2), (4.3), (5.6) embraces a variety
of two-particle systems as wide as the original Fokker-
type or Lagrangian formalism with the arbitrary functi-
on f(ν1, ν2, ω) does, except, perhaps, for some special
cases.
The procedure of how to obtain the dynamical

constraint, given the interaction function f(ν1, ν2, ω) in
Lagrangian (4.5), is described in detail in Appendix A. In
practice, however, elementary algebraic operations impli-
ed there can be rarely �nished in a closed form.
Fortunately, two physically motivated examples,

considered in Section III, are the cases. For the
electromagnetic time-asymmetric interaction, one puts
in (4.5) f = αe ω, where αe := e1e2, and arrives at the
following dynamical constraint:

Φe := π2
⊥ + 1

4
Π2

⊥ +
1

4R2

(
(π1 ·r)(π2 ·r)

ηΠ·r
− αe

)
(ηΠ·r − 4αe)−

m2
1 π2 ·r +m2

2 π1 ·r
Π·r

− αe
Π2

⊥ −m2
1 −m2

2

ηΠ·r
+ α2

e

(
m2

1

ηπ1 ·r − αe
+

m2
2

ηπ2 ·r − αe

)
= 0. (5.7)

For the scalar interaction f = αs := g1g2, and the dynamical constraint has the form:

Φs := π2
⊥ + 1

4
Π2

⊥ +
(π1 ·r)(π2 ·r)

4R2
− m2

1 π2 ·r +m2
2 π1 ·r + 2ηαsm1m2

Π·r
(
1− α2

s

(π1 ·r)(π2 ·r)

) = 0. (5.8)

Both constraints (5.7) and (5.8) reduce in the free-particle limit α→ 0 to the constraint:

Φfree := π2
⊥ + 1

4
Π2

⊥ +
(π1 ·r)(π2 ·r)

4R2
− m2

1 π2 ·r +m2
2 π1 ·r

Π·r
. (5.9)

This case of the time-asymmetric system with no
interaction (i.e., f = 0) deserves a particular considerati-
on. The free-particle dynamical constraint (5.9) is not an
additive function in variables of di�erent particles. The
reason is that this constraint is concerted with the light
cone constraint (4.3), which, in turn, binds in an isotropic
interval the positions of even free particles. In Appendix
B, the dynamics of two free particles is manifested from
this tangled description.

The system determined by the set of 1st-class constrai-
nts (4.2), (4.3), and (5.6) has 6 degrees of freedom.
Besides, as it follows from the structure of the Lie
algebra (5.1) of de Sitter group [35], of ten components
of the conserved angular momentum tensor (4.7) one
can construct six integrals of motion, which are in an
involution in terms of Poisson brackets. This is su�cient
for the system to be integrable in the Liouville sense. The
next natural step would be a transition to the description
on a reduced 12-dimensional phase space, and separati-
ng degrees of freedom by choosing appropriate canoni-
cal variables. It turned out more constructive to analyze
the system within the manifestly covariant description

on the 20-dimensional phase space T∗M2
5 where de Si-

tter symmetry is realized in a transparent way.

VI. EQUATIONS OF MOTION AND THEIR
INTEGRATION

Useful integrals of motion arise from two Casimir
functions of the de Sitter algebra (5.1):

J2 := −tr(J2) = JMNJ
MN , V 2 := VMV

M , (6.1)

where the following 5-pseudo-vector

VM :=
1

8
ϵMABCDJ

ABJCD (6.2)

is introduced by means of the Levi-Chivita symbol
ϵMABCD. Then using the equalities

Π2
⊥ ≈ − 1

R2

(
1
2
J2 + (π ·r)2

)
,

π2
⊥ ≈ − 1

(Π·r)2R2

(
V 2 − 1

2
(π ·r)2J2 − (π ·r)4

)
(6.3)
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recasts arguments of the dynamical constraint (5.6) into
an equivalent set,

Φ(Π·r, π ·r; J2, V 2) = 0, (6.4)

which is more convenient for a dynamical analysis.
Let us consider the equation of motion for the relative

position 5-vector r:

ṙ = λ
{
r,Φ(Π·r, π ·r; J2, V 2)

