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In the paper, a review of the results for recovering the weak equivalence principle in a space
with deformed commutation relations for operators of coordinates and momenta is presented. Di-
�erent types of deformed algebras leading to a space quantization are considered, among them
noncommutative algebra of a canonical type, algebra of the Lie type, the Snyder algebra, the Kempf
algebra and nonlinear deformed algebra with an arbitrary function of deformation depending on
momenta. The motion of a particle and a composite system in a gravitational �eld is examined
and the implementation of the weak equivalence principle is studied. We conclude that the E�otv�os
parameter is not equal to zero even in the case when the gravitational mass is equal to the inertial
mass. The principle is preserved in a quantized space if we consider parameters of deformed algebras
to be dependent on mass. It is also shown that the dependencies of parameters of deformed algebras
on mass lead to preserving the properties of the kinetic energy in quantized spaces and solving the
problem of the signi�cant e�ect of space quantization on the motion of macroscopic bodies (the
problem is known as the soccer-ball problem).
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I. INTRODUCTION

Deformed commutation relations for coordinates and
momenta were �rstly proposed by Heisenberg. The
author of the �rst paper with the formalization of the
idea of deformed commutation relations is Snyder [1].
It is worth noting that a great interest in studies of di-
�erent types of deformed algebras leading to the minimal
length follows from investigations in the String Theory
and Quantum Gravity (see, for instance, [2, 3]).
Snyder's algebra is well known and studied (see, for

example, [4�8]). The algebra in a nonrelativistic case
reads

[Xi, Xj ] = iℏβ(XiPj −XjPi), (1)

[Xi, Pj ] = iℏ(δij + βPiPj), (2)

[Pi, Pj ] = 0. (3)

Also, a well studied algebra leading to a minimal
length is the deformed algebra proposed by Kempf (see,
for instance, [9�15])

[Xi, Xj ] = iℏ
(2β − β′) + (2β + β′)βP 2

1 + βP 2

×(PiXj − PjXi), (4)

[Xi, Pj ] = iℏ(δij(1 + βP 2) + β′PiPj), (5)

[Pi, Pj ] = 0, (6)

where β, β′ are constants. In the space, the minimal
length is de�ned by the parameters of deformations and
it reads ℏ

√
β + β′.

It is worth noting that algebras (1)-(3), (4)-(6) are not
invariant under translations in the con�guration space.
The deformed algebra characterized by the following
commutation relation

[Xi, Xj ] = 0, (7)

[Xi, Pj ] = iℏ(δij(1 + βP 2) + 2βPiPj), (8)

[Pi, Pj ] = 0, (9)

describes a uniform space. This algebra can be obtained
from (4)-(6) up to the �rst order in the parameter of
deformation, considering particular case β′ = 2β. We
can also write a deformed algebra

[Xi, Xj ] = 0, (10)

[Xi, Pj ] = iℏ
√

1 + βP 2(δij + βPiPj), (11)

[Pi, Pj ] = 0, (12)

which is invariant upon translations in the con�guration
space and leads to the minimal length (see [16]).
In a more general case, one can consider the following

commutation relations for coordinates and momenta

[Xi, Pj ] = iℏFij(
√
βP1,

√
βP2,

√
βP3), (13)

where Fij(
√
βP1,

√
βP2,

√
βP3) are deformation functi-

ons. For preserving the time-reversal symmetry and for
invariance upon the parity transformations, the functi-
ons have to be even

Fij(−
√
βP1,−

√
βP2,−

√
βP3)

= Fij(
√
βP1,

√
βP2,

√
βP3). (14)
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Algebra (13) with

Fij(
√
βP1,

√
βP2,

√
βP3) = δij −

√
β

(
Pδij +

PiPj

P

)
+ β(P 2δij + 3PiPj), (15)

was considered in the literature to describe a space with
minimal length and maximal momentum [17]. Also one-
dimensional algebras

[X,P ] = iℏF (
√
β|P |), (16)

were examined [18, 19]. In (16) F (
√
β|P |) is a deformati-

on function, β is a parameter, β ≥ 0, F (0) = 1.
In the case of F (

√
β|P |) = 1 + βP 2, from deformed

commutation relation (16) follows the well known
generalized uncertainty principle (GUP)

∆X ≥ ℏ
2

(
1

∆P
+ β∆P

)
, (17)

leading to the minimal length Xmin = ℏ
√
β.

