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The paper investigates the stability of small axisymmetric disturbances in a nonuniformly rotati-
ng viscous electrically conductive �uid taking into account galvanometric and thermo-magnetic
phenomena. In the local geometrical optics approximation, we obtained a dispersion equation taki-
ng into account the Hall, the Nernst, the Righi�Leduc e�ects and gradients of temperature ∇T0

and thermo-electromotive force coe�cient ∇α in constant magnetic �eld B0 and gravitational �eld
g. The growth rates of thermomagnetic instability (TMI) in a nonuniformly rotating electrically
conducting �uid without an external magnetic �eld (B0 = 0) are obtained for the case of �smooth�
(a weakly inhomogeneous medium) gradients (∇T0 and ∇α ). The regions of the development of
TMI are established depending on the pro�le of the angular velocity of rotation (Rossby number
Ro) and the radial wave number kR. The conditions under which the generation of a magnetic �eld
with sharp gradients of temperature and thermo-electromotive force coe�cient in the media with
low (σ → 0) and high (σ → ∞) conductivity are found. The regions of the development of the Hall
magnetorotational instability in an external magnetic �eld (B0 ̸= 0) are established depending on
the pro�le of the angular rotation velocity (Rossby number Ro) and the axial wavenumber kz. The
growth rates of TM instabilities for the propagation of perturbations with a wave vector k in the
radial direction k∥eR are obtained taking into account the Nernst e�ect in an external magnetic
�eld B0, the Righi�Leduc e�ect, the inhomogeneity of the equilibrium temperature and speci�c
thermopower, and the buoyancy force in a temperature-strati�ed medium.
Key words: thermoelectromotive force, generation of magnetic �elds, thermomagnetic instability,

Boussinesq approximation, nonuniformly rotating electrically conductive �uid.
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I. INTRODUCTION

It is well known that instabilities caused by the
temperature gradient play an important role in the
dynamics of electrically conductive media (plasma, liquid
metals, nano�uids, etc.). Thus, in an inhomogeneous
plasma with a temperature gradient, the so-called
thermomagnetic (TM) waves arise [1]. TM waves can
grow [2] in the presence of an external magnetic �-
eld. In addition, as shown in [3], TM waves are possi-
ble in many metals and semimetals at su�ciently low
temperatures. Even in a weak magnetic �eld, when the
Larmor frequency ΩL is much lower than the collision
frequency 1/τ , TM waves in a solid can grow [3]. The
instabilities of TM waves play an important role in the
generation of magnetic �elds. In the area of instabili-
ty development, the plasma can become turbulent, whi-
ch leads to an accelerated process of thermal energy
transfer were investigated. In [4], the hydrodynamic
instabilities of Alfven and thermomagnetic waves in an
inhomogeneous plasma in the presence of an external
magnetic �eld. It was shown in [4] that Alfven waves
in a strong magnetic �eld can be strongly damping due
to the anisotropic nature of thermal conductivity. Such
damping may be important for the processes occurring
in the solar corona.

Approaches to the generation of magnetic �elds using
TM e�ects can be found in earlier works. The idea of
generating the Earth's magnetic �eld by thermoelectric

currents was �rst developed in paper [5]. In [5], the
thermoelectromotive force was supposed to arise di-
rectly in the liquid core of the Earth due to the
temperature di�erence between ascending and descendi-
ng convective �ows. In this case, the resulting angular
momentum of the currents around the Earth's axis
must be asymmetric due to the prevailing in�uence
of the Coriolis force on the convective motions to gi-
ve a non-zero contribution. In another work [6] it was
shown that the thermoelectric power arises due to the
temperature di�erence between the cold mantle and
the hot core. Indeed, the temperature gradient appli-
ed to the connection of two conductors leads to the
occurrence of thermoelectric power (the Seebeck e�ect
or the thermoelectric e�ect [7])

ET =

T2∫
T1

αdT, (1)

where α is the thermo-electromotive force coe�cient. As
is known [7], the e�ect opposite to the Seebeck e�ect is
called the Peltier e�ect: when current passes through a
connection of two di�erent conductors, the heat is bei-
ng produced. On the basis of this e�ect, the work [8]
concluded that if the mantle and core thermocurrents
move oppositely, the Earth's crust cools down globally
and an ice age comes, but if they move unidirecti-
onally, then global warming comes. The calculations
carried out in [8] showed that the Earth's surface can
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warm up by not more than 10◦C. Compared to how
the human factor a�ects the Earth's warming, this is
an incomparably large value. The estimates made in [8]
show that the power of the Earth's thermocurrents is
enough to generate and maintain the Earth's magnetic
�eld.
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Fig. 1. The direction of the vectors B,∇T , and EN in the
Nernst e�ect is shown

The theory of the Earth's magnetic �eld created by
a thermoelectric current �owing in the Earth's core by
the Nernst e�ect was developed in [9]. The Nernst e�ect
is the e�ect of the appearance of an electric �eld EN ∼
[B×∇T ] in a conductor that is directed perpendicular
to the temperature gradient vector ∇T and the magnetic
induction vector B. For the geometry is shown in Fig. 1,
the electric �eld strength is

ENz = −NBy
dT

dx
, (2)

where N is the Nernst�Ettingshausen constant, which
depends on the properties of the conductor and can
take both positive and negative values. The Nernst e�ect
occurs as a result of the de�ection of a stream of charged
particles by the Lorentz force. A directed �ow of parti-
cles arises as a result of di�usion. The di�usion �ow is
always directed from the heated to the colder part of
the conductor regardless of the sign of the charge of the
particles. Naturally, the directions of the Lorentz force
for positive and negative particles are mutually opposi-
te. It leads to charge separation. Thermomagnetic e.m.f.
created by the Nernst e�ect is

EN =

∮
Eeff dl =

∮
N [B×∇T ] dl =

∮
[G×B] dl,

(3)
where G = −N∇T has the dimension of velocity [9].
The physical meaning of G will become clear after the
magnetic �eld induction equation is obtained. Using
Ohm's law taking into account the thermomagnetic �-
eld Eeff and Maxwell's equations, we obtain

∂B

∂t
= ∇× [G×B] + η∇2B, (4)

where η = 1/µσ is the coe�cient of magnetic viscosi-
ty, µ is the coe�cient of magnetic permeability. It can
be seen from equation (4) that the magnetic �eld is
strengthened by analogy with the e�ect of di�erential
rotation of an electrically conductive liquid [10], i. e.,
due to the stretching of �eld lines with a thermal dri-
ft rate G when they are �partially� frozen. In [9], the
thermomagnetic Reynolds number Retm = GL/η (L is
the characteristic scale of the �eld) was introduced, whi-
ch is a measure of the in�uence of the induction term
rot[G × B] over the di�usion term η∇2B. If the �rst
term on the right side (4) is less than the second one
for small Retm ≪ 1, the magnetic �eld decays on the
magnetic viscosity. When Retm ≫ 1, the second term on
the right side (4) is small compared to the �rst one, and
the magnetic �eld lines are carried away at the speed G.
Thus, there is an analogy with the ampli�cation of the
magnetic �eld by the di�erential (inhomogeneous) rotati-
on of an electrically conductive medium for which the
Reynolds number Reω = ω0L

2/η (ω0 is the characteri-
stic angular velocity of the medium rotation).
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Fig. 2. A diagram of the Birman�Schl�uter e�ect is shown.
The magnetic �eld is excited as a result of charge separation
due to non-collinear density gradients ∇ne and pressure ∇pe

of the plasma

In [11] it was shown that the magnetic �eld of the
Earth and planets can be created by thermoelectric
currents j = σ(E − α∇T ), where α is the speci�c
thermoelectromotive force that depends on both the
chemical composition of the medium and temperature.

Therefore, if the gradient of thermoelectromotive force
coe�cient ∇α is caused by the inhomogeneity of the
chemical composition of the medium, then the magnetic
�eld ∂B/∂t ≈ [∇T × ∇α] is excited due to the non-
parallelism of the vectors ∇T and ∇α. This e�ect is
similar to the Birman�Schl�uter e�ect [12] (see Fig. 2).
The main idea of this e�ect consists in the mechanism of
self-excitation of magnetic �elds by a thermoelectromoti-
ve force. As shown in [12], the inhomogeneity of the
chemical composition of a space object can lead to non-
parallelism of the electron pressure gradients ∇pe and
electron density ∇ne. As a result, the electric �eld E(i) =
(1/ene)∇pe arises, leading to the excitation of magnetic
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�elds ∂B/∂t ≈ ∇ × E(i) = − 1
n2
e
[∇ne × ∇pe]. Such a

mechanism is associated with the generation of initial
magnetic �elds, which at some point were absent. In [13],
it was assumed that the temperature gradient ∇T0 and
the gradient of thermoelectromotive force coe�cient ∇α
were parallel [∇T0 × ∇α] = 0; so it was concluded that
the thermoelectric power in the Earth's core was insigni-
�cant.
TM instability was discovered in a number of papers

[14�16], where the spontaneous generation of strong
magnetic �elds (∼ 102 T) was explained in various
experiments on the interaction of laser radiation with
matter in negligibly short times ∼ 10−9 s. A necessary
condition for the development of TM instability is the
inhomogeneity and non isothermality of the plasma. The
physical mechanism of this instability is as follows. Let
us consider a simpli�ed equation for the magnetic �eld:

