Journal of Physical Studies 27(1), Article 1601 [6 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.1601

VISCOSITY OF Cu-BASED BINARY ALLOYS

Yu. Plevachuk , L. Romaka 

Ivan Franko National University of Lviv
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine

Received 28 November 2022; in final form 30 December 2023; accepted 17 January 2023; published online 26 January 2023

High-entropy alloys are alloys containing at least five main metallic elements in equiatomic proportions from 5 to 35 at. %. The main feature of high-entropy alloys is the formation of a single-phase thermodynamically stable solid solution mainly with bcc and fcc lattices. Stabilization of the solid solution and prevention of the intermetallic phases formation during the solidification is ensured by the high entropy of mixing of the components. The highest value of entropy is achieved with an equiatomic ratio of components, and, according to the Boltzmann hypothesis, the configurational entropy increases with an increase in the number of elements.

Along with the characteristics typical of metal alloys, such materials have unique and unusual properties inherent, for example, in metal ceramics: high hardness and resistance at high temperatures, positive temperature hardening coefficient, resistance to corrosion and oxidation, good wear resistance and a number of other properties. The continuous expansion of practical applications of high-entropy alloys shows that the deviation of one or more elements from equiatomic proportions can even improve some specific properties.

The main experimental difficulties in extreme thermodynamic conditions of the liquid state are related to the high melting temperatures of the elements. Therefore, it is helpful to study similar multicomponent alloys with lower melting points of the elements. Information about the properties of such low-temperature systems, as well as their subsystems with a smaller number of components, which can be considered as model systems, is necessary for further study of the high-temperature alloys' characteristics and for their industrial production.

In this work, temperature dependence of viscosity for Cu-Bi, Cu-Ga, Cu-Pb and Cu-Sn binary alloys with chemical compositions deviating from equiatomic ones was investigated. These alloys are subsystems of the high-entropy five-component Bi-Cu-Ga-Sn-Pb system. Based on the obtained results, the activation energy of the viscous flow and the configurational entropy of mixing were calculated. The obtained negative values of entropy of mixing indicate structural ordering in the system.

Key words: metals, high-entropy alloys, entropy, viscosity.

Full text


References
  1. J.-W. Yeh et al., Adv. Eng. Mater. 6, 299 (2004);
    Crossref
  2. D. B. Miracle, O. N. Senkov, Acta Mater. 122, 448 (2017);
    Crossref
  3. M. H. Tsai, J. W. Yeh, Mater. Res. Lett. 2, 107 (2014);
    Crossref
  4. Y. P. Wang, B. Sh. Li, Zh. F. Heng, Adv. Eng. Mater. 11, 641 (2009);
    Crossref
  5. Yu. Plevachuk, J. Brillo, A. Yakymovych, Metal. Mater. Trans. A, 49, 6544 (2018);
    Crossref
  6. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics, 11, 698 (2011);
    Crossref
  7. M. C. Gao, J.-W. Yeh, P. K. Liaw, Y. Zhang, High-Entropy Alloys. Fundamentals and Applications (Springer International Publishing Switzerland, 2016);
    Crossref
  8. Y. F. Kao et al., Int. J. Hydrog. Energy 35, 9046 (2010);
    Crossref
  9. J. Ponsoni, V. Aranda, T. da Silva Nascimento, R. BelliStrozi, W. J. Botta, G. Zepon, Acta Materialia 240, 118317 (2022);
    Crossref
  10. H.-P. Chou, Y.-Sh. Chang, S.-K. Chen, J.-W. Yeh, Mater. Sci. Eng. B 163, 184 (2009);
    Crossref
  11. S. Ma et al., J. Alloys Compd. 604, 331 (2014);
    Crossref
  12. М. В. Дуфанець, В. М. Склярчук, Ю. O. Плевачук, Укр. фіз. журн. 65, 1082 (2020);
    Crossref
  13. S. Mudry, Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, J. Non-Cryst. Solids 354, 4415 (2008);
    Crossref
  14. Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, G. Gerbeth, J. Non-Cryst. Solids 354, 4443 (2008);
    Crossref
  15. S. Seetharaman, Du Sichen, Metal. Mater. Trans. B 25B, 589 (1994);
    Crossref
  16. M. G. Frohberg, K. Özbagi, Z. Metallkd. 72, 630 (1981);
    Crossref
  17. M. Hirai, Iron Steel Inst. Jpn. Int. 33, 251 (1993);
    Crossref
  18. Yu. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, Int. J. Mater. Research 101, 839 (2010);
    Crossref
  19. Ю. О. Плевачук, В. М. Склярчук, О. Д. Альохiн, Л. А. Булавiн, Журн. фіз. досл. 9, 333 (2005);
    Crossref
  20. J. Brillo et al., High Temp. High Press. 47, 417 (2018); https://www.oldcitypublishing.com/journals/hthp-home/hthp-issue-contents/hthp-volume-47-number-5-2018/hthp-47-5-p-417-441/
  21. P Terzieff, J. Alloys Compd. 473, 195 (2009);
    Crossref
  22. Л.I. Гвоздєва, А.П. Любiмов, Укр. фіз. журн. 12, 207 (1967).
  23. T. Iida, R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1993); https://www.abebooks.com/9780198563945/Physical-Properties-Liquid-Metals-Iida-0198563949/plp
  24. E. Gebhardt, M. Becker, S. Schaefer, Z. Metallkd. 43, 292 (1952);
    Crossref
  25. M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing, S. Baoan, Physica B, 387, 1 (2007);
    Crossref