}
= λ

(
∂Φ

∂ π ·r
− 4

∂Φ

∂J2
J− ∂Φ

∂V 2
K

)
r; (6.5)

here J := ||JM
N || and

K := ||KM
N || := ||ϵMNABCV

AJBC || (6.6)

are conserved matrices while the Lagrangian multiplier
λ(τ) as a function of τ is unspeci�ed and can be chosen
for convenience.
If the variable Π · r = Ψ(τ) was known as a functi-

on of τ , then π · r = ψ(τ) could be found from the
dynamical constraint (6.4) as a solution of the algebraic
equation: Φ(Ψ(τ), ψ(τ); J2, V 2) = 0 =⇒ ψ(τ) :=
ψ(Ψ(τ); J2, V 2) (since J2, V 2 are conserved).
In turn, the Hamiltonian equation for Ψ(τ),

Ψ̇ = λ {Ψ,Φ}

= λ
∂Φ(Ψ, ψ(Ψ; J2, V 2); J2, V 2)

∂ψ
Ψ, (6.7)

is self-su�cient, separable in τ and Ψ, and reduces obvi-
ously to quadratures. Note that the resulting function
Ψ(τ) depends on the choice of the Lagrange multiplier
λ(τ). Alternatively, one can choose Ψ(τ) and then �-
nd λ(τ) from eq. (6.7) without integration. The choice
of the function Ψ(τ) implies a �xing of the evolution
parameter τ .

At this point, equation (6.5) becomes a closed li-
near equation with respect to 5-vector y, with known
τ -dependent matrix coe�cients. The substitution

r(τ) =
Ψ(τ)

Ψ(0)
q(τ) (6.8)

simpli�es this equation to the form:

q̇ = −λ
(
4
∂Φ

∂J2
J+

∂Φ

∂V 2
K

)
q. (6.9)

A subsequent integration procedure is based on the
projection operator techniques described in Appendix
C. The structure and the action of projection operators
depend on eigenvalues of matrix J, which, in turn, depend
on the values of the Casimir functions (6.1). Here we
suppose J2 < 0 and V 2 < 0 so that J possesses the

following eigenvalues: ±Σ := ±
√

Σ2
+, ± iS := ±

√
Σ2

−

and 0, where Σ2
± are de�ned in (C.3). Other cases can

be treated similarly; they are omitted here.
Let us decompose the 5-vector q (and then other posi-

tion 5-vectors) by means of projection operators (C.12)�
(C.13) de�ned in Appendix C:

q = (O(Σ) +O(S) + P(0))q := q(Σ) + q(S) + q(0). (6.10)

Projectors (C.12)�(C.13) commute with matrix J. Using
this fact and the properties (C.16) of matrix (6.6) per-
mits one to split equation (6.9) into the set:

q̇(i)(τ) = f (i)(τ)J q(i)(τ), i = Σ, S, 0, (6.11)

where f (0)(τ) ≡ 0,

f (Σ)(τ) := −λ
(
4
∂Φ

∂J2
+ 2S2 ∂Φ

∂V 2

)
, f (S)(τ) := −λ

(
4
∂Φ

∂J2
− 2Σ2 ∂Φ

∂V 2

)
. (6.12)

Then formal solutions of equations (6.11)�(6.12) are:

q(i)(τ) = exp{F (i)(τ)J}r(i)(0), where F (i)(τ) :=

∫ τ

0

dτ f (i)(τ), i = Σ, S, 0. (6.13)

Matrix exponents in these solutions can be unraveled by means of eqs. (C.14):

q(Σ)(τ) =

(
cosh

(
ΣF (Σ)(τ)

)
+

J

Σ
sinh

(
ΣF (Σ)(τ)

))
r(Σ)(0), (6.14)

q(S)(τ) =

(
cos

(
SF (S)(τ)

)
+

J

S
sin

(
SF (S)(τ)

))
r(S)(0), (6.15)

q(0)(τ) = r(0)(0). (6.16)
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A convolution of 5-vector r with the angular
momentum tensor (4.7) expressed in terms of collecti-
ve variables (5.3) yields the equality for the 5-vector Y :

Y ≈ J− ψ

Ψ
r. (6.17)