Also, other cases of the deformation functions leading
to a minimal length and to a minimal momentum have
been studied. Namely, in [20, 21] the authors proposed
to consider F (

√
β|P |) = 1/(1 − βP 2). In the paper [22]

F (
√
β|P |) was chosen to be F (

√
β|P |) = (1−

√
β|P |)2. In

[23] the case of F (
√
β|P |) = 1/(1−

√
β|P |) was examined.

The minimal length and the minimal momentum are de�-
ned by the parameter of deformation and are proporti-
onal to ℏ

√
β and 1/

√
β, respectively [17, 20, 22, 23].

Algebras it which commutators for operators of coordi-
nates and momenta are modi�ed and give constants are
known as noncommutative algebras of a canonical type.
In a general case these algebra read

[Xi, Xj ] = iℏθij , (18)

[Xi, Pj ] = iℏ(δij + σij), (19)

[Pi, Pj ] = iℏηij , (20)

where θij are parameters of coordinate noncommutativi-
ty, ηij are parameters of momentum noncommutativity
and σij are constants. Noncommutativity of coordinates
leads to a minimal length. From the noncommutativity
of momenta follows existence of the minimal momentum
[24]. Because of the simplicity of the algebra, it has recei-
ved much attention [25�34]. More complicated types of
noncommutative algebras are those of the Lie type

[Xi, Xj ] = iℏθkijXk, (21)

where θkij are constants [35�38].
An important problem is the construction of deformed

algebra which leads to a space quantization and does
not cause violation of fundamental physical laws and
principles. For instance, a well known problem within
the frame of deformed algebras of di�erent types is the
violation of the weak equivalence principle or the Gali-
lean equivalence principle or universality of the free fall
principle. The deformation of a commutation relation

for coordinates and momenta leads to the dependence
of the velocity and the position of a point mass in
a gravitational �eld on mass. In the case of algebras
with noncommutativity of coordinates of a canonical
type, the equivalence principle was considered in [39�
44]. A more general case of noncommutativity of coordi-
nates and noncommutativity of momenta was examined
in [39, 40, 43, 44] and the problem of the ununiversali-
ty of free fall in the space was studied. In paper [40] it
was concluded that the equivalence principle holds in the
quantized space in the sense that an accelerated frame
of reference is locally equivalent to a gravitational �eld,
unless parameters of noncommutativity are anisotropic
(ηxy ̸=ηxz). Generalized uncertainty relations preserving
of the equivalence principle were studied in [45].

In the paper, we present a way to recover the weak
equivalence principle in spaces characterized by di�erent
types of deformed algebras, including noncommutative
algebra of a canonical type, noncommutative algebra of
the Lie type, the case of a nonlinear deformed algebra
with an arbitrary deformation function depending on
momentum. The solution of the problem is besed on
the idea of dependence of the parameters of deformed
algebras on mass. It is important to stress the the idea
leads also to recovering the properties of a kinetic energy
and solving the well known soccer-ball problem (the
problem of description of the motion of a macroscopic
body) in a space with the minimal length.

