Journal of Physical Studies 26(4), Article 4402 [7 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.4402

LOW-TEMPERATURE TECHNOLOGY FOR OBTAINING TRANSPARENT ITO FILMS WITH HIGH CONDUCTIVITY

B. Turko1 , V. Vasiliev1, Y. Eliyashevskyy1 , М. Rudko1 , N. Shvets1, A. Vaskiv1, L. Hrytsak1 , V. Kapustianyk1 , А. Kostruba2 , S. Semak1 

1Ivan Franko National University of Lviv, 50, Drahomanov St., Lviv, UA–79005, Ukraine,
2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv,
50, Pekarska St., UA–79010, Lviv, Ukraine

Received 01 April 2022; in final form 18 August 2022; accepted 05 September 2022; published online 03 November 2022

The paper reports the effect of low-temperature annealing (up to 150°C) and light irradiation from a quartz mercury lamp (up to 20 min) on the structural, optical, and electrical properties of Indium tin oxide (ITO) films. 0.8 μm thick ITO films were obtained by RF magnetron sputtering of a commercial target on the optically transparent glass substrates in an argon atmosphere without heating. Information about the morphology of the ITO films' surface was obtained and the surface parameters were calculated using the method of atomic force microscopy.

It has been found that the low temperature annealing for one hour and short-term irradiation with a quartz mercury lamp lead to an increase in the average size of crystallites and root-mean-square (RMS) surface roughness, a decrease in the resistivity of ITO films as well as an increase in the optical transparency in the visible spectral range. After annealing the ITO film at 150°C, the average crystallite size and RMS roughness of the surface increased approximately three times, and after 20 min irradiation – approximately 1.6 times, respectively.

The lowest optical transparency in the visible spectral range among the studied experimental samples was found to be for the non-annealed and non-irradiated ITO films, whereas the highest – for the samples annealed at the highest temperature (150°C) and irradiated for 5 min with the light from the DRT-125 lamp. On the basis of the analysis of optical absorption spectra of ITO films, we detected an increase in their optical band gap from 3.59 eV for the unannealed film up to 3.66 eV with an increase in the annealing temperature of the samples up to 150°C. The resistivity of ITO films decreases with an increase in the annealing temperature up to 150°C and with an increase in the irradiation time with a light of the quartz mercury lamp up to 20 minutes.

These results may be useful in the engineering of electronic devices based on the materials of low thermal stability.

Key words: indium tin oxide, thin films, absorption spectra, reflection spectra, crystal structure, electrical resistance.

Full text


References
  1. H. Kawazoe et al., Nature 389, 939 (1997);
    Crossref
  2. G. Thomas, Nature 389, 907 (1997);
    Crossref
  3. B. Тurko, V. Kapustianyk, ZnO as Multifunctional Material for Nanoelectronics (Scholars' Press, Beau Bassin, 2020)
  4. Y. Shigesato, I. Yasui, D. C. Paine, JOM 47, 47 (1995);
    Crossref
  5. A. H. Sofi, M. A. Shah, K. Asokan, J. Electron. Mater. 47, 1344 (2018);
    Crossref
  6. J. Kim et al., Sci. Rep. 10, 12486 (2020);
    Crossref
  7. A. Hacini, A. H. Ali, N. N. Adnan, Opt. Mater. 120, 111411 (2021);
    Crossref
  8. K. P. Sibin et al., Sol. Energy Mater. Sol. Cells 145, 314 (2016);
    Crossref
  9. M. Rozati, T. Ganj, Renew. Energy 29, 1671 (2004);
    Crossref
  10. O. E. Oladigbo, O. Adedokun, Y. K. Sanusi, Int. J. Eng. Res. Appl. 2, 88 (2018);
    Crossref
  11. S. M. Joshi, R. A. Gerhardt, J. Mater. Sci. 48, 1465 (2013);
    Crossref
  12. J. A. Jeong, J. Lee, H. Kim, H.K. Kim, S.I. Na, Sol. Energy Mater. Sol. Cells 94, 1840 (2010);
    Crossref
  13. R. B. H. Tahar, Y. Ohya, T. Ban, Y. Takahashi, J. Appl. Phys. 83, 2631 (1998);
    Crossref
  14. Z. Chen et al., Opt. Express 26, 22123 (2018);
    Crossref
  15. M. R. Panasyuk et al., Funct. Mater. 12, 746 (2005); http://functmaterials.org.ua/contents/12-4/fm124-26.pdf
  16. B. Turko et al., Ukr. J. Phys. Opt. 22, 31 (2021);
    Crossref
  17. K.-S. Lee, Y. J. Mo, I. K. Park, T.-S. Pa Bull, Korean Chem. Soc. 41, 341 (2020);
    Crossref
  18. O. Malik, F. J. de la Hidalga-Wade, Optoelectronics — Advanced Device Structures (IntechOpen CY, Rijeka, 2017);
    Crossref
  19. M. Fikry, M. Mohie, M. Gamal, A. Ibrahim, G. Genidy, Opt. Quantum Electron. 53, 122 (2021);
    Crossref
  20. N. M. Khusayfan, M. M. El-Nahass, Adv. Condens. Matter Phys. 2013, 408182 (2013);
    Crossref
  21. J. Txintxurreta et al., Coatings 11, 92 (2021);
    Crossref
  22. N. Al-Dahoudi, M.A. Aegerter, J. Solgel Sci. Technol. 26, 693 (2003);
    Crossref
  23. S. Wiboonsak, K. Lohawet, B. A. T. Duong, P. Kumnorkaew, W. Koetniyom, Chiang Mai J. Sci. 45, 2178 (2018).
  24. E. R. Santos, Polimeros 26, 236 (2016);
    Crossref
  25. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A 68, 447 (1999);
    Crossref
  26. B.-S. Kim et al., J. Korean Phys. Soc. 50, 1858 (2007).
  27. S. Y. Kim, J.-L. Lee, K.-B. Kim, Y.-H. Tak J, Appl. Phys. 95, 2560 (2004);
    Crossref
  28. P. Destruel et al., Polym. Int. 55, 601 (2006);
    Crossref
  29. M. P. Aleksandrova, I. N. Cholakova, G. K. Bodurov, G. D. Kolev, G. H. Dobrikov, World Acad. Sci. Eng. Technol. 71, 1271 (2012);
    Crossref
  30. M. T. Bhatti, A. M. Rana, A. F. Khan, M. I. Ansari, Pak. J. Eng. Appl. Sci. 2, 570 (2002);
    Crossref
  31. J. B. Plumley, J. Mater. Sci. 53, 12949 (2018);
    Crossref
  32. L. Toporovska et al., Opt. Quantum Electron. 52, 21 (2020);
    Crossref
  33. G. Rietveld, IEEE Trans. Instrum. Meas. 52, 449 (2003);
    Crossref
  34. C. Guillen, J. Herrero, Vacuum 80, 616 (2006);
    Crossref
  35. S.-C. Her, C.-F. Chang, J. Appl. Biomater. Funct. Mater. 15, 170 (2017);
    Crossref
  36. N. M. Ahmed et al., Results Phys. 13, 102159 (2019);
    Crossref
  37. H. Kim et al., Appl. Phys. Lett. 74, 3444 (1999);
    Crossref