Then eqs. (6.8), (6.10), (6.14)�(6.17) lead to the expressi-
ons for particle positions

y(i)a (τ) =
1

Ψ(0)
{J− ψ(τ)− 1

2
(−)aΨ(τ)} q(i)(τ), (6.18)

a = 1, 2, i = Σ, S, 0,

where all the quantities in r.-h.s. are known functions of
τ at this point.
In order to have a complete solution of the Cauchy

problem, it is su�cient to express the angular momentum
matrix J and its invariants Σ, S in terms of initial
values ya(0), ẏa(0) by eqs. (4.7), (4.8) and (6.1), (6.2),
(C.3). If the initial point belongs to TK, i.e., the ini-
tial values ya(0), ẏa(0) are subjected to the conserved
holonomic constraints (4.2), (4.3) and their di�erenti-
al consequences (see also (A.7), (A.8)), then the parti-
cle world lines (6.18) lie in K by construction. The
momentum-type variables (5.4), (5.5) are subsidiary and
not important within the classical consideration.

VII. CONCLUSION

Green functions of massless �elds in the Minkowski
space-time are located on the light cone surface. This
�eld-theoretical outcome was basic for a construction
of the original Staruszkiewicz�Rudd�Hill model and its
non-electromagnetic generalizations.
In a curved space-time, the Green function of

electromagnetic and other massless �elds has a non-
local tail spread in the light cone interior [16]. It is
shown here that in particular case of de Sitter space-
time the nonlocal contribution of the electromagnetic
Green function in the Tetrode�Fokker action integral
can be converted to a dynamically equivalent local
contribution. The nonlocal contribution of the scalar
Green function is unavoidable, if the theory of minimal
coupling is implied. Instead, the Green function of the
scalar �eld conformally coupled to de Sitter metrics is
shown to be purely local. These two examples of �eld-
theoretical nature are included in a wide class of time-
asymmetric models built from general requirements of de
Sitter symmetry and self-consistency of the Hamiltonian
dynamics.
Every time-asymmetric model has 6 degrees of freedom

and 6 integrals of motion in involution, which are
independent functions of canonical generators JMN

of O(1,4) group [35]. Thus, these dynamical systems

are integrable in the Liouville sense. In practice, the
integrability presupposes a choice of appropriate canoni-
cal variables in terms of which degrees of freedom
separate. In the case of curved de Sitter space-time, this
task encounters technical di�culties when constructing
the description in a 12-dimensional phase space.
Thus, in the present paper the time-asymmetric

models are treated as constrained systems in 20-
dimensional phase space T∗M2

5. de Sitter invariance
of all the constraints admits a formulation of equati-
ons of motion in a manifestly covariant 5-dimensional
form. Moreover, there exists some analogy between
the dynamics of a relativistic particle in a constant
electromagnetic �eld [36, 37] and the present problem.
As the Maxwell tensor in the �rst case, the conserved
angular 5-momentum tensor in the second case is
skew-symmetric, treated as constant and covariantly
�mounted� into equations of motion. Thus the projecti-
on operator technique, used in the �rst case [36, 37], is
adapted here to the present 5-dimensional case. In such
a way, the equations of motion are split and solved in
quadratures.
It was noted in the Introduction that the

Staruszkiewicz�Rudd�Hill model in a �at space-time
endows corresponding two-particle systems with physi-
cally meaningful features. What distinguishes the model
from the retarded or Wheeler�Feynman electrodynam-
ics is the time-asymmetric retarded-advanced causal
structure of interaction, a price for the solvability of the
model. Even so, the classical model represents properly
relativistic e�ects in a system of two charged particles
within the moderately relativistic domain where the
radiation reaction is minor. The quantum versions of
this model and some other time-asymmetric models
yield relativistic spectra, which accord well with the
results of the quantum �eld theory [14] and actual
meson spectroscopy [15].
A study of de-Sitter-relativistic e�ects in systems of

single gravitating bodies and test particles [21, 25, 26]
deepen our understanding of the expanding Universe.
The next step in this direction would be a prospecti-
ve elaboration of de Sitter invariant two-particle models
with electromagnetic and other interactions. Quantizati-
on of time-asymmetric models in de Sitter space can be
focus of future works.
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APPENDIX