The structure of the paper is as follows. In Secti-
on II, a space with GUP is considered (16), (13) and
the implementation of the weak equivalence principle
in the case of nonlinear deformed algebras is recovered.
In Section III, a noncommutative algebra of a canoni-
cal type is examined. The in�uence of noncommutativi-
ty of coordinates and noncommutativity of momenta on
the E�otv�os parameter for the Sun�Earth�Moon system
is found. Relations for the parameters of nocommutati-
vity with mass for preserving the weak equivalence pri-
nciple are found. The noncommutative algebra which is
rotationally- and time-reversal invariant and does not
lead to a violation of the weak equivalence principle is
studied in Section IV. Implementation of the Galilean
equivalence principle in a space with noncommutative
algebra of the Lie type is considered in Section V. Secti-
on VI is devoted to conclusions.

II. PRESERVING OF THE WEAK
EQUIVALENCE PRINCIPLE IN A SPACE WITH

GUP

A. Motion in a gravitational �eld in a space with
nonlinear deformed algebras

As a �rst step of studying the weak equivalence pri-
nciple in spaces with nonlinear deformed algebras, let us
consider a one-dimensional case of algebra with an arbi-
trary function of deformation dependent on momenta
(16). Relation (16) corresponds to the following deformed

1001-2



DEFORMED HEISENBERG ALGEBRAS OF DIFFERENT TYPES. . .

Poisson bracket

{X,P} = F (
√
β|P |). (22)

For a particle with massm in gravitational �eld V (X),
writing Hamiltonian

H =
P 2

2m
+mV (X), (23)

and taking into account the deformation of the Poisson
brackets, we �nd equations of motion as

Ẋ = {X,H} =
P

m
F (
√
β|P |), (24)

Ṗ = {P,H} = −m∂V (X)

∂X
F (
√
β|P |). (25)

On the basis of the obtained expressions, we can conclude
that even if we consider in (23) the inertial mass, to be
equal to the gravitational mass the motion of a particle
in a gravitation �eld in a space with GUP depends on
its mass and the weak equivalence principle is violated.
From equations (24), (25) follows that the motion of a

particle in a gravitational �eld in the space (16) depends
on its mass. So, deformation of commutation relation
(16) leads to a violation of the weak equivalence princi-
ple.
One faces the same problem in the three-dimensional

case of deformed algebra (13) and deformed Poisson
brackets

{Xi, Pj} = Fij(
√
βP1,

√
βP2,

√
βP3), (26)

{Xi, Xj} = {Pi, Pj} = 0. (27)

Here we would like to note that we use the ordinary Poi-
sson brackets {Xi, Xj} and {Pi, Pj} (27) because in this
case, the deformed algebra (26), (27) is invariant with
respect to translations in the con�guration space. Simi-
larly as in the one-dimensional case we study a particle
with Hamiltonian H =

∑
i P

2
i /2m+mV (X). Using (26),

(27), the equations of motion of the particle in the gravi-
tational �eld read

Ẋi =
∑
i

Pj

m
Fij(

√
βP1,

√
βP2,

√
βP3), (28)

Ṗi = −m
∑
j

∂V (X)

∂Xj
Fij(

√
βP1,

√
βP2,

√
βP3). (29)

On the basis of the obtained results, we conclude that
the weak equivalence principle is violated.
It is important to stress that the deformation of the

commutation relations causes great corrections to the
E�otv�os parameter and a great violation of the weak equi-
valence principle. For instance, in the case of uniform
�eld V (X) = −gX (g is the gravitational acceleration)
equations of motions (24), (25) transform to

Ẋ =
P

m
F (
√
β|P |), (30)

Ṗ = mgF (
√
β|P |), (31)

and the expression for the acceleration written up to the
�rst order in the parameter of deformation is as follows

Ẍ = g + 3F ′(0)g
√
βm|υ|

+ (2F ′′(0)− (F ′(0))2)gβm2υ2, (32)

where F ′(x) = dF/dx, F ′′(x) = d2F/dx2 and υ is a
velocity of motion in gravitational �eld V (X) = −gX in
the case of β = 0. On the basis of (32), for particles with
masses m1, m2 the E�otv�os parameter reads

∆a

a
=

2(Ẍ(1) − Ẍ(2))

