Journal of Physical Studies 27(1), Article 1701 [5 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.1701

FIELD-EFFECT TRANSISTOR BASED ON GRAPHENE — POROUS SILICON HYBRID STRUCTURE

I. B. Olenych , Ya. V. Boyko 

Ivan Franko National University of Lviv,
50, Drahomanov St., Lviv, 79005, Ukraine,
e-mail: igor.olenych@lnu.edu.ua

Received 28 October 2022; in final form 23 January 2023; accepted 24 January 2023; published online 04 March 2023

In this study, reduced graphene oxide (rGO) – porous silicon (PS) hybrid structures are suggested to create a field-effect transistor (FET). The electrical properties and switching characteristics of the obtained rGO-PS-based FET were studied in both DC and AC modes. A significant influence of the supporting PS layer on the transport of charge carriers in the graphene film was established. A decrease in resistance and an increase in the capacity of the graphene FET channel due to photogenerated charge carriers in the porous layer were found. Based on the impedance spectra, the parameters of the equivalent circuit model of the rGO-PS-based FET for different gate voltages are determined.

Key words: field-effect transistor, graphene, porous silicon, hybrid structure, current-voltage characteristics, impedance.

Full text


References
  1. K. S. Novoselov et al., Science 306, 666 (2004);
    Crossref
  2. S. Fratini, F. Guinea, Phys. Rev. B 77, 195415 (2008);
    Crossref
  3. K. Erickson et al., Adv. Mater. 22, 4467 (2010);
    Crossref
  4. K. I. Bolotin et al., Solid State Commun. 146, 351 (2008);
    Crossref
  5. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, P. Avouris, Nature Nanotech. 6, 179 (2011);
    Crossref
  6. A. K. Geim, Science 324, 1530 (2009);
    Crossref
  7. K. M. F. Shahil, A. A. Balandin, Solid State Commun. 152, 1331 (2012);
    Crossref
  8. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321, 385 (2008);
    Crossref
  9. J. S. Bunch et al., Science 315, 490 (2007);
    Crossref
  10. K. S. Kim et al., Nature 457, 706 (2009);
    Crossref
  11. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Nature Nanotech. 4, 839 (2009);
    Crossref
  12. P. Avouris, Nano Lett. 10, 4285 (2010);
    Crossref
  13. B. Zhan et al., Small 10, 4042 (2014);
    Crossref
  14. S. Wu, Q. He, C. Tan, Y. Wang, H. Zhang, Small 9, 1160 (2013);
    Crossref
  15. J.-S. Moon, Carbon Lett. 13, 17 (2012);
    Crossref
  16. S. Lone, A. Bhardwaj, A. K. Pandit, S. Gupta, S. Mahajan, J. Electron. Mater. 50, 3169 (2021);
    Crossref
  17. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805. (2007);
    Crossref
  18. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006);
    Crossref
  19. E. McCann, D. S. L. Abergel, V. I. Fal'ko, Eur. Phys. J. Spec. Top. 148, 91 (2007);
    Crossref
  20. K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, A. Toriumi, J. Appl. Phys. 110, 024513 (2011);
    Crossref
  21. G. Imamura, K. Saiki, ACS Appl. Mater. Interfaces 7, 2439 (2015);
    Crossref
  22. J. Kim et al., ACS Appl. Mater. Interfaces 6, 20880 (2014);
    Crossref
  23. H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Mater. Sci. Eng. R Rep. 39, 93 (2002);
    Crossref
  24. I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Yu. Yu. Horbenko, M. V. Partyka, Nanoscale Res. Lett. 12, 272 (2017);
    Crossref
  25. I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, L. Orovcík, M. Y. Salamakha, Mol. Cryst. Liq. Cryst. 673, 32 (2018);
    Crossref
  26. L. Oakes et al., Sci. Rep. 3, 3020 (2013);
    Crossref
  27. I. B. Olenych, O. I. Aksimentyeva, Yu. Yu. Horbenko, B. R. Tsizh, Appl. Nanosci. 12, 579 (2022);
    Crossref
  28. I. Olenych, B. Tsizh, L. Monastyrskii, O. Aksimentyeva, B. Sokolovskii, Solid State Phenom. 230, 127 (2015);
    Crossref
  29. I. Karbovnyk et al., Ceram. Int. 42, 8501 (2016);
    Crossref
  30. I. Karbovnyk, H. Klym, D. Chalyy, I. Zhydenko, D. Lukashevych, Appl. Nanosci. 12, 1263 (2022);
    Crossref