A. The relation between the Lagrangian function and the dynamical constraint of time-asymmetric models

Having chosen the sign η = 1 or η = −1 in the model (see Section IV), let us present the Lagrangian (4.5) in the
equivalent form:

L = ϑF (ν1, ν2, ω), (A.1)

ϑ := ηẏ1 · r = ηẏ2 · r = η(ẏ1 + ẏ2) · r/2 > 0, (A.2)

F := −
2∑

a=1

ηma

Rνa
− f(ν1, ν2, ω)

R2ν1ν2
, (A.3)

where F is a function of the scalar arguments (3.9) and, thus, is a homogeneous function of degree zero of particle
velocities ẏa. The scalar factor ϑ is homogeneous of degree one and positive on timelike world lines. It is presented
in (A.2) diversely by accounting a di�erential consequence ẏ1 · r = ẏ2 · r of the light cone constraint (4.3). In this
regards, an apparent particle asymmetry of the interaction term of the Lagrangian (4.5) is seen.
In terms of functions (A.2), (A.3) and the collective variables (5.3), the Legendre transform (4.8) acquires the

manifestly covariant 5-vector form:

Π =
∂L

∂Ẏ
= A(ν1, ν2, ω)

Ẏ

ϑ
+B(ν1, ν2, ω)

ṙ

ϑ
+D(ν1, ν2, ω)ηr, (A.4)

π =
∂L

∂ẏ
= B(ν1, ν2, ω)

Ẏ

ϑ
+ C(ν1, ν2, ω)

ṙ

ϑ
, (A.5)

where

A := A1 +A2, B :=
A1 −A2

2
, C :=

A

4
+
∂f

∂ω
,

D :=
1

R2

[
f

ν1ν2
− 1

ν 2

∂f

∂ν1
− 1

ν 1

∂f

∂ν2

]
,

Aa := −ηRmaνa −
νa
νā
f +

ν2a
νā

∂f

∂νa
+

[
νa
νā
ω − 1

]
∂f

∂ω
;

a = 1, 2,

ā = 3− a.
(A.6)

The right-hand side of eqs. (A.4), (A.5) is evidently zero-degree homogeneous in Ẏ , ẏ; thus, the Legendre transform
is degenerated.
We are interested in relations between scalars on T∗M2

5 and TK, where TK ⊂ TM2
5 is described by the holonomic

constraints (4.2), (4.3) and their di�erential consequences expressed for convenience in terms of the collective variables
(5.3):

Y 2 = −R2; Y · r = 0; r2 = 0, ηr0 > 0; (A.7)

Ẏ · Y = 0; Ẏ · r = −ṙ · Y ; ṙ · r = 0. (A.8)

Multiplying eqs. (A.4), (A.5) by r and Y and accounting (A.7), (A.8) yields the relations:

Π · r = ηA(ν1, ν2, ω); π · r = ηB(ν1, ν2, ω); (A.9)

Π · Y = −ηB(ν1, ν2, ω); π · Y = −ηC(ν1, ν2, ω). (A.10)

Among these scalars on T∗M2
5, two of them, Π · r and π · r, are observables, and they are arguments of dynamical

constraint (5.6). Squaring eq. (A.4), one can express scalar Π2 in terms of ν1, ν2, ω. Scalars Π · Y , π · Y and Π2 are
not observables, but they are related to the third argument Π2

⊥ of (5.6) via the following equality derived by squaring
eq. (5.4): Π2

⊥ = Π2 + [(Π · Y )2 + 2(Π · r)(π · Y )]/R2. Using this and previous equations yields:

Π2
⊥ =

1

R2

[
A2

1

ν21
+
A2

2

ν22
+ 2ω

A1A2

ν1ν2
+B2 − 2AC

]
+ 2AD. (A.11)
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In general, three equations (A.9) and (A.11) can be inverted yielding ν1, ν2 and ω as functions of Π ·r, π ·r and Π2
⊥.