∂B

∂t
=

c

ene
[∇Te ×∇ne]−

c

e
∇×

(
RT

ne

)
(5)

where Te, ne are the temperature and electron
concentration, RT is the thermal force [14]. Eq. (5)
shows that a magnetic �eld cannot arise if ∇Te∥∇ne.
However, weak temperature perturbations T1 acting in a
direction di�erent from the initial plasma inhomogenei-
ty (∇n0,∇T0) lead to the excitation of small �uctuations
of the magnetic �eld due to the Birman-Schl�uter e�ect
[12] ∂B1/∂t ≈ [∇T1 ×∇n0]. Magnetic �eld �uctuations
create an electron heat �ux ∼ [B1 ×∇T0] perpendicular
to the main gradient �uxes (∇T0). The Righi�Leduc
e�ect appears when a conductor with a temperature
gradient is placed in a magnetic �eld perpendicular to
the heat �ux. As a result, a secondary temperature di-
�erence arises, perpendicular to the magnetic �eld and
the heat �ux. The resulting heat �ux brings energy to
the area with elevated temperature. Thus, the additional
temperature gradient ∇T1 perpendicular to ∇n0 contri-
butes to the growth of the initial perturbations of the
magnetic �eld in accordance with Eq. (5).
Astrophysical applications of TMI are discussed in

detail in review [17], where an explanation of the
appearance of strong magnetic �elds in the cores of whi-
te dwarfs, binary systems, and neutron stars is given.
In a recent paper [17], the generation of a magnetic �-
eld by TMI in the surface layers (hot plasma) of massi-
ve stars was considered. Such generation is possible in
the upper layers of the atmosphere of hot stars, where
deviations from local thermodynamic equilibrium form
a region with an inverse temperature gradient. In [18],
the case of generation of only small-scale magnetic �-
elds with horizontal wavelengths λ = 2π/kx, much
smaller than the characteristic scale L (λ ≪ L) of
unperturbed quantities, was considered. In some recent
works [19�21], the TM instability in nonuniformly rotati-
ng plasma media (hot galactic disks, accretion disks) in
an external axial magnetic �eld was considered. These
papers present an analysis of the linear stability of
ionized hot disks with a temperature gradient and an
external axial magnetic �eld. As shown in [19�21], the

hydromagnetic and thermomagnetic e�ects associated
with the Nernst e�ect can lead to the ampli�cation of
waves and make disks unstable. The regimes under which
both thermomagnetic and magnetorotational instabiliti-
es (MRI) can operate were discussed. MRI arises when
a weak axial magnetic �eld destabilizes the azimuthal
di�erential rotation of the plasma, and when the condi-
tion dΩ2/dR < 0 for the case of a nondissipative plasma
is satis�ed [22]. Since this condition is also satis�ed for
Keplerian �ows Ω ∼ R−3/2, the MRI is the most likely
source of turbulence in accretion disks [23]. It was noted
in [21] that even in the absence of MRI, TM instability
due to the Nernst e�ect is a good candidate for ensuring
the onset of turbulence in disks.
In contrast to [19�21], where the approximation of

non-dissipative magnetohydrodynamics was used, we
considered TM e�ects in a nonuniformly rotating vi-
scous electrically conductive �uid. In this work, we
obtained some new e�ects that were not investigated
in [19�22], i. e., the e�ects taking into account the
inhomogeneity of the equilibrium temperature and the
speci�c thermoelectromotive force coe�cient, the Righi�
Leduc e�ect, and the gravitational force. Furthermore,
unlike papers [19�21], in this work we gave a rigorous
justi�cation of the local method of geometric optics for
λ ≪ L.
The results obtained in this work can �nd application

in di�erent problems of the magnetic geodynamo, as well
as in laboratory studies into rotating magnetic convecti-
on taking into account thermomagnetic phenomena.

II. STATEMENT OF THE PROBLEM AND
EQUATIONS OF EVOLUTION OF SMALL

PERTURBATIONS

Let us suppose that a nonuniformly rotating electri-
cally conducting �uid (for example, liquid metal or
plasma) is in a constant gravitational g and magnetic
�eld B0 at a constant vertical temperature gradient
∇T0 = const = −Ae (A > 0 is a constant gradient, e is a
unit vector directed vertically upward along the axis Z)
and a gradient of the thermo-electromotive force coe�ci-
ent ∇α ∥ e. In this model, we assume that the gradient of
the thermo-electromotive force coe�cient ∇α is associ-
ated with the inhomogeneity of the chemical composition
of the conducting �uid. It is known that expressions for
Ohm's law and heat �ux q in the presence of a magnetic
�eldB and a temperature gradient∇T are modi�ed taki-
ng into account thermomagnetic phenomena [24]:

E+ [V×B] =
j

σ
+ α∇T +R[B× j] +N [B×∇T ] (6)

q− φj = −κ∇T + αT j+NT [B× j] + L[B×∇T ], (7)

where R,N ,L are the Hall, Nernst, and Righi�Leduc
coe�cients, respectively; φ is the electrical potential.
In expressions (6)�(7), we neglected the anisotropy of
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the coe�cients of electrical conductivity σ∥ ≈ σ⊥ =
σ, thermal conductivity κ∥ ≈ κ⊥ = κ, and thermo-
electromotive force α∥ ≈ α⊥ = α due to the weakness
of the external magnetic �eld because the parameter is
small β = B2

0/2µP0 ≪ 1 ( P0 is the stationary pressure
of the �uid, µ is the coe�cient of magnetic permeability).
By applying the operation (∇×) to Ohm's law (6), we

obtain the equation for the magnetic �eld induction B.
After substitution of expression (7) into the heat balance
equation

ρ0cp
dT

dt
= −∇q,

let us write the equations of magnetohydrodynamics for
a viscous incompressible �uid in the Boussinesq approxi-
mation taking into account thermomagnetic phenomena:

∂V

∂t
+ (V · ∇)V = − 1

ρ0
∇(P +

B2

2µ
) +

1

ρ0µ
(B · ∇)B+ egβTT + ν∇2V (8)

∂B

∂t
+ (V · ∇)B− (B · ∇)V = η∇2B− [∇α×∇T ]− R

µ
∇× [B×∇×B]−N∇× [B×∇T ] (9)

∂T

∂t
+ (V · ∇)T = − 1

ρ0cp
∇
(
−κ∇T +

j2

σ
+ αT j+NT [B× j] + L[B×∇T ]

)
(10)

∇B = 0, ∇V = 0, (11)

where βT is the coe�cient of thermal expansion, ρ0 =
const is the density of the medium, ν is the coe�ci-
ent of kinematic viscosity, η = 1/µσ is the coe�cient
of magnetic viscosity. Eq. (9) contains a source of exci-
tation of a magnetic �eld [∇α×∇T ], which is an analog
of the �battery Birmann-Schluter e�ect in the plasma.
The drift of the lines of force of the magnetic �eld in Eq.
(9) is associated not only with the movement of the �uid
V but also with the heat �ux where the rate of thermal
drift: VT = N∇T . The drift of the magnetic �eld due to
the Nernst e�ect contributes to its penetration to a large
area of the medium. Let us estimate the excited magnetic
�eld in the stationary regime without taking into account
the drift of the �eld and the Hall e�ect. Then from Eq.
(9) for the ϕ-component of the (toroidal) magnetic �-
eld, we obtain: Bmax

ϕ ≈ αTµσ(LB/Lα), where LB is
the characteristic scale of the excited magnetic �eld, Lα

is the characteristic scale of the medium inhomogenei-
ty. Replacing the values of the parameters for the �uid
Earth's core: αT ∼= 10−2V (at temperature T ∼= 1000K),
µ = 4π · 10−7 V·s/A·m, σ = 3 · 105 (Ohm·m)−1 [25] with
the ratio of scales (LB/Lα) = 102, we obtain an esti-
mated value of the toroidal magnetic �eld of the Earth's
core Bmax

ϕ
∼= 10−1T, which coincides in the order of

magnitude with the data from monograph [25].

Let us represent all quantities in Eqs. (8)�(11) as the
sum of the stationary and perturbed parts V = V0 + u,
B = B0 + b, P = P0 + p, T = T0 + θ. Here we assume
that the stationary rotation velocity of the �uid has an
azimuthal direction V0 = RΩ(R)eϕ, where the angular
velocity of rotation Ω(R) is directed vertically upward
along the axis OZ. We simulate the stationary �ow of a
nonuniformly rotating �uid by the Couette�Taylor �ow
enclosed between two rotating cylinders with an angular

velocity of rotation Ω(R) (see Fig. 3):

Ω(R) =
Ω2R

2
2 − Ω1R

2
1

R2
2 −R2

1

+
(Ω1 − Ω2)R

2
1R

2
2

R2(R2
2 −R2

1)
,

where R1 = Rin, R2 = Rout,Ω1 = Ωin,Ω2 = Ωout are the
radius and angular velocity of rotation of the inner and
outer cylinders, respectively. The constant magnetic �eld
B0∥Ω is also directed along the axis OZ: B0 = (0, 0, B0).
Further, the magnetic �eld B0 will be called axial in the
cylindrical coordinate system (R,ϕ, z). The stationary
state of the system of equations (8)�(11) is described by
the following equations

Ω2R =
1

ρ0

dP0

dR
,

1

ρ0

dP0

dz
= gβTT0,

d2T0

dz2
= 0, (12)

B0
d

dz
Ω(R)R = [∇α×∇T0]ϕ = 0. (13)

Equations (12) shows that centrifugal equilibrium is
established in the radial direction and hydrostatic equi-
librium in the vertical direction. From Eq. (13) it
follows that the thermo-electromotive coe�cient α has a
constant value in the radial direction: dα/dR = 0; then
α can have a dependence on the coordinates (ϕ, z). If we
consider the distribution of the chemical composition of
the medium to be axisymmetric, then the condition is
satis�ed: dα/dz ̸= 0. In this case, the condition of colli-
nearity of vectors is also satis�ed [∇α × ∇T0] = 0, and
the gradients ∇α and ∇T0 can be both parallel to each
other ∇α ↑↑ ∇T0 and antiparallel: ∇α ↑↓ ∇T0.
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Fig. 3. The geometry of the problem: the nonuniform rotati-
on is modeled by the Couette-Taylor �ow enclosed between
two concentric cylinders of radii Rin and Rout , which rotate
at velocities Ωin and Ωout. The angular velocity of rotati-
on Ω(R) and the external magnetic �eld B0 are directed
vertically upward along the axis OZ. Vertical gradients of
temperature ∇T0 and thermo-electromotive force coe�cient

∇α are antiparallel to each other

Then, we consider the evolution of small perturbati-
ons (u,b, p, θ) against the background of a stationary
state Eqs. (12)�(13) to clarify the physical mechanism
of the generation of TM-waves and instabilities in a
nonuniformly rotating magnetized �uid. As long as the

medium is strati�ed by temperature and rotates at an
inhomogeneous angular velocity, a justi�cation for the
applicability of the local geometrical optics approximati-
on should be provided.

III. LOCAL GEOMETRICAL OPTICS
APPROXIMATION AND DISPERSION

EQUATION

Let us consider the limit of a weakly inhomogeneous
medium when the spatial scale of the medium
inhomogeneity (Lα, LT ) in the z-coordinate is much
larger than the characteristic scale of perturbations
(wavelength) λ: L ≫ λ. The approximation of geometric
optics is ful�lled in the short-wavelength limit (L ≫ λ),
and, therefore, all perturbed quantities in the formulas
(8)-(11) can be represented by a dependence of the form
exp(ikr+γt) , where k is the wave vector, γ is the ampli-
�cation (or damping) factor of the perturbations [26].
Following papers [27, 28], we present a more rigorous

justi�cation of the short-wave approximation using the
asymptotic WKB method. For this purpose, we represent
the solutions of the linearized system of equations (8)�
(11) in the form of an asymptotic series in the small
parameter ε ( 0 < ε ≪ 1):

( u
b
p
θ

)
= eiΦ(x,t)/ϵ


u(0)(x, t) + ϵu(1)(x, t) + · · ·
b(0)(x, t) + ϵb(1)(x, t) + · · ·
θ(0)(x, t) + ϵθ(1)(x, t) + · · ·
p(0)(x, t) + ϵp(1)(x, t) + · · ·

 , (14)

where x = (R,ϕ, z) are the cylindrical coordinates recorded in the vector form; Φ(x, t) is a scalar function, called the
phase of the perturbed quantities oscillations; u(n), b(n), θ(n), p(n) (n = 0, 1, . . .) are the amplitudes of disturbances.
Using the WKB representation (14), the di�usion term in the equations (8)�(11) is written as

∇2

( u
b
θ

)
= eiΦ(x,t)/ϵ

(
∇2 + i

2

ϵ
(∇Φ · ∇) +

i

ϵ
∇2Φ− (∇Φ)2

ϵ2

) u(0)(x, t) + ϵu(1)(x, t) + · · ·
b(0)(x, t) + ϵb(1)(x, t) + · · ·
θ(0)(x, t) + ϵθ(1)(x, t) + · · ·

 . (15)

It is clear that the WKB ansatz (14) quickly dies out
because of di�usion unless ε has a quadratic dependence
on di�usion coe�cients. We rescale the dimensional di-
�usivities (ν, η, χ) as

ν = ϵ2ν̃, η = ϵ2η̃, χ = ϵ2χ̃.

Similar reasoning leads to the rescaling of the coe�cients

α = ϵα̃, R = ϵ2R̃, N = ϵ2Ñ , uT = ϵũT .

Substituting expansions (14) into the system of equati-
ons (8)�(11), we obtain the system of local di�erential
equations for ε−1 and ε0 orders.

According to papers [27, 28], the basic equations are
the equations for the order ϵ0 that have the form

∂u(0)

∂t
+ (V0 · ∇)u(0) + Uu(0) + ν̃(∇Φ)2u(0)

= − i∇Φ

ρ0

(
p(1) +

B0 · b(1)

µ

)

+
1

ρ0µ
(B0 · ∇)b(0) + egβT θ

(0),
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∂b(0)

∂t
+ (V0 · ∇)b(0) + i(ũT · ∇Φ)b(0) − Ub(0) + η̃(∇Φ)2b(0) (16)

= (B0 · ∇)u(0) − iα̃[Kα ×∇Φ]θ(0) − R
µ
(B0 · ∇Φ)(∇Φ× b(0))

+N (B0(∇Φ)2θ(0) − θ(0)(B0 · ∇Φ)∇Φ)
∂θ(0)

∂t
+ (V0 · ∇)θ(0) −KTT0u

(0)
z + χ̃(∇Φ)2θ(0)

= χ∧T0KT · ∇ × b(0) + is
′
(∇Φ× b(0)) +

ÑT0

ρ0cpµ
(∇Φ)2B0 · b(0)

where the matrix of the non-uniform rotation U is

U =

 0 −Ω 0
Ω +R dΩ

dR 0 0
0 0 0

 .

The perturbations u(0), b(0), θ(0), p(1) in Eq. (16) can be represented in the form of plane waves
u(0)

b(0)

θ(0)

p(1)

 =

 U
H
Θ
P

 exp(γt+ ikRR+ ikzz). (17)

After substituting (17) into the system of equations (16), we obtain the dispersion equation:∣∣∣∣∣∣
v11 v12 v13
v21 v22 v23
v31 v32 v33

∣∣∣∣∣∣ = v11v22v33 + v21v32v13 + v12v23v31 − v13v22v31 − v32v23v11 − v21v12v33 = 0. (18)

Here the tensor components vij are as follows:

v11 = γ + ων + a3m1 + a4n1 + a5l1, v12 = a1 + a3m2 + a4n2 + a5l2,

v13 = a2 + a3m3 + a4n3 + a5l3,

v21 = a6 + a7m1, v22 = γ + ων + a7m2, v23 = a7m3,

v31 = a10m1 + a11n1, v32 = a9 + a10m2 + a11n2, v33 = a8 + a10m3 + a11n3,

where

m1 = −b4b6
c1

, m2 =
b8
c1

(γ + iωT + ωη), m3 = −c2
c1

,

c1 = b6

(
b1 −

b2b11
b10

)
−
(
b5 −

b7b11
b10

)
(γ + iωT + ωη),

c2 = b6

(
b3 −

b2b12
b10

)
−
(
b9 −

b7b12
b10

)
(γ + iωT + ωη),

n1 = −b11
b10

m1, n2 = −b11
b10

m2, n3 = −b11
b10

m3 −
b12
b10

,

l1 =

(
b5 −

b7b11
b10

)
b4
c1

, l2 = −
(
b1 −

b2b11
b10

)
b8
c1

,

l3 =
1

c1

[(
b3 −

b2b12
b10

)(
b5 −

b7b11
b10

)
−
(
b9 −

b7b12
b10

)(
b1 −

b2b11
b10

)]
.
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Further, we give expressions for the coe�cients a1, a2, . . . a11 and b1, b2, . . . b12:

a1 = −2Ω
k2z
k2

, a2 = gβT
kRkz
k2

KTT0

γ + ωχ
, a3 = gβT

kRkz
k2

ikRs

γ + ωχ
,

a4 = gβT
kRkz
k2

ωNV 2
A

cpB0(γ + ωχ)
,

a5 = − i(k ·B0)

ρ0µ
, a6 = 2Ω(1 + Ro), a7 = − i(k ·B0)

ρ0µ
,

a8 = γ + ων − gβT
k2R
k2

KTT0

γ + ωχ
,

a9 = 2Ω
kRkz
k2

, a10 = −gβT
ik3Rs

k2(γ + ωχ)
, a11 = −gβT

k2R
k2

ωNV 2
A

cpB0(γ + ωχ)
− i(k ·B0)

ρ0µ
,

b1 =
ik2RsN (k ·B0)

γ + ωχ
− R

µ
(k ·B0)kz, b2 = N ωNV 2

A

cpB0(γ + ωχ)
kR(k ·B0),

b3 = N (k ·B0)
kRKTT0

γ + ωχ
,

b4 = −i(k ·B0), b5 = (γ + iωT + ωη)−
αsKαk

2
R

γ + ωχ
, b6 = −

(
2ΩRo− R

µ
kz(k ·B0)

)
,

b7 =
iαKαkR
γ + ωχ

ωNV 2
A

cpB0
− R

µ
kR(k ·B0), b8 = −i(k ·B0), b9 =

iαT0KαKT kR
γ + ωχ

,

b10 = (γ + iωT + ωη)−
NωNV 2

AkR
cp(γ + ωχ)

, b11 =
R
µ
kR(k ·B0)−

iNB0sK
3
R

γ + ωχ
,

b12 = −
(
i(k ·B0) +

NB0KTT0k
2
R

γ + ωχ

)
.

Thus, the problem of stability of a nonuniformly rotat-
ing electrically conductive �uid with collinear gradients
of temperature and thermo-electromotive force coe�ci-
ent leads to the problem of �nding eigenvalues γ from Eq.
(18). Equation (18) is a rather cumbersome expression in
its expanded form. Therefore, we will analyze this equati-
on in some limiting cases. Without taking into account
TM e�ects, Eq. (18) completely coincides with the results
of the paper [29].

IV. ANALYSIS OF THE DISPERSION
EQUATION FOR THE CASE B0 = 0

In this section, we investigate the possibility of
spontaneous generation of a magnetic �eld by TMI in
an inhomogeneous electrically conducting �uid without
an external magnetic �eld B0 = 0. Let us consider the
inhomogeneity of an electrically conductive medium wi-
thin two limits: 1) a weakly inhomogeneous medium,
when the values of T0(z) and α(z) change smoothly in
z, where the geometric optics approximation is locally
ful�lled; and 2) a strongly inhomogeneous medium with
a jump-like dependence on T0(z) and α(z), i. e., when the
geometric optics approximation is not applicable.

A. Generation of magnetic �elds in a weakly
inhomogeneous medium (a short-wavelength limit

L ≫ λ)

Let us consider the in�uence of TM e�ects on the
stability of small perturbations in a nonuniformly rotati-
ng electrically conducting �uid without an external
magnetic �eldB0 = 0. In this case, the dispersion equati-
on (18) is simpli�ed

[
(γ + ων)

2 + κ2ξ2
]
[(γ + iωT + ωη)(γ + ωχ)− ωTM ]

−k2R
k2

ω2
V B(γ + iωT + ωη)(γ + ων) = 0, (19)

where ωV B =
√
gβTKTT0 is the Visel-Brent frequency

depending on the temperature gradient, κ = 2Ω
√
1 + Ro

is the epicyclic frequency, ξ = kz/k, ωTM =
√

αsk2RKα

is the thermomagnetic frequency. Under the condition
of B0 = 0, we exclude the occurrence of MRI, since a
necessary criterion for its development is the presence of
a weak external magnetic �eld in a nonuniformly rotating
�uid.
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We represent the dispersion equation (19) in the form of a fourth-order polynomial with complex coe�cients :

P(γ) ≡ A0γ
4 + (A1 + iB1)γ

3 + (A2 + iB2)γ
2 + (A3 + iB3)γ +A4 + iB4 = 0, (20)

where

A0 = 1,

A1 = 2ων + ωχ + ωη, B1 = ωT ,

A2 = ωηωχ + 2ων(ωη + ωχ) + ω2
ν + κ2ξ2 − ω2

TM − ω2
V B

k2R
k2

, B2 = ωT (2ων + ωχ),

A3 = 2ωνωηωχ + (ω2
ν + κ2ξ2)(ωχ + ωη)− 2ω2

TMων − ω2
V B

k2R
k2

(ων + ωη), B3 = ωT

[
2ωνωχ + ω2

ν + κ2ξ2 − ω2
V B

k2R
k2

]
,

A4 = (ωηωχ − ω2
TM )(ω2

ν + κ2ξ2)− ω2
V B

k2R
k2

ωνωη, B4 = ωT

[
ωχ(ω

2
ν + κ2ξ2)− ω2

V B

k2R
k2

ων

]
.

The analytical solution of Eq. (20) is not possible.
However, the conclusion about the stability of the di-
sturbances described by the equation (20) with complex
coe�cients can be made by analyzing its coe�cients usi-
ng the Bilgarz-Frank criterion [28].
The imaginary part of the coe�cients in Eq. (20) is

associated with the Nernst e�ect, due to which there
is a thermal drift of disturbances of speed ωT /kz =
−NdT0/dz. If the Nernst coe�cient is smallN → 0, then
the classical Rauss�Hurwitz stability criterion [30] appli-
es to the dispersion equation (20) but already with real
coe�cients. Applying this criterion, we �nd a necessary
and su�cient condition for stability according to axi-
symmetric perturbations

Ro > −
(ω2

TM − ωηωχ)(ω
2
ν + 4Ω2ξ2) + ω2

V B
k2
R

k2 ωνωη

4Ω2ξ2(ω2
TM − ωηωχ)

= −1− ω2
ν

4Ω2ξ2
−

ω2
V B

k2
R

k2 ωνωη

4Ω2ξ2(ω2
TM − ωηωχ)

= Rocr, (21)

where the critical Rossby number Rocr corresponds to
the pro�le of inhomogeneous rotation for the neutral
state at the stability boundary.
It can be seen from Eq. (21) that for a non-viscous

medium ν = 0, the critical Rossby number coincides
with the Rayleigh rotation pro�le Rocr = −1 [31]. If
the temperature is constant T0 = const (ωV B = 0) and
ν ̸= 0, then we obtain the well-known stability criteri-
on for the �non-magnetized� Couette �ow [33]. In the
general case, the formula (21) shows that the critical
rotation pro�le can have both positive Rocr > 0 and
negative Rocr < 0 values depending on the direction of
the temperature gradient.
Let us consider the question of the development of

TMI at Rossby numbers using the inequality (21) in di-
mensionless variables:

Ro > −1− a6

π2Ta
− k2Ra

π2Ta(f − 1)
= Rocr (22)

In Eq. (22) we have performed the transition from
dimensional wave numbers to dimensionless: k2 →
a2/L2, k2R → k2/L2, k2z → π2/L2. Dimensionless
parameters are the Taylor number Ta = 4Ω2L4/ν2,
the Rayleigh number Ra = gβTKTT0L

4/νχ on the
characteristic scale of the inhomogeneity L, the generati-
on parameter

f =
ω2
TM

ωηωχ
=

α2T0k
2
R

ρ0cpµχηk4

[(
1 +

µL
α

)
KTKα −K2

α

]
.

Let us �nd out how the area of development of TMI
in the plane (k,Ro) changes for di�erent values of the
generation parameter f at �xed numbers Ta = 2000
and Ra = 5000. Figures 4,a�b show the area of the
development of TMI for negative values of the generati-
on parameters: f = −2 and f = −1/2, respectively.
Negative values f are possible with small temperature
gradients Kα > KT (1 + µL/α) or with parallel gradi-
ents Kα∥KT . From Fig. 4,b it can be seen that with
an increase in the generation parameter, the instabili-
ty region exists for both negative (Ro < 0) and posi-
tive (Ro > 0) Rossby numbers. Figure 4,c shows the
case f = 0 that is possible with a uniform spatial di-
stribution of the speci�c thermoelectric power: Kα = 0.
The instability region shifts here towards an increase
in positive Rossby numbers. On the contrary, when
the generation parameter f > 1, the instability region
shifts towards an increase in positive Rossby numbers
(see Fig. 4,d). Obviously, such a situation is possible at
large temperature gradients: KT > Kα.
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Fig. 4. The plots show the region of the TMI without an
external magnetic �eld B0 = 0 for Ta = 2000, Ra = 5000
and the generation parameters: a) f = −2; b)f = −1/2; c)

f = 0; d) f = 2

It can be noted that the equation (19) gives known
results in some limiting cases.

1. Let us consider the case of a non-conductive medi-
um homogeneous in temperature (KT = 0) and
chemical composition (Kα = 0), without dissipati-
on, and nonuniformly rotating medium at angular
velocity Ω = Ω(R). Then from Eq. (19) we get:

γ2 + ξ2κ2 = 0. (23)

From the above, it follows that the necessary and
su�cient condition for the stability of the rotati-
ng shear �ow [31] is the reality of the epicyclic
frequency κ2 > 0 or the realization of the inequali-
ty Ro > −1. For a �ow with a Rossby pro�le
Ro = −1, the axisymmetric disturbances in this
extreme case are neutrally stable γ = 0.

2. From Eq. (19), taking into account the temperature
strati�cation (KT ̸= 0) and ν = χ = η = 0, we �nd

γ2 + ξ2κ2 − ω2
V B

k2R
k2

= 0 (24)

It can be seen from Eq. (23) that the temperature
strati�cation can both stabilize (ω2

V B < 0) and
destabilize (ω2

V B > 0) the stable Couette �ow
(κ2 > 0), depending on the direction of the
temperature gradient.

3. If the rotation and thermomagnetic e�ects are
absent, then we obtain the dispersion equation for
a non-conducting medium from Eq. (19):

γ2 + γ(ων + ωχ) + ωνωχ − ω2
V B(1− ξ2) = 0 (25)

When passing to dimensionless variables γ → ν
h2 γ,

kRh → k, kzh → πn in the equation (25), we obtain
the Rayleigh equation describing free convection in
a liquid layer with a thickness h. Its solution looks
like [32]:

γn = − (1 + Pr)

2Pr
(k2 + π2n2) (26)

±

√(
(Pr−1)

2Pr

)2

(k2 + π2n2)2 +
Rak2

Pr(k2 + π2n2)
,

where n is an integer characterizing the vertical
scale. The magnitude of the instability growth rate
γn depends on the dimensionless Rayleigh Ra =
gβAL4/νχ, Prandtl Pr = ν/χ numbers, and the

wavenumber K =
√
k2 + π2n2. The condition for

the stability of small perturbations is the positi-
veness of the radical expression, which corresponds
to the Rayleigh numbers Ra > 0.

Let us analyze the dispersion equation (19) for the case
of very small oscillations of a �uid element in a strati�ed
medium ωV B → 0, which is possible if the change in the
density of the medium does not depend on temperature
(the Boussinesq approximation is violated), or with a
small Archimedean force g → 0, for example, under
conditions of weightlessness. As a result, the equation
(19) splits into two equations. The �rst equation generali-
zes the result (23) taking into account the viscosity of the
medium:

γ + ων = ±
√
−ξ2κ2.

We see that the perturbations are damping at κ2 > 0.
Therefore, the perturbations decay at the decrement
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γ = −νk2 for a Rayleigh pro�le Ro = −1, taking into
account the hydrodynamic viscosity. The perturbations
can be unstable for negative Rossby numbers Ro < −1,
for example. Then, for the pro�le of nonuniform rotation
Ro = −2, the criterion for the development of instability

has the form:

2Ωkz
νk3

> 1.

The second dispersion equation contains
thermomagnetic e�ects:

γ2 + γ

(
ωη + ωχ + iωN

kzKT

k2

)
+ ωηωχ − ω2

TM + iωNωχ
kzKT

k2
= 0 (27)

We represent the solutions of the quadratic equation (27) in the form where the expressions for the growth rate
Γ1,2 and frequency ω01,02 of TM perturbations are

Γ1 ≈ − α2T0k
2
R

ρ0cpµχk2(1 + P̃m)

[(
µL
α

+ 1

)
KTKα −K2

α

]
− (χ+ P̃m(η + χ))k2

1 + P̃m
, ω01 ≈ − N P̃m

1 + P̃m
kz

dT0

dz
, (28)

Γ2 ≈ α2T0k
2
R

ρ0cpµχk2(1 + P̃m)

[(
µL
α

+ 1

)
KTKα −K2

α

]
− ηk2

1 + P̃m
, ω02 ≈ −

Nkz
dT0

dz

1 + P̃m
, (29)

respectively. The presence of an oscillating frequency
of oscillations in Eqs. (28)�(29) shows that small
perturbations can move in a conducting medium. As can
be seen from Eqs. (28)�(29), the generation of a magnetic
�eld (GMF) can be caused only by the inhomogeneity of
the Seebeck coe�cient Kα ̸= 0 (see (28) at KT = 0).
The Righi�Leduc e�ect makes a signi�cant contributi-
on to the TMI if the condition is met: µL/α ≫ 1. For
the parameters of the Earth's core, this condition gives
a numerical estimate: L ≫ 8 A·m/s·K. In practice, the
Righi�Leduc coe�cient S [33] is used, which is connected
with L the as L = κ|S|. If we take the thermal conducti-
vity coe�cient, for example, for iron in a molten state
κ = 39W/m· K [33], then the value should be |S| ≫ 0.2
m2/V·s.
Let us de�ne the criteria for the development of TMI,

and as a consequence of the GMF, in two cases: a)
a low-conductive medium, when the magneto-thermal

Prandtl number is large P̃m = η/χ ≫ 1, and b) a

highly conductive medium when P̃m = η/χ ≪ 1 is
small. The case a) is very well ful�lled for the parameters
of the Earth's core. Taking the density of molten iron
ρ0 ≈ 7 ·103kg/m3, speci�c heat cp ≈ 835 J/kg·K [25], we
�nd the value of the thermal di�usivity χ = κ/ρ0cp ≈
6.7 ·10−6 m2/s, which turns out to be much smaller than
the coe�cient of magnetic viscosity η = 1/µσ ≈ 2.65
m2/s: η ≫ χ. Then from the expressions (28)�(29) we
have:

Γ
(l)
1 ≈ α2T0k

2
R

ρ0cpµηk2

[
K2

α −
(
µL
α

+ 1

)
KTKα

]
− ηk2,

ω01 ≈ −Nkz
dT0

dz
, (30)

Γ
(l)
2 ≈ α2T0k

2
R

ρ0cpµηk2

[(
µL
α

+ 1

)
KTKα −K2

α

]
− χk2,

ω02 ≈ −Nkz

P̃m

dT0

dz
(31)

If the temperature gradient is small KT ≪ Kα or
equal to zero KT = 0, then the second root of the

quadratic equation (27) is negative Γ
(l)
2 < 0, i. e., the TM

perturbations disappear. Therefore, consider the criteria

of feasibility Γ
(l)
1 > 0:

α2T0

ρ0cpµη2
>

k4

k2RK
2
α

∼=
(
Lα

λ

)2

(32)

For the parameters of the Earth's core the inequality (32)
does not hold since the left-hand side (32) turns out to
be much smaller than the right-hand side for a weakly
inhomogeneous medium Lα ≫ λ:

10−9 > (Lα/λ)
2.

If the gradients of temperature and thermo-electromotive
force coe�cient are approximately equal KT ≈ Kα or if
KT ≫ Kα and µL/α ≫ 1 are satis�ed, then the GMF
can arise due to the Righi�Leduc e�ect (see the formula
(31))

αT0

η
|S| >

(
LTLα

λ2

)
(33)

Substituting the values of the parameters (α, η, T0) for
the liquid Earth's core into (33), we obtain an esti-
mate for the coe�cient S when the GMF is possible:
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|S| > 2.65 · 102(LTLα/λ
2). It should be noted that

for a weakly inhomogeneous medium Lα, LT ≫ λ, the
generation of a magnetic �eld by the TMI is possible
only at very high values of S. Thus, from the results
(32)-(33) it follows that the GMF is not e�cient in a
weakly inhomogeneous weakly conductive �uid with the
TMI. The damping of the TM perturbations is associ-
ated with the thermal and electrical conductivity of the
medium. Similar conclusions hold for parallel gradients of
temperature and speci�c thermoelectric power: KT ∥Kα.
Let consider case b) of a highly conductive medium

P̃m = η/χ ≪ 1. Then from Eqs. (28)�(29) we �nd:

Γ
(h)
1 ≈ α2T0k

2
R

ρ0cpµχk2

[
K2

α −
(
µL
α

+ 1

)
KTKα

]
− χk2,

ω01 ≈ −N P̃mkz
dT0

dz
, (34)

Γ
(h)
2 ≈ α2T0k

2
R

ρ0cpµχk2

[(
µL
α

+ 1

)
KTKα −K2

α

]
− ηk2,

ω02 ≈ −Nkz
dT0

dz
. (35)

If the temperature gradient is small KT ≪ Kα or

KT = 0, then the second root Γ
(h)
2 < 0 is negative (a

damped solution). Therefore, we will be interested in the

instability criterion Γ
(h)
1 > 0:

α2T0

ρ0cpµχ2
>

k4

k2RK
2
α

∼=
(
Lα

λ

)2

(36)

Since the value of the thermal di�usivity χ is large, the
ful�llment of the criterion (36) is unlikely for a weakly
inhomogeneous medium Lα ≫ λ. If we assume KT ≫
Kα or KT ≈ Kα, then we have the damped solution

Γ
(h)
1 < 0. The instability criterion takes the form (Γ

(h)
2 >

0):

|S| > η

αT0

(
LTLα

λ2

)
(37)

As can be seen from Eq. (37), magnetic �elds are most
e�ciently generated in the case of the high conductivity
of the medium due to the development of TMI.

V. ANALYSIS OF THE DISPERSION
EQUATION FOR THE CASE B0 ̸= 0

Let us begin the analysis of the dispersion equation
(18) for the case when there is an external magnetic �-
eld B0 ̸= 0. To describe the physical mechanism of the

TM e�ects, we consider disturbances propagating in the
axial (k = ezkz) direction and radial (k = eRkR) di-
rection in a nonuniformly rotating electrically conducting
medium with gradients of the temperature and thermo-
electromotive force coe�cient.

A. The instability for the waves propagating in
the axial direction (k = ezkz)

If the disturbances propagate only in the axial directi-
on (k = ezkz), then the equation (18) splits into two
dispersion equations of the following form

(γ + ων)(γ + iωT + ωη) + ω2
A = 0, (38)

[(γ + ων)((γ + iωT + ωη)
2 + ωR(ωR − 2ΩRo))

+ ω2
A(γ + iωT + ωη)]

2 + [2Ω(1 + Ro)((γ + iωT + ωη)
2

+ ωR(ωR − 2ΩRo)) + ω2
A(2ΩRo− ωR)] (39)

× [2Ω((γ + iωT + ωη)
2 + ωR(ωR − 2ΩRo))− ω2

AωR]

= 0,

where ωA =
√

k2zB
2
0/ρ0µ is the Alfven frequency.

The dispersion equation (38) describes the damping of
frequency-oscillating Alfven waves in a plasma with vi-
scous and ohmic dissipation. In this equation, there is no
in�uence of rotation on the growth rate of perturbations,
so we will start analyzing the dispersion equation (39).
In this equation, some TM e�ects associated with the
inhomogeneity of the thermo-electromotive force coe�-
cient, the e�ect of �magnetization� of thermal conductivi-
ty (the Righi�Leduc e�ect) and the action of the Archi-
medean force dropped out, since we consider wave di-
sturbances only in the axial direction. In Eq. (39), the
Nernst e�ect leads to oscillations of disturbances wi-
th frequency ωT . Therefore, we will focus on studying
the in�uence of the Hall e�ect on the development of
a standard MRI. At �rst, we present some well-known
results obtained in various limiting cases.

Let the conditions ωR ≫ 2ΩRo and ωT = 0 be
satis�ed in Eq. (39). The �rst condition is satis�ed for

the perturbation wavelength λ ≪ 2π
√

RB0/2ΩRoµ,
the second condition is satis�ed at T0 = const. Under
these conditions, for the convenience of analyzing the
asymptotic stability of disturbances, we write Eq. (39)
in the form of a polynomial of the sixth degree:

P(γ) ≡ A0γ
6 +A1γ

5 +A2γ
4 +A3γ

3 +A4γ
2 +A5γ +A6 = 0, (40)
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with real coe�cients

A0 = 1,

A1 = 2(2ωη + ων), A2 = (2ωη + ων)
2 + 2(ω2

η + ω2
R + 2ωνωη + ω2

A) + 4Ω2(1 + Ro),

A3 = 2(2ωη + ων)(ω
2
η + ω2

R + 2ωνωη + ω2
A) + 2(ων(ω

2
η + ω2

R) + ωηω
2
A) + 16Ω2(1 + Ro)ωη,

A4 = 2(2ωη + ων)(ων(ω
2
η + ω2

R) + ωηω
2
A) + (ω2

η + ω2
R + 2ωνωη + ω2

A)
2

+8Ω2(1 + Ro)(ω2
η + ω2

R) + 16Ω2(1 + Ro)ω2
η − 2Ω(2 + Ro)ω2

AωR,

A5 = 2(ω2
η + ω2

R + 2ωνωη + ω2
A)(ων(ω

2
η + ω2

R) + ωηω
2
A) + 16Ω2(1 + Ro)ωη(ω

2
η + ω2

R)− 4Ω(2 + Ro)ω2
AωRωη,

A6 = (ωηω
2
A + ων(ω

2
η + ω2

R))2 + 4Ω2(1 + Ro)(ω2
η + ω2

R)2 − 2Ω(2 + Ro)(ω2
R + ω2

η)ω
2
AωR + ω4

Aω
2
R.

The analytical solution of Eq. (40) in the general case
is not possible. However, the conclusion about the stabi-
lity of the disturbances described by Eq. (40) with real
coe�cients can be made without solving it, but only
by analyzing its coe�cients using the Routh-Hurwitz or
Lienard�Shipard criteria [31]. For the Lienard�Shipard
criterion, the number of determinant inequalities is
approximately half that in the Routh�Hurwitz condi-
tions, so it is advisable to use it. The Lienard-Shipard
criterion for the asymptotic stability of perturbations
described by the algebraic equation (40) is as follows. If
a polynomial P(γ) has all roots with negative real parts,
it is necessary and su�cient that a) all the coe�cients
of the polynomial P(γ) be positive: Aj > 0, j = 0 . . . 6;
b) there should be inequalities for the Hurwitz determi-
nants: ∆j−1 > 0, ∆j−3 > 0 . . . , where ∆m � denotes
the Hurwitz determinant m-order:

∆m =

∣∣∣∣∣∣∣∣∣
A1

A0

0
0
·

A3

A2

A1

A0

·

A5

A4

A3

A2

·

· ·
· ·
· ·
· ·

· Am

∣∣∣∣∣∣∣∣∣ .
Using the Lienard-Shipard algorithm, we obtain the
necessary and su�cient stability conditions:

Aj > 0, j = 0 . . . 6, ∆3 > 0, ∆5 > 0. (41)

From conditions (41) using the explicit form of the coe�-
cients Aj , we �nd the following inequalities:

1. A0 = 1 > 0, A1 = 2(2ωη + ων) > 0. These
inequalities are ful�lled automatically.

2. A2 = (2ωη + ων)
2 + 2(ω2

η + ω2
R + 2ωνωη + ω2

A) +

4Ω2(1 + Ro) > 0.
It can be seen that dissipative processes naturally
lead to the stabilization of the stability of
perturbations. The stabilizing factors are also a
uniform magnetic �eld, the Hall e�ect, and nonuni-
form rotation if the pro�le of the angular velocity
of rotation corresponds to positive Rossby numbers
(Ro > 0).

3. A3 = 2(2ωη+ων)(ω
2
η+ω2

R+2ωνωη+ω2
A)+2(ων(ω

2
η

+ ω2
R) + ωηω

2
A) + 16Ω2(1 + Ro)ωη > 0.

We see that in addition to dissipative processes the
stabilizing factors are also a homogeneous magnetic
�eld, the Hall e�ect, and inhomogeneous rotation
if the pro�le of the angular velocity of rotation
corresponds to positive Rossby numbers (Ro > 0).

4. A4 > 0 ⇒ 2(2ωη + ων)(ων(ω
2
η + ω2

R) + ωηω
2
A)

+(ω2
η+ω2

R+2ωνωη+ω2
A)

2+8Ω2(1+Ro)(ω2
η+ω2

R)

+ 16Ω2(1 + Ro)ω2
η > 2Ω(2 + Ro)ω2

AωR,

A5 > 0 ⇒ 2(ω2
η + ω2

R + 2ωνωη + ω2
A)(ων(ω

2
η

+ω2
R)+ωηω

2
A)+16Ω2(1+Ro)ωη(ω

2
η+ω2

R) > 4Ω(2

+ Ro)ω2
AωRωη.

We also see that the Hall e�ect and external
magnetic �eld can have a destabilizing e�ect on
positive Rossby numbers.

5. The criterion of asymptotic stability (A6 > 0)
shows that axisymmetric disturbances are stable
for pro�les of nonuniform rotation Ro > Rocr:

Ro > − 1

4Ω2(ω2
R + ω2

η)
2 − 2Ω(ω2

R + ω2
η)ω

2
AωR

×[(ωηω
2
A + ων(ω

2
η + ω2

R))2 + 4Ω2(ω2
η + ω2

R)2

+ω4
Aω

2
R − 4Ωω2

AωR(ω2
η + ω2

R)] = Rocr, (42)

where Rocr is the critical Rossby number.

We now turn to stability conditions consisting of
inequalities with the Hurwitz determinants (41). For the
determinant ∆3 we have:

∆3 =

∣∣∣∣∣∣
A1 A3 A5

A0 A2 A4

0 A1 A3

∣∣∣∣∣∣ = A1A2A3+A0A1A5−A2
1A4−A0A

2
3

and the stability criterion has the form:

A1A2A3 +A0A1A5 > A2
1A4 +A0A

2
3. (43)
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Fig. 5. The area where the Hall MRI appears for various Hall parameters is shown in gray: a) r = 10; b)r = 20; c) r = 30 and
Hall numbers: d) RH = 2; e) RH = 3; f) RH = 3.7. Graphs a)�f) are plotted at �xed parameters Ta = 1000,Q = 100,Pm = 1

For the second Hurwitz determinant from condition
(41)

∆5 =

∣∣∣∣∣∣∣∣∣
A1 A3 A5 0 0
A0 A2 A4 A6 0
0 A1 A3 A5 0
0 A0 A2 A4 0
0 0 A1 A3 A5

∣∣∣∣∣∣∣∣∣ = A1A2(A3A4A5 −A2A
2
5)

−A1A4(A1A4A5 −A0A
2
5) +A1A6(A1A2A5 −A0A3A5)

−A3A0(A3A4A5 −A2A
2
5) +A5A0(A1A4A5 −A0A

2
5),

we obtain the following stability criterion

A4A5(A1A2A3 +A0A1A5 −A2
1A4 −A0A

2
3)

+A2
1A2A5A6 +A0A

2
5(A2A3 +A1A4) (44)

> A0A1A3A5A6 +A2
5(A1A

2
2 +A2

0A5).

It follows from expressions (43)�(44) that the Hall e�ect
in an external magnetic �eld can have both a stabilizi-
ng and a destabilizing e�ect depending on the pro�le of
nonuniform rotation, i. e., the sign of the Rossby number.
Next, we discuss the in�uence of the Hall e�ect on the

area of development of the standard MRI. For conveni-
ence, we write the expression for Rocr in dimensionless
variables

Rocr = − 1

Ta(k̃2z(1 +R2
H)

2 − (1 +R2
H)QPm(r/2))

×[k̃2z(k̃
2
z(1 +R2

H) +Q)2 + k̃2zTa(1 +R2
H) + k̃2zQ

2R2
H

−TaQPm(1 +R2
H)r] (45)

where k̃z = kzL is the dimensionless axial wave number,
Q = B2

0L
2/µρ0νη is the Chandrasekhar number, Pm =

ν/η is the magnetic Prandtl number, RH = RB0/µη is
the Hall number, r = ωR/Ω is the Hall parameter.
Figures 5,a�c it show in gray the area of development

of the standard MRI taking into account the Hall e�ect
for �xed parameters RH = 1,Ta = 1000,Q = 100,Pm =
1. From Fig. 5,a�c can be seen that with an increase in
the Hall parameter, the region of instability decreases
towards negative Rossby numbers. Then, by �xing the
Hall parameter to r = 10, we change the Hall number
RH at constant values Ta = 1000,Q = 100,Pm = 1. It
follows from the graphs in Fig. 5,a and Fig. 5,d that with
an increase in the number RH from 1 to 2, the region of
instability increases. However, with a further increase in
the number RH, the region of instability decreases (see
Fig. 5,e�f). Consequently, the Hall e�ect can both stabi-
lize and destabilize the growth of disturbances dependi-
ng on the pro�le of inhomogeneous rotation (Rossby
number).

B. The instability for the waves propagating in the
radial direction (k = eRkR)

Let us consider a situation when disturbances
propagate only in the radial direction (k = eRkR). Under
these conditions, the standard MRI does not arise, since
k · B0 = 0, and the general dispersion equation (18) is
reduced to the following form:

(γ+ων)[(γ+ωη)(γ+ωχ)−ζω2
AR−ω2

TM ]−ω2
V B(γ+ωη) = 0,

(46)
(85) where ζ = NωN /cp is the dimensionless parameter
due to the in�uence of the Nernst e�ect, ωAR =
kRB0/

√
µρ0 is the radial Alfven frequency. At �rst, let
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us consider the situation when ωV B → 0, i. e., the
change in the density of the medium does not depend on
temperature (the Boussinesq approximation is violated)
or at a small Archimedean force g → 0, for example,
under conditions of weightlessness. As a result, Eq. (46)
splits into two equations:

γ + ων = 0, (γ + ωη)(γ + ωχ)− ζω2
AR − ω2

TM = 0.

The �rst equation shows that the perturbations decay at
the hydrodynamic viscosity γ = −νk2R. Solutions of the
second quadratic equation have positive (γ+ > 0) and
negative (γ− < 0) roots. Let us write down a positive
root that contributes to the development of instability:

γ+ =
ζω2

AR + ω2
TM − ωηωχ

ωη + ωχ
(47)

Let us de�ne the criteria for the development of instabi-
lity in two limiting cases: a) a low-conductivity medi-
um, when the Prandtl magneto-thermal number is large

P̃m = η/χ ≫ 1, and b) a high-conductivity medium

when P̃m = η/χ ≪ 1 it is small. For case a), the instabi-
lity increment has the form:

γ
(a)
+ =

α2T0

ρ0cpµη

[(
µL
α

+ 1

)
KTKα −K2

α

]
+

(
N 2T0B

2
0

ρ0cpµη
− χ

)
k2R. (48)

Hence, we see that the thermal conductivity of the
medium leads to the stabilization of the growth of di-
sturbances. The instability is possible due to the Nernst
e�ect in a homogeneous medium k = eRkR if the followi-
ng inequality is satis�ed:

N 2T0B
2
0

ρ0cpµη
> χ.

Let us consider the possible variants of the development
of TMI in an inhomogeneous medium at k = eRkR and
(KT ̸= 0,Kα ̸= 0).

1. If in an inhomogeneous medium the temperature
gradient is small KT ≪ Kα or equals to zero KT =
0, then instability arises under the condition

N 2T0B
2
0

ρ0cpµη
>

α2T0

ρ0cpµη
K2

α + χk2R.

Let us compare the terms on the right side
of the inequality with each other, substituting
the numerical values of the physical quantities
(ρ0, cp, µ, η, χ) for the parameters of the earth's
core at T0 = 2000K and α ≈ 10−3V/K:

α2T0

ρ0cpµηχ

K2
α

k2R
≈ 16

(Lα/λ)2
.

Thus, for a weakly inhomogeneous medium (Lα ≫
λ) is quite possible Lα/λ ∼= 4. Then the terms

on the right-hand side of the inequality are of
the same order. In this case, the condition for the
development of instability takes the form of a si-
mple inequality:

N 2B0

α2
>

1

L2
α

.

2. If the gradients of temperature and thermo-
electromotive force coe�cient are approximately
equal KT ≈ Kα, then the instability arises when
the inequality is ful�lled:

N 2T0B
2
0

ρ0cpµη
k2R +

αT0L
ρ0cpη

K2
α > χk2R.

It can be seen that the instability arises due to
the Nernst and Righi�Leduc e�ects. If the Righi�
Leduc e�ect becomes prevailing, then the criterion
for the occurrence of instability is the condition
that coincides with the expression (34) for Lα =
LT . As noted above, TMI for the parameters of the
Earth's core is possible only at very large values of
the coe�cient S.

3. Finally, if KT ≫ Kα, then instability is possible
when the inequality is satis�ed:

N 2T0B
2
0

ρ0cpµη
k2R +

α2T0

ρ0cpµη

[(
µL
α

+ 1

)
KTKα

]
> χk2R.

For a weak Nernst e�ect and µL/α ≫ 1, the cri-
terion of the onset instability also coincides with
the expression (34).

It follows from the results obtained above that in
a weakly inhomogeneous low-conductive electrically
conductive medium (k2R ≫ KTKα,K

2
α) in an axial

magnetic �eld, TMI arises mainly due to the Nernst
e�ect. For the case of a highly conductive medium (b),
the growth rate coe�cient takes the form:

γ
(b)
+ =

α2T0

ρ0cpµχ

[(
µL
α

+ 1

)
KTKα −K2

α

]
+

(
N 2T0B

2
0

ρ0cpµχ
− η

)
k2R. (49)

We see that the stabilization of the growth of di-
sturbances is caused by the electrical conductivity of the
medium. As in the previous case a) , the instability is
possible in a homogeneous medium (KT = Kα = 0) due
to the Nernst e�ect if the following inequality is satis�ed:

N 2T0B
2
0

ρ0cpµχ
> η.

We now turn to the study of the stability of perturbations
in Eq. (46) at ωV B ̸= 0. Then, for an ideal (ων = ωη = 0)
and heat-conducting (ωχ ̸= 0) �uid, the positive growth
rate of the TMI takes the form:

γ+ =
1

ωχ
(ζω2

AR + ω2
TM + ω2

V B). (50)
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The �rst term in the instability increment (50) is associ-
ated with the Nernst e�ect in an external magnetic �eld;
the second term is due to the in�uence of the Righi�
Leduc e�ect and the inhomogeneity of the equilibrium
temperature and speci�c thermopower; the third term
describes the e�ect of the Archimedean force or the
buoyancy force in a temperature-strati�ed medium. To
study the stability of disturbances in the general case,
we represent Eq. (46) in the form of a polynomial of the
third degree in γ

a0γ
3 + a1γ

2 + a2γ + a3 = 0. (51)

In this equation, all coe�cients (ai, i = 0, 1, 2, 3) are real,
so we can apply to Eq. (51) the criterion of asymptotic
stability of Lienard�Shipard. According to this criterion

1) the coe�cients (ai, i = 0, 1, 2, 3) of the polynomial
must be positive

a0 = 1 > 0, a1 = ων + ωη + ωχ > 0,

a2 = ωνωη + ωνωχ + ωηωχ − (ζω2
AR + ω2

TM + ω2
V B) > 0,

a3 = ωνωηωχ − ων(ζω
2
AR + ω2

TM )− ωηω
2
V B > 0;

2) the condition for the Hurwitz determinant ∆2 > 0
holds:

ω2
η(ων + ωχ) + ω2

χ(ων + ωη) + ω2
ν(ωχ + ωη) + 2ωνωηωχ

> (ωχ + ωη)(ζω
2
AR + ω2

TM + ω2
V B) + ωνω

2
V B .

The �rst two conditions in 1) are ful�lled automati-
cally. The third and fourth stability conditions in 1)
show that the Nernst e�ect in an external magnetic
�eld B0 (ζωAR), the Righi�Leduc e�ect, and the
inhomogeneity of the equilibrium temperature and
thermo-electromotive force coe�cient, as well as the
e�ect of the Archimedean force in a temperature-
strati�ed medium lead to destabilization of axisymmetric
disturbances in a dissipative medium. A similar conclusi-
on follows from the stability criterion 2).

VI. CONCLUSION

In this work, we investigated the mechanism of
magnetic �eld generation in an inhomogeneously rotati-
ng electrically conductive �uid by TMI, which arises
at collinear temperature gradients ∇T0 and thermo-
electromotive force coe�cient ∇α: [∇α×∇T0] = 0. The
gradient of the thermo-electromotive force coe�cient ∇α
is caused by the inhomogeneity of the chemical composi-
tion of the electrically conductive �uid. The dispersion
equation in the local geometrical optics approximation is
obtained for small TM perturbations in a nonuniformly
rotating electrically conducting �uid in an external axi-
al magnetic �eld B0∥OZ. In the absence of in external
magnetic �eld B0 = 0, criteria for the stability of TM di-
sturbances in a weakly inhomogeneous unbounded medi-
um are obtained depending on the pro�le of nonuniform
rotation Ro. In the case of �smooth� gradients ∇T0 and
∇α (a weakly inhomogeneous medium), the growth rates
of TMI were obtained and it was found that for a low-
conductive medium (Pm = η/χ ≫ 1), the generati-
on of a magnetic �eld is ine�ective because of losses
associated with the thermal conductivity and viscosity
of the �uid. It is shown that in a weakly inhomogeneous
medium the generation of magnetic �elds is e�ective
for a highly conductive (Pm = η/χ ≪ 1) �uid, if the
e�ect of �magnetization� of thermal conductivity (the
Righi�Leduc e�ect) is prevailing in comparison with the
convection of heat caused by the gradients ∇T0 and ∇α.
In the presence of an external magnetic �eld B0 ̸=

0, the dispersion equation is investigated taking into
account thermogalvanomagnetic e�ects in two limiti-
ng cases, i. e., when perturbations propagate in the
axial (k = ezkz) and radial (k = eRkR) directi-
ons. For disturbances propagating in the axial directi-
on, it was found that the Hall e�ect can both stabili-
ze and destabilize the growth of disturbances dependi-
ng on the pro�le of nonuniform rotation Ro (Rossby
number). For perturbations propagating in the radial di-
rection, it was found that the Nernst e�ect in an external
magnetic �eld B0 (ζωAR), the Righi�Leduc e�ect and
the inhomogeneity of the equilibrium temperature and
thermo-electromotive force coe�cient (ωTM ), as well
as the e�ect of the Archimedean force in a medium
strati�ed in temperature (ωV B) lead to destabilizati-
on of axisymmetric perturbations or to generating a
magnetic �eld. In this case, the rotation does not a�ect
the development of TMI, and the usual (or standard)
MRI does not arise.

[1] L. E. Gurevich, Sov. Phys. JETP 17, 373 (1963).
[2] L. E. Gurevich, B. L. Gel'mont, Sov. Phys. JETP 19,

604 (1964).
[3] L. E. Gurevich, B. L. Gel'mont, Sov. Phys. JETP 20,

1217 (1965).
[4] V. A. Urpin, Sov. Phys. JETP 53, 1179 (1981).

[5] W. M. Elsasser, Phys. Rev. 55, 489 (1939); https://do
i.org/10.1103/PhysRev.55.489.

[6] S. K. Runcorn, Trans. Am. Geophys. Union 35, 49
(1954); https://doi.org/10.1029/TR035i001p00049.

[7] Continuum Theory and Modeling of Thermoelectric
Elements, edited by C. Goupil (Wiley-VCH Verlag

4401-15

https://doi.org/10.1103/PhysRev.55.489
https://doi.org/10.1103/PhysRev.55.489
https://doi.org/10.1029/TR035i001p00049


M. I. KOPP, A. V. TUR, V. V. YANOVSKY

GmbH & Co. KGaA, 2016).
[8] A. N. Dmitriev, Int. J. Geosci. 8, 1048 (2017); https:

//doi.org/10.4236/ijg.2017.88059.
[9] F. H. Hibberd, Proc. Roy. Soc. London A369, 31 (1979);

https://doi.org/10.1098/rspa.1979.0150.
[10] G. Mo�at, Magnetic Field Generation in Electri-

cally Conducting Fluids (Cambridge University Press,
Cambridge, 1978).

[11] A. I. Laptukhov, Geomagn. Aeron. 20, 530 (1980).
[12] A. Schl�utter, L. Biermann, Z. Naturforsch. 5a, 237

(1950); https://doi.org/10.1515/zna-1950-0501.
[13] S. I. Braginsky, Geomagn. Aeron. 4, 698 (1964).
[14] L. A. Bol'shov, Yu. A. Dreizin, A. M. Dykhne, JETP

Lett. 19, 168 (1974).
[15] B. A. Al'terkop, E. V. Mishin, A. A. Rukhadze, JETP

Lett. 19, 170 (1974).
[16] V. Urpin, Plasma Phys. Rep. 45, 366 (2019); https:

//doi.org/10.1134/S1063780X19030103.
[17] A. Z. Dolginov, Sov. Phys. Usp. 30, 475 (1987).
[18] V. Urpin, Mon. Notices Royal Astron. Soc. 472, L5

(2017); https://doi.org/10.1093/mnrasl/slx127.
[19] E. Liverts, M. Mond, V. Urpin, Mon. Notices Royal

Astron. Soc. 404, 283 (2010); https://doi.org/10.111
1/j.1365-2966.2010.16271.x.

[20] Y. M. Shtemler, E. Liverts, M. Mond, Astron. Nachr.
333(3), 266 (2012); https://doi.org/10.1002/asna.2
01211653.

[21] G. Montani, R. Benini, N. Carlevaro, A. Franco, Mon.
Notices Royal Astron. Soc. 436, 327 (2013); https://do

i.org/10.1093/mnras/stt1568.
[22] E. Velikhov, Sov. Phys. JETP 36, 995 (1959).
[23] S. A. Balbus, J. F. Hawley, Astrophys. J. 376, 214

(1991).
[24] L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz,

Electrodynamics of Continuous Media (Butterworth�
Heinemann, 1984).

[25] V. N. Zharkov, Internal Structure of the Earth and
Planets (Gordon and Breach, New York, 1983).

[26] A. B. Mikhailovsky, Theory of Plasma Instabilities
(Atomizdat, Moscow, 1977).

[27] O. N. Kirillov, F. Stefani, Proc. Int. Astron. Union 8,
233 (2012); https://doi.org/10.1017/S1743921312019
771.

[28] O. N. Kirillov, F. Stefani, Y. Fukumoto, J. Fluid Mech.
760, 591 (2014); https://doi.org/10.1017/jfm.2014
.614.

[29] M. I. Kopp, A. V. Tur, V. V. Yanovsky, East Eur. J.
Phys. 1, 4 (2019); https://doi.org/10.26565/2312-43
34-2020-1-01.

[30] F. Gantmacher, Lectures in analytical mechanics (Mir
Publishers, Moscow, 1975).

[31] D. A. Shalybkov, Physics-Uspekhi 52, 915 (2009); http
s://doi.org/10.3367/UFNe.0179.200909d.0971.

[32] G. Z. Gershuni, E. M. Zhukhovitskii, Convective Stabi-
lity of Incompressible Fluids (Keter Publishing House,
Jerusalem, 1976).

[33] V. E. Zinoviev, Thermo Physical Properties of Metals at
High Temperatures (Metalurgia, Moscow, 1989)

ÒÅÐÌÎÌÀÃÍIÒÍI ÍÅÑÒIÉÊÎÑÒI Â ÅËÅÊÒÐÎÏÐÎÂIÄÍIÉ ÐIÄÈÍI, ÙÎ ÍÅÎÄÍÎÐIÄÍÎ
ÎÁÅÐÒÀ�ÒÜÑß

Ì. É. Êîïï1, À. Â. Òóð3, Â. Â. ßíîâñüêèé1,2

1Iíñòèòóò ìîíîêðèñòàëiâ, Íàöiîíàëüíà àêàäåìiÿ íàóê Óêðà¨íè, ïðîñï. Íàóêè, 60, Õàðêiâ, 61001, Óêðà¨íà,
2Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà, ìàéäàí Ñâîáîäè, 4, Õàðêiâ, 61022, Óêðà¨íà,

3Óíiâåðñèòåò Òóëóçè, Iíñòèòóò äîñëiäæåíü ç àñòðîôiçèêè òà ïëàíîëîãi¨, Òóëóçà, Ôðàíöiÿ

Äîñëiäæåíî ñòiéêiñòü ìàëèõ îñåñèìåòðè÷íèõ çáóðåíü ó â'ÿçêié åëåêòðîïðîâiäíié ðiäèíi, ùî íåî-
äíîðiäíî îáåðòà¹òüñÿ, ç óðàõóâàííÿì òåðìîãàëüâàíîìàãíiòíèõ ÿâèù. Ó íàáëèæåííi ëîêàëüíî¨ ãåîìå-
òðè÷íî¨ îïòèêè îòðèìàíî äèñïåðñiéíå ðiâíÿííÿ, ùî ìiñòèòü åôåêòè Õîëëà, Íåðíñòà, Ëåäþêà�Ðèãè,
 ðàäi¹íòè ðiâíîâàæíî¨ òåìïåðàòóðè ∇T0 òà ïèòîìî¨ òåðìîåðñ ∇α ó ñòàëèõ ìàãíiòíîìó B0 i  ðà-
âiòàöiéíîìó g ïîëÿõ. Îòðèìàíî iíêðåìåíòè òåðìîìàãíiòíî¨ (ÒÌ) íåñòiéêîñòi â åëåêòðîïðîâiäíîìó
ñåðåäîâèùi, ùî íåîäíîðiäíî îáåðòà¹òüñÿ, áåç çîâíiøíüîãî ìàãíiòíîãî ïîëÿ B0 = 0 äëÿ �ïëàâíèõ�
(ñëàáîíåîäíîðiäíå ñåðåäîâèùå)  ðàäi¹íòiâ ∇T0 i ∇α. ÒÌ-íåñòiéêiñòü âèíèêà¹ ÷åðåç  ðàäi¹íò òåìïå-
ðàòóðè ∇T0 i  ðàäi¹íò ïèòîìî¨ òåðìîåðñ ∇α. Íåîáõiäíîþ óìîâîþ âèíèêíåííÿ ÒÌ-íåñòiéêîñòi ¹ êîëi-
íåàðíiñòü  ðàäi¹íòiâ òåìïåðàòóðè ∇T0 i ïèòîìî¨ òåðìîåðñ ∇α. Çà íàÿâíîñòi çîâíiøíüîãî ìàãíiòíîãî
ïîëÿ B0 ̸= 0 óñòàíîâëåíî äiëÿíêè ðîçâèòêó õîëëiâñüêî¨ ìàãíiòîîáåðòàëüíî¨ íåñòiéêîñòi çàëåæíî âiä
ïðîôiëþ êóòîâî¨ øâèäêîñòi îáåðòàííÿ (÷èñëà Ðîñái Ro) òà àêñiàëüíîãî õâèëüîâîãî ÷èñëà kz. Ïiä ÷àñ
ïîøèðåííÿ çáóðåíü iç õâèëüîâèì âåêòîðîì k ó ðàäiàëüíîìó k∥eR-íàïðÿìêó îòðèìàíî iíêðåìåíòè
ÒÌ-íåñòiéêîñòåé ç óðàõóâàííÿì åôåêòiâ Íåðíñòà â çîâíiøíüîìó ìàãíiòíîìó ïîëi B0, Ëåäþêà-Ðèãè,
íåîäíîðiäíîñòi ðiâíîâàæíî¨ òåìïåðàòóðè òà ïèòîìî¨ òåðìîåðñ, ñèëè ïëàâó÷îñòi â ñòðàòèôiêîâàíîìó
çà òåìïåðàòóðîþ ñåðåäîâèùi. Óñòàíîâëåíî, ùî åôåêò Õîëëà ìîæå ÿê ñòàáiëiçóâàòè, òàê i äåñòàái-
ëiçóâàòè çðîñòàííÿ çáóðåíü çàëåæíî âiä ïðîôiëþ íåîäíîðiäíîãî îáåðòàííÿ (÷èñëà Ðîñái Ro). Äëÿ
çáóðåíü, ùî ïîøèðþþòüñÿ â ðàäiàëüíîìó íàïðÿìêó, âñòàíîâëåíî, ùî åôåêò Íåðíñòà â çîâíiøíüî-
ìó ìàãíiòíîìó ïîëi B0 (ζωAR), åôåêò Ëåäþêà-Ðèãè òà íåîäíîðiäíîñòi ðiâíîâàæíî¨ òåìïåðàòóðè é
ïèòîìî¨ òåðìîåðñ (ωTM ), à òàêîæ åôåêò àðõiìåäîâî¨ ñèëè â ñòðàòèôiêîâàíîìó çà òåìïåðàòóðîþ ñå-
ðåäîâèùi (ωV B) ïðèçâîäÿòü äî äåñòàáiëiçàöi¨ îñåñèìåòðè÷íèõ çáóðåíü, òîáòî äî  åíåðàöi¨ ìàãíiòíîãî
ïîëÿ.

Êëþ÷îâi ñëîâà: òåðìîåëåêòðîðóøiéíà ñèëà,  åíåðàöiÿ ìàãíiòíèõ ïîëiâ, òåðìîìàãíiòíà íåñòié-
êiñòü, íàáëèæåííÿ Áóññèíåñêà, íåðiâíîìiðíî îáåðòîâà åëåêòðîïðîâiäíà ðiäèíà

4401-16

https://doi.org/10.4236/ijg.2017.88059
https://doi.org/10.4236/ijg.2017.88059
https://doi.org/10.1098/rspa.1979.0150
https://doi.org/10.1515/zna-1950-0501
https://doi.org/10.1134/S1063780X19030103
https://doi.org/10.1134/S1063780X19030103
https://doi.org/10.1093/mnrasl/slx127
https://doi.org/10.1111/j.1365-2966.2010.16271.x
https://doi.org/10.1111/j.1365-2966.2010.16271.x
https://doi.org/10.1002/asna.201211653
https://doi.org/10.1002/asna.201211653
https://doi.org/10.1093/mnras/stt1568
https://doi.org/10.1093/mnras/stt1568
https://doi.org/10.1017/S1743921312019771
https://doi.org/10.1017/S1743921312019771
https://doi.org/10.1017/jfm.2014.614
https://doi.org/10.1017/jfm.2014.614
https://doi.org/10.26565/2312-4334-2020-1-01
https://doi.org/10.26565/2312-4334-2020-1-01
https://doi.org/10.3367/UFNe.0179.200909d.0971
https://doi.org/10.3367/UFNe.0179.200909d.0971

	THERMOMAGNETIC INSTABILITIES IN A NONUNIFORMLY ROTATING ELECTRICALLY CONDUCTIVE FLUID
	
	Introduction
	Statement of the problem and equations of evolution of small perturbations
	 Local geometrical optics approximation and dispersion equation
	 Analysis of the dispersion equation for the case B0=0
	Generation of magnetic fields in a weakly inhomogeneous medium (a short-wavelength limit L )

	Analysis of the dispersion equation for the case B0=0
	 The instability for the waves propagating in the axial direction (k=ez kz)
	The instability for the waves propagating in the radial direction (k=eR kR)

	Conclusion
	