Ẍ(1) + Ẍ(2)
= 3F ′(0)|υ|

√
β(m1 −m2)

+ (2F ′′(0)− (F ′(0))2)υ2β(m2
1 −m2

2). (33)

If we consider the minimal length to be equal to the
Planck length ℏ

√
β = lP, we obtain

∆a

a
= 3F ′(0)

|υ|
c

(m1 −m2)

mP

+ (2F ′′(0)− (F ′(0))2)
υ2

c2
(m2

1 −m2
2)

m2
P

, (34)

where c is the speed of light, G is the gravitational
constant, mP is the Planck mass [46].
For bodies with masses m1 = 1 kg, m2 = 0.1 kg and

F (
√
β|P |) = 1 + βP 2, the E�otv�os parameter has large

value ∆a/a ≈ 0.1. Such a violation of the weak equi-
valence principle could be easily seen in an experiment.
But we know that the equivalence principle holds with
hight precision; for instance, from the Lunar Laser rangi-
ng experiment follows ∆a/a = (−0.8± 1.3) · 10−13 [47].
The problem is solved if the parameter of deformation

β is considered to be dependent on mass as follows√
βama = γ = const. (35)

Here constant γ which is the same for di�erent particles,
is introduced [46, 48, 49].
If relation (35) holds the E�otv�os parameter (33) is

equal to zero and equations (24), (25) transform to

Ẋ =
P

m
F

(
γ
|P |
m

)
, (36)

Ṗ

m
= −∂V (X)

∂X
F

(
γ
|P |
m

)
. (37)

In (36), (37) we have that the mass is present only in
expression P/m. So, X(t), P (t)/m do not depend on
mass and the problem of violation of the weak equi-
valence principle is solved [46, 48].
The same conclusion can be made in the three-

dimensional case. In the case of preserving the condition
(35), introducing P ′

i = Pi/m from (28), (29) we have

Ẋi =
∑
j

P ′
jFij (γP

′
1, γP

′
2, γP

′
3) , (38)

Ṗ ′
i = −

∑
j

∂V (X)

∂Xj
Fij (γP

′
1, γP

′
2, γP

′
3) . (39)
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So, the mass is canceled in (38), (39), and the motion in
a gravitational �eld does not depend on mass, the weak
equivalence principle is preserved.
Let us recall that we considered deformed algebra with

ordinary relations for {Xi, Xj}, {Pi, Pj} (27). But even
in the case of a more complicated deformed algebra, the
idea of dependence of parameters of deformation on mass
gives a possibility to recover the weak equivalence princi-
ple. For instance, in the case of the following commutati-
on relations

[Xi, Xj ] = G(P 2)(XiPj −XjPi), (40)

[Xi, Pj ] = f(P 2)δij + F (P 2)PiPj , (41)

[Pi, Pj ] = 0. (42)

Algebra (40)�(42) is a generalization of the well known
Snyder (1)�(3) and Kempf (4)�(6) algebras. Functions
G(P 2), F (P 2), f(P 2) in (40)�(42) cannot be chosen
independently [50]. From the Jacobi identity follows the
following relation

f(F −G)− 2
∂f

∂P
(f + FP 2) = 0. (43)

Let us study the weak equivalence principle in a
quantized space (40)�(42). Considering a particle in a

gravitational �eld with Hamiltonian H =
∑

i
P 2

i

2m +
mV (X) in a space with deformed algebra (40)�(42) and
the parameter of deformation satisfying condition (35),
we can write the equations of motion as follows

Ẋi = P ′
i f̃(γ

2(P ′)2) + γ2
∑
j

∂V (X)

∂Xj
G̃(γ2(P ′)2)

(
XiP

′
j −XjP

′
i

)
, (44)

Ṗ ′
i = −∂V (X)

∂Xi
f̃(γ2(P ′)2)− γ2

∑
j

∂V (X)

∂Xj
F̃ (γ2(P ′)2)P ′

iP
′
j , (45)

where f̃(βP 2), F̃ (βP 2), G̃(βP 2) are dimensionless functions corresponding to f(P 2), F (P 2), G(P 2) respectively. On
the basis of equations (44), (45) we have that the weak equivalence principle is preserved in the general case of the
deformed algebra (40)-(42) due to condition (35) [46].
In the next subsection, in addition we will show that with the help of relation (35) the properties of the kinetic

energy can be preserved within the frame of the deformed algebra.