For these functions we will use notations ν̄1, ν̄2, ω̄, and Ā := A(ν̄1, ν̄2, ω̄) = ηΠ · r, . . . , D̄ := D(ν̄1, ν̄2, ω̄) etc. At this
point, the set of equations (A.4), (A.5) can be formally inverted yielding velocities in terms of canonical variables:

Ẏ

ϑ
=
C̄

∆̄
(Π− D̄ηr)− B̄

∆̄
π,

ṙ

ϑ
=
Ā

∆̄
π − B̄

∆̄
(Π− D̄ηr), (A.12)

where ∆ := AC−B2. Then the l.h.-s. of eq. (4.9) can be regarded as the Hamiltonian, proportional to the dynamical
constraint: HD ∝ Φ = 0. Inserting expressions (A.12) for particle velocities ẏa = Ẏ − 1

2
(−)aṙ (a = 1, 2) into l.h.-s. of

eq. (4.9) yields the dynamical constraint of the form (5.6):

π2
⊥ +

C̄2

R2
+

C̄

ηΠ · r

[
Π2

⊥ − (π · r)2

R2

]
− ∆̄(F̄ + D̄)

ηΠ · r
= 0. (A.13)

It determines the scalar observable π2
⊥ via three other arguments Π · r, π · r and Π2

⊥ of dynamical constraint (5.6).
In the free-particle case f = 0, we arrive at eq. (5.9).
One can obtain other relations between canonical variables, such as Π · Y + π · r = 0, following from (A.9), (A.10).

These relations represent secondary constraints, mentioned in Section V, which involve unobservable quantities and,
thus, do not have a physical meaning.

B. The free-particle system

The free-particle dynamical constraint (5.9) can be presented diversely:

Φfree ≈
π2 ·r
Π·r

ϕ1 +
π1 ·r
Π·r

ϕ2 = 0, (B.1)

where ϕa := π2
a⊥ −m2

a and πa⊥ := πa −
ya · πa
y2a

ya (a = 1, 2). This form is more convenient here. It does not imply,

however, that both expressions ϕ1 and ϕ2 vanish (as one could opine from Section II), so that ϕ− := 1
2
(ϕ1 −ϕ2) ̸= 0.

The Hamilton equations for the position 5-vectors read:

ẏa = λ{ya,Φfree} ≈ 2λ
πā ·r
Π·r

(
πa⊥ + (−)a

ϕ−
Π·r

r

)
,

a = 1, 2,

ā = 3− a,
(B.2)

and yield the expressions for the unit 5-velocities of particles:

va ≡ ẏa√
ẏ2a

≊
1

ma

(
πa⊥ + (−)a

ϕ−
Π·r

r

)
(B.3)

which are free of the unspeci�ed Lagrangian multiplier λ; here symbol � ≊ � denotes a weak equality by virtue of all
the constraints (4.2), (4.3) and (5.9).
Di�erentiating equalities (B.3) and using the Hamiltonian equations (B.2) and corresponding equations for πa

yields the expressions for derivatives v̇a:

v̇a ≊ 2λ
πā ·r
Π·r

√
ẏ2a

ma
R2ya. (B.4)

From (B.2) and (B.4) the 2nd-order equations of motion follow:

d

dτ

ẏa√
ẏ2a

−
√
ẏ2a
ya
R2

= 0, a = 1, 2. (B.5)

They are split in variables of di�erent particles, and coincide for each particle with the test body equation (2.5). The
solutions ya(τ) have forms (2.6), and (2.7) for each particle a = 1, 2.

C. The angular 5-momentum tensor and projection operators

Components of the angular 5-momentum tensor form the skew-symmetric odd-dimensional matrix ||JMN ||, thus,
one of its eigenvalues is zero. The same is true for the matrix J := ||JM

N || := ||ηMLJLN ||. In order to �nd other
eigenvalues of J, one can use the Hamilton-Cayley theorem and construct the characteristic equation for J. It obviously
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includes odd degrees of J up to �ve with de Sitter invariant coe�cients. Then by direct calculations one arrives at
the desirable identity:

J5 + 1
2
J2J3 + V 2J ≡ 0, (C.1)

where J2 and V 2 are two Casimir functions of de Sitter algebra, de�ned by eqs. (6.1), (6.2). The l.-h.s. of (C.1) can
be formally factorized:

(J2 − Σ2
+)(J

2 − Σ2
−)J = 0, (C.2)

where

Σ2
± := − 1

4
J2 ±

√
D, D := J4/16− V 2. (C.3)

Thus, matrix J has 5 eigenvalues ±Σ+,±Σ−, 0.
Projection operators onto 1-dimensional subspaces corresponding to eigenvalues j of J can be introduced by a

standard technique; see for example [37]:

P(j) =
∏
j′ ̸=j

J− j′

j − j′
, j = ±Σ+,±Σ−, 0; (C.4)

here j′ in the product runs over all eigenvalues except j.
In general, the Casimir functions J2 and V 2 and, thus, the discriminant D can acquire arbitrary real (positive

or negative) values, so that the eigenvalues j can be real or complex. Here, however, we limit this arbitrariness by
natural physical restrictions.
For the single-particle case J2 ≈ −m2R2, while V = 0. In the case of two free particles, one obtains from (4.7),

(4.8) and (4.5) (with f = 0):

κ := − J2

4m1m2R2
= µ+ ω − ν1ν2, (C.5)

χ :=
V 2

m2
1m

2
2R

4
= ν21 + ν22 − 2ν1ν2ω + ν21ν

2
2 , (C.6)

δ :=
D

m2
1m

2
2R

4
= κ2 − χ = (µ+ ω)2 − ν21 − ν22 − 2µν1ν2, (C.7)

where ω and νa (a = 1, 2) are de�ned by eq. (3.9), and µ := 1
2 [

m1

m2
+ m2

m1
] ≥ 1.

Let us evaluate J2 and D (or κ and δ) on the time-like world lines, for which v2a = 1, v0a ≥ 1 (a = 1, 2). Since the
Casimir functions are integrals of motion and O(1,4)-invariants, it is su�cient to evaluate r.h.-s. of (C.5)�(C.7) at
the initial moment τ = 0 in an arbitrary reference frame.
We will use the 3-vector notations for 5-vectors: y = {y0, y1, y2, y3, y4} := {y0,y, y4}.
Let us start with the case η = +1, i.e., y01 > y02 .
The action of the group O(1,4) on the hyperboloid H is transitive [21]. Thus, there exists a reference frame where

the starting 5-position y1 of the 1st particle and its 5-velocity v1 are as follows:

y1 = {0,0, R}, v1 = {1,0, 0}. (C.8)

Thus, ω = v02 ≥ 1. Besides, it follows from (C.8) and constrains (4.2), (4.3) that: y42 = R, y02 = −|y2| with arbitrarily
chosen 3-vector y2, i.e.,

y2 = {−|y2|,y2, R}. (C.9)

Now, using the di�erential consequence y2 ·v2 = 0 of constrains (4.2) yields v42 < 0. Thus, ν1 = −y2 ·v1 = |y2|/R > 0,
ν2 = y1 · v2 = −v42 > 0, and ω2 − ν22 ≥ 1, ω − ν2 > 0.
Finally we impose the additional condition y0 + y4 > 0. It selects a half of the hyperboloid H which corresponds

to the �at exponentially expanding Friedmann universe [21]. It is obviously from (C.8) y01 + y41 > 0. If the second
particle belongs to the same universe, i.e., y02 + y

4
2 > 0, then the restriction |y2| < R follows from (C.9). Thus ν1 < 1.

Using all these inequalities yields the estimates:

κ = µ+ ω − ν1ν2 > µ+ ω − ν2 > µ,

δ = (µ+ ω)2 − ν21 − ν22 − 2µν1ν2 > (µ+ ω)2 − ω2 − 2µω = µ2,
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so that

J2 < −2(m2
1 +m2

2)R
2 < 0, D > (m2

1 +m2
2)

2R4/4 > 0 ⇒ Σ2
+ > (m2

1 +m2
2)R

2 > 0 (C.10)

while Σ2
− can be negative or positive.

For η = −1 the same estimates can be obtained by the particle permutation 1 ↔ 2.
If an interaction of particles is present but not too strong to close up the gaps ∝ m2

1+m
2
2 in (C.10), the inequalities

J2 < 0, D > 0 may hold, and we have again Σ2
+ > 0 and Σ2

− ≶ 0.
Here we consider the case Σ2

+ := Σ2 > 0, Σ2
− := −S2 < 0 in detail. The matrix J has 5 eigenvalues: ±Σ, ± iS

(where Σ > S > 0) and 0.
Projection operators (C.4) onto 1-dimensional subspaces corresponding to these eigenvalues have the form:

P(±Σ) :=
(J± Σ)(J2 + S2)J

2Σ2(Σ2 + S2)
, P(± iS) :=

(J± iS)(J2 − Σ2)J

2S2(Σ2 + S2)
, (C.11)

P(0) := − (J2 + S2)(J2 − Σ2)

Σ2S2
. (C.12)

Instead of projectors (C.11), it is convenient to use analogs of Fradkin operators [36, 37]:

O(Σ) := P(+Σ) + P(−Σ) =
(J2 + S2)J2

Σ2(Σ2 + S2)
,

O(S) := P(+ iS) + P(− iS) =
(J2 − Σ2)J2

S2(Σ2 + S2)
(C.13)

which project onto the corresponding 2-dimensional subspaces. We note the important properties of these operators:

J2O(Σ) = Σ2O(Σ), J2O(S) = −S2O(S), JP(0) = 0. (C.14)

In order to derive important properties of matrix K de�ned by eq. (6.6), it should be simpli�ed. Accounting (6.2)
in (6.6) and unraveling the convolution of Levi-Civita symbols ϵ.....ϵ..... in terms of products of Kronecker symbols
δ.. · · · δ.. yields the formula:

K = 2J3 + J2J. (C.15)

The action of projectors (C.12), (C.13) onto (C.15) results in the relations:

O(Σ)K = 2S2O(Σ)J, O(S)K = −2Σ2O(S)J, P(0)K = 0. (C.16)

Properties (C.14) and (C.16) are used in Section VII for the integration of the system.
The case Σ2

+ > 0, Σ2
− > 0 can be considered similarly.
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IÍÒÅ�ÐÎÂÍI ÄÂÎ×ÀÑÒÈÍÊÎÂI ÑÈÑÒÅÌÈ Ç ×ÀÑÎÀÑÈÌÅÒÐÈ×ÍÈÌÈ ÂÇÀ�ÌÎÄIßÌÈ
Â ÏÐÎÑÒÎÐI ÄÅ ÑIÒÒÅÐÀ

A. Äóâiðÿê
Iíñòèòóò ôiçèêè êîíäåíñîâàíèõ ñèñòåì ÍÀÍ Óêðà¨íè,

âóë. Ñâ¹íöiöüêîãî 1, Ëüâiâ, UA�79011, Óêðà¨íà

Ó ìåæàõ åëåêòðîäèíàìiêè Âiëåðà�Ôåéíìàíà ðåëÿòèâiñòñüêó ñèñòåìó âçà¹ìîäiéíèõ äâîõ çàðÿäiâ
îïèñàíî ðiçíèöåâî-äèôåðåíöiéíèìè ðiâíÿííÿìè ðóõó, ÿêi âèïëèâàþòü iç äi¨ Òåòðîäå�Ôîêêåðà. Ç
òàêîþ âàðiàöiéíîþ ïðîáëåìîþ âàæêî âïîðàòèñÿ, âîíà ïîãàíî ïðèñòîñîâàíà äî ãàìiëüòîíiçàöi¨ òà
êâàíòóâàííÿ.

Ùîá óíèêíóòè öèõ òðóäíîùiâ, Ñòàðóøêåâè÷, à òàêîæ Ðóää i Ãiëë çàìiíèëè â äi¨ ñèìåòðè÷íó
ôóíêöiþ �ðiíà ðiâíÿíü Ìàêñâåëëà íà ñïiçíåíó(àáî âèïåðåäíó). Öå äàëî çìîãó ïåðåôîðìóëþâàòè
äèíàìiêó â ëà ðàíæåâó, à òàêîæ i ãàìiëüòîíîâó ôîðìó, ÿêà âèÿâèëàñü iíòå ðîâàíîþ çàâäÿêè òî÷íié
ïóàíêàðå-iíâàðiàíòíîñòi. Ôiçè÷íî öÿ ìîäåëü îïèñó¹ òàêó ÷àñîàñèìåòðè÷íó âçà¹ìîäiþ äâîõ çàðÿäæå-
íèõ ÷àñòèíîê: âèïåðåäíå ïîëå ïåðøî¨ ÷àñòèíêè äi¹ íà äðóãó ÷àñòèíêó, ñïiçíåíå ïîëå äðóãî¨ ÷àñòèíêè
äi¹ íà ïåðøó ÷àñòèíêó, à ðåàêöi¹þ âèïðîìiíþâàííÿ çíåõòóâàíî. Ìîäåëü Ñòàðóøêåâè÷à�Ðóääà�Ãiëëà
áóëà óçàãàëüíåíà äëÿ iíøèõ ÷àñîàñèìåòðè÷íèõ âçà¹ìîäié (ñêàëÿðíî¨,  ðàâiòàöiéíî¨, óòðèìíî¨ òîùî),
à âiäïîâiäíi êâàíòîâi âåðñi¨ âèÿâèëè ôiçè÷íó çìiñòîâíiñòü.

Âàðiàöiéíèé ïðèíöèï Òåòðîäå�Ôîêêåðà ìîæíà óçàãàëüíèòè íà êðèâi ÷àñîïðîñòîðè, ÿêùî âiäîìà
âiäïîâiäíà ôóíêöiÿ �ðiíà. Äëÿ ïðîñòîðó äå Ñiòòåðà åëåêòðîìàãíåòíó ôóíêöiþ �ðiíà ïîáóäîâàëè
Ãi ó÷i i ×åîí , âîíà ñêëàäà¹òüñÿ ç äâîõ ÷àñòèí: ëîêàëüíî¨ ç íîñi¹ì íà ãiïåðïîâåðõíi ñâiòëîãî êî-
íóñà i íåëîêàëüíî¨ � ó éîãî îá'¹ìi. Ó öié ðîáîòi ïîêàçàíî, ùî âíåñîê íåëîêàëüíî¨ ÷àñòèíè â äiþ
ìîæíà çâåñòè äî åêâiâàëåíòíîãî ëîêàëüíîãî âíåñêó. Öå äàëî çìîãó ñâî¹þ ÷åðãîþ ñêîíñòðóþâàòè
äåñiòòåðiâñüêèé àíàëîã ìîäåëi Ñòàðóøêåâè÷à�Ðóääà�Ãiëëà òà óçàãàëüíèòè ¨¨ íà øèðîêèé êëàñ ÷à-
ñîñèìåòðè÷íèõ âçà¹ìîäié, âêëþ÷íî ç åëåêòðîìàãíåòíîþ, ñêàëÿðíîþ òà iíøèìè.

Çîáðàæåííÿ ïðîñòîðó äå Ñiòòåðà ÿê ãiïåðáîëî¨äà â 5-âèìiðíîìó ïðîñòîði Ìiíêîâñüêîãî äîïó-
ñêà¹ ôîðìóëþâàííÿ ÷àñîàñèìåòðè÷íèõ ìîäåëåé ó ìåæàõ ëà ðàíæåâîãî, à òàêîæ i ãàìiëüòîíîâîãî
ôîðìàëiçìó ç â'ÿçÿìè. Äèíàìiêà iíâàðiàíòíà ùîäî ãðóïè äå Ñiòòåðà O(1,4). Òîìó ¹ 10 iíòå ðàëiâ
ðóõó, çiáðàíèõ ó 5-âèìiðíié êîñîñèìåòðè÷íié ìàòðèöi ìîìåíòó iìïóëüñó J. Ðîçâ'ÿçîê ðiâíÿíü ðóõó
çàãàëüíî¨ ÷àñîàñèìåòðè÷íî¨ ìîäåëi ïîáóäîâàíî ó êâàäðàòóðàõ çà äîïîìîãîþ ïðî¹êöiéíèõ îïåðàòîðiâ,
ñêîíñòðóéîâàíèõ ó òåðìiíàõ ìàòðèöi J.

Êëþ÷îâi ñëîâà: ïðîñòið äå Ñiòòåðà, ÷àñîàñèìåòðè÷íi ìîäåëi, iíòå ðîâíi ñèñòåìè.
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