Journal of Physical Studies 26(4), Article 4601 [5 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.4601

FEATURES OF GROWING Si- AND Si1-xGex-SINGLE-CRYSTAL FILMS FROM SOLUTION-MELT BASED ON TIN

A. Sh. Razzokov{1} , A. S. Saidov{2} , V. V. Girzhon{3} , O. V. Smolyakov{3} 

{1}Urgench State University, 14, Kh. Alimdjan St., Urgench, 220100, Uzbekistan,
{2} Physical-Technical Institute NPO “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan,
2B, Ch. Aitmatov St., Tashkent, 100084, Uzbekistan,
{3}Zaporizhzhia National University, 66, Zhukovsky St., Zaporizhzhia, UA–69063, Ukraine
e-mail: a.razzokov777@gmail.com

Received 10 May 2022; in final form 05 July 2022; accepted 01 August 2022; published online 01 December 2022

The features of variband single-crystal structures based on Si$_{1-x}$Ge$_{x}$ $(0<x<1)$, which have been grown on Si(111) substrates from a tin solution-melt by liquid-phase epitaxy have been experimentally investigated and analyzed. A mechanism for the growth of such structures is proposed, and the reason for the greater thickness of the deposited films on the upper substrates for liquid-phase epitaxy is explained based on the Rayleigh-Taylor instability phenomenon. Optimal technological regimes for obtaining epitaxial layers and structures are predicted.

Key words: epitaxy, solution-melt, substrate, Rayleigh–Taylor instability, Brownian motion, diffusion.

Full text


References
  1. E. M. T. Fadaly et al., Nature 580, 205 (2020);
    Crossref
  2. M. Nakahara et al., MRS Adv. 4, 749 (2019);
    Crossref
  3. Md. Mahfuz Alam et al., Appl. Phys. Express 12, 081005 (2019);
    Crossref
  4. K. W. Jo, W. K. Kim, M. Takenaka, S. Takagi, Appl. Phys. Lett. 114, 062101 (2019);
    Crossref
  5. Sh. N. Usmonov, Appl. Sol. 52, 211 (2016);
    Crossref
  6. Ju. B. Bolhovitjanov, A. K. Gutakovskij, A. S. Derjabin, L. V. Sokolov, Fiz. Tehn. Poluprov. 51, 1426 (2017);
    Crossref
  7. P. I. Gaiduk, A. Nylandsted Larsen, J. Lundsgaard Hansen, Thin Solid Films 367, 120 (2000);
    Crossref
  8. D. L. Alfimova et al., Fiz. Tehn. Poluprov. 51, 1426 (2017);
    Crossref
  9. B. Sapaev, A. S. Saidov, Fiz. Tehn. Poluprov. 39, 1183 (2005).
  10. A. S. Saidov, Sh. N. Usmonov, K. A. Amonov, Sh. Niyazov, A. I. Khudayberdiyeva, Appl. Sol. 55, 265 (2019);
    Crossref
  11. A. S. Saidov, A. Sh. Razzokov, Crystallogr. Rep. 67, 301 (2022);
    Crossref
  12. S. P. Bocelev et al., Neorg. Mater. 13, 769 (1977).
  13. R. W. Olesinski, G. J. Abbaschian, Bull. Alloy Phase Diagr. 5, 273 (1984);
    Crossref
  14. R. W. Olesinski, G. J. Abbaschian, Bull. Alloy Phase Diagr. 5, 265 (1984);
    Crossref
  15. Je. Je. Shpil'rajn, V. A. Fomin, S. N. Skovorod'ko, G. F. Sokol, Issledovanie vjazkosti zhidkih metallov (Nauka, Moskva, 1983).
  16. G. Kaptay, Z. Metallkd. 96, 24 (2005);
    Crossref
  17. Je. A. Pastuhov, N. A. Vatolin, V. L. Lisin, V. M. Denisov, S. V. Kachin, Difrakcionnye issledovanija stroenyya vysokotemperaturnyh rasplavov (UrO RAN, Ekaterinburg, 2003).
  18. G. S. Hodakov, Ju. P. Judkin, Sedimentacionnyj analiz vysokodispersnyh system (Himija, Moskva, 1981).
  19. A. P. Gus'kov, Tech. Phys. Lett. 27, 480 (2001);
    Crossref
  20. Y. Jayalakshmi, D. Beysens, J. Phys. II France 5, 1067 (1995);
    Crossref