B. Properties of kinetic energy in a space with GUP and dependence of the parameter of deformation on
mass

Using the relation of momenta with velocity (36), the kinetic energy of a free particle (a body) of mass m in the
space with GUP (22) up to the �rst order in β reads

T =
P 2

2m
=
mẊ2

2
− F ′(0)

√
βm2|Ẋ|Ẋ2 + (5(F ′(0))2 − F ′′(0))

βm3Ẋ4

2
. (46)

On the other hand, from the additivity property for a system of N particles with masses ma that move with the
same velocities, we can write

T =
∑
a

Ta =
mẊ2

2
− F ′(0)

√
β|Ẋ|Ẋ2

∑
a

m2
a + (5(F ′(0))2 − F ′′(0))

βẊ4

2

∑
a

m3
a, (47)

where m =
∑

ama

Ta =
maẊ

2
a

2
− F ′(0)

√
βm2

a|Ẋa|Ẋ2
a + (5(F ′(0))2 − F ′′(0))

βm3
aẊ

4
a

2
, (48)

and we take into account Ẋa = Ẋ. The obtained results (47), (46) are not the same. Note that m2 = (
∑

ama)
2 >∑

am
2
a and m

3 = (
∑

ama)
3 >

∑
am

3
a. Therefore, absolute values of the corrections to the kinetic energy (46) of the

�rst and the second order are bigger than absolute values of the corrections in (47).
It is worth noting that for a system made of N particles with the same masses, we have

T = N
maẊ

2

2
−N2F ′(0)

√
βm2

a|Ẋ|Ẋ2 +N3(5(F ′(0))2 − F ′′(0))
βm3

aẊ
4

2
, (49)

T = NTa = N
maẊ

2

2
−N

(
F ′(0)

√
βm2

a|Ẋ|Ẋ2 − (5(F ′(0))2 − F ′′(0))
βm3

aẊ
4

2

)
, (50)

here we take into account that m = Nma.
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The dependencies of corrections to the kinetic energy on
the number of particles N caused by the deformation
(22) are di�erent in (49) and (50). Analyzing (49) we
have that corrections of the �rst and the second order
in

√
β are proportional to N2 and N3, respectively. The

zero order term in (49) is proportional to N . So, with
an increase in the number of particles in a system (in
a macroscopic body), corrections to the kinetic energy
caused by GUP increase faster than the zero order term.
From this follows that the e�ect of space quantization on
the motion of a macroscopic body is signi�cant [46].
The problem is similar to the problem of macroscopic

bodies in Double Special Relativity, which is well known
as the soccer-ball problem [51�53].
If condition (35) is satis�ed for the parameters of

deformation of particles
√
βama = γ = const and for

the parameter of deformation of a composite system
(macroscopic body)

√
βm = γ = const, the kinetic

energy has additivity property, does not depend on the
composition; besides it is proportional to the mass. On
the basis of (49) and (50) we obtain

T =
mẊ2

2
− F ′(0)γm|Ẋ|Ẋ2

+ (5(F ′(0))2 − F ′′(0))
γ2mẊ4

2
. (51)

So, the problem of the violation of the properties of the
kinetic energy and the soccer-ball problem are solved due
to relation (35).
The same conclusion can be made in all orders in the

parameter of deformation. If condition (35) is satis�ed,
we can rewrite (36) as

Ẋ =
P

m
F

(
γ
|P |
m

)
. (52)

From this equation, we have that P/m is a function of

velocity Ẋ and γ

P

m
= f(Ẋ, γ), (53)

So, P is proportional to mass m. Using relation (53),
we can rewrite the kinetic energy of the particle in the
following form

T =
P 2

2m
=
m(f(Ẋ, γ))2

2
. (54)

Let us consider a system of N particles which move with
the same velocities. This is equivalent to the case of a
body divided into N parts that can be considered as
particles. The kinetic energy of the system according to
the additivity property can be written as

T =
∑
a

Ta =
∑
a

ma(f(Ẋ, γ))
2

2
=
m(f(Ẋ, γ))2

2
. (55)

Here we use notation m for the total mass of the system
m =

∑
ama. Note that we obtain the same result (55)

on the basis of expression (54), substitutingm =
∑

ama.

Another property of kinetic energy, its independence
of composition, is also preserved due to relation (35).
According to (55), the kinetic energy of a system is
proportional to its total mass and does not depend on
its composition as it is in the ordinary space (space
with β = 0). So, besides recovering the weak equivalence
principle, relation (35) gives a possibility to preserve
the properties of kinetic energy in the space with GUP
[46, 48].
Similarly, in a three-dimensional space (26) the kinetic

energy has additivity property and is independent of the
composition if relation (35) is satis�ed. For a free particle
H =

∑
i P

2
i /2m in the space (26) we have

Ẋi = {X,H} =
∑
j

Pj

m
Fij(

√
βP1,

√
βP2,

√
βP3)

=
∑
j

Pj

m
Fij

(
γ
P1

m
, γ
P2

m
, γ
P3

m

)
. (56)

Therefore, if relation (35) holds, the values Pi/m depend

on velocities Ẋi and γ and do not depend on mass

Pi

m
= fi(Ẋ1, Ẋ2, Ẋ3, γ). (57)

So, the kinetic energy of a particle with mass m can be
written as

T =
∑
i

m(fi(Ẋ1, Ẋ2, Ẋ3, γ))
2

2
. (58)

For a system of particles which move with the same
velocities according to the additivity property, we can
write

T =
∑
a

Ta =
∑
a

∑
i

ma(fi(Ẋ1, Ẋ2, Ẋ3, γ))
2

2

=
∑
i

m(fi(Ẋ1, Ẋ2, Ẋ3, γ))
2

2
, (59)

here m =
∑

ama. Result (59) corresponds to (58).
So, the properties of kinetic energy are satis�ed in all
orders in the parameter of deformation if one consi-
ders the dependence of the parameters of deformation
corresponding to particles and macroscopic bodies on
their masses (35) [46].
According to condition (35), parameters of deformati-

on of macroscopic bodies are lower than those
corresponding to elementary particles. From (35) the
parameter of deformation of a macroscopic body reads

β = βE
m2

E

m2
, (60)

where mE, βE are the mass and the parameter of
deformation of an elementary particle. On the basis of
(60), we can conclude that there is a reduction by the
factor m2

E/m
2 of the parameter of macroscopic body

β with respect to the parameter of deformation βE
corresponding to an elementary particle. Because of this
reduction, the problem of macroscopic bodies does not
appear.
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At the end of this section, we would like to note that if
relation (35) is satis�ed for the parameter of deformati-
on of a macroscopic body, the motion of the body in a
gravitational �eld in a space with GUP does not depend
on its mass and composition and the weak equivalence
principle is satis�ed.

III. MOTION IN A GRAVITATIONAL FIELD
IN A NONCOMMUTATIVE PHASE SPACE

A. Recovering the weak equivalence principle in a
space with noncommutativity of coordinates and

noncommutativity of momenta

In a two-dimensional space with noncommutativity
of coordinates and noncommutativity of momenta of a
canonical type, the commutation relations for operators
of coordinates and operators of momenta are as follows

[X1, X2] = iℏθ, (61)

[Xi, Pj ] = iℏδij , (62)

[P1, P2] = iℏη, (63