Journal of Physical Studies 27(1), Article 1901 [8 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.1901

RELATION BETWEEN FLARE ACTIVITY AND MAGNETIC COMPLEXITY OF ACTIVE REGIONS ON THE SUN

A. I. Prysiazhnyi , O. A. Baran 

Astronomical Observatory of Ivan Franko National University of Lviv,
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine,
e-mails: andrii.prysiazhnyi@lnu.edu.ua; oleksandra.baran@lnu.edu.ua

Received 06 September 2022; in final form 27 September 2022; accepted 14 October 2023; published online 07 February 2023

We performed a statistical analysis of selected active regions' (ARs) parameters during solar cycles 23-24 in order to investigate their flare activity. We used data on active regions, including their magnetic complexity, and flares in them from the SolarMonitor database. We supplemented this dataset with information about solar flares obtained using the XRS instrument of the GOES satellite.

It is found that the solar flare occurrence rate depends on the area of the AR and its class of magnetic complexity: the larger the area and the more complex the configuration of the magnetic field, the greater is the integral flux of soft X-ray radiation from flares in this region. Class B flares occur in ARs with an area of approximately 1000 millionths in all groups. C- and M-class flares are found in ARs of all sizes and magnetic complexities. Class X flares mainly occur in ARs of the complex group with an area of more than 200 millionths; far fewer of such flares are observed in ARs of the simple group.

It is shown that the flare activity of ARs (flares of classes C, M, X) increases around the maximum phase of the solar cycle and significantly decreases during the solar activity minimum. Class B flares show a different type of cyclicity: the largest number of them were detected during the ascending and descending phases of the solar cycle. On average, during the solar activity cycle, the following tendency is observed: the stronger the flares, the smaller percentage of them occur in ARs of the simple group, and the higher percentage – in ARs of the complex group.

In the solar activity maximum, at least for classes B and C, the relative number of flares that occur in ARs with a complex magnetic configuration increases. During this period, the relative number of X-class flares significantly prevails in the regions of the $βγδ$ magnetic complexity class.

Key words: active regions, magnetic configurations, Hale classes, solar flares, cycles of solar activity.

Full text


References
  1. S. Krucker, A. O. Benz, T. S. Bastian, L. W. Acton, Astrophys. J. 488, 499 (1997);
    Crossref
  2. A. O. Benz, S. Krucker, Solar Phys. 182, 349 (1998);
    Crossref
  3. D. Berghmans, F. Clette, D. Moses, Astron. Astrophys. 336, 1039 (1998).
  4. A. O. Benz, Liv. Rev. Solar Phys. 14, 1 (2017);
    Crossref
  5. S. Régnier, R. C. Canfield, Astron. Astrophys. 451, 319 (2006);
    Crossref
  6. G. E. Hale, F. Ellerman, S. B. Nicholson, A. H. Joy, Astrophys. J. 49, 153 (1919);
    Crossref
  7. L. van Driel-Gesztelyi, L. M. Green, Liv. Rev. Solar Phys. 12, 1 (2015);
    Crossref
  8. R. G. Giovanelli, Astrophys. J. 89, 555 (1939); https://doi.org/10.1086/144081
  9. G. R. Greatrix, Mon. Not. R. Astron. Soc. 126, 123 (1963);
    Crossref
  10. I. Sammis, F. Tang, H. Zirin, Astrophys. J. 540, 583 (2000);
    Crossref
  11. K. Lee, Y.-J. Moon, J.-Y. Lee, K.-S. Lee, H. Na, Solar Phys. 281, 639 (2012);
    Crossref
  12. H. He, H. Wang, Y. Yan, P. F. Chen, C. Fang, J. Geophys. Res. Space Phys. 119, 3286 (2014);
    Crossref
  13. E. B. Mayfield, J. K. Lawrence, Solar Phys. 96, 293 (1985);
    Crossref
  14. L. Tian, Y. Liu, J. Wang, Solar Phys. 209, 361 (2002);
    Crossref
  15. M. Ternullo, L. Contarino, P. Romano, F. Zuccarello, Astron. Nachr. 327, 36 (2006);
    Crossref
  16. J. Guo, J. Lin, Y. Deng, Mon. Not. R. Astron. Soc. 441, 2208 (2014);
    Crossref
  17. S. Toriumi, C. J. Schrijver, L. K. Harra, H. Hudson, K. Nagashima, Astrophys. J. 834, 56 (2017);
    Crossref
  18. Y.-H. Yang, Astrophys. J. 834, 150 (2017);
    Crossref
  19. S. Toriumi, H. Wang, Liv. Rev. Solar Phys. 16, 3 (2019);
    Crossref
  20. G. E. Hale, S. B. Nicholson, Astrophys. J. 62, 270 (1925);
    Crossref
  21. G. Aulanier et al., Astron. Astrophys. 549, A66 (2013);
    Crossref
  22. V. G. Lozitsky, E. A. Baranovsky, N. I. Lozitska, V. P. Tarashchuk, Mon. Not. Roy. Astron. Soc. 477, 2796 (2018);
    Crossref
  23. O. A. Baran, A. I. Prysiazhnyi, M. M. Koval'chuk, J. Phys. Stud. 26, 1901 (2022);
    Crossref
  24. L. Will, E. A. Avallone, X. Sun, Res. Not. AAS. 6, 37 (2022);
    Crossref
  25. S. A. Jaeggli, A. A. Norton, Astrophys. J. Lett. 820, L11 (2016);
    Crossref
  26. S. Nikbakhsh, E. I. Tanskanen, M. J. Käpylä, T. Hackman, Astron. Astrophys. 629, A45 (2019);
    Crossref
  27. T. Ata{ç}, A. Özgü{ç}, Solar Phys. 166, 201 (1996);
    Crossref
  28. B. Joshi, A. Joshi, Solar Phys. 219, 343 (2004);
    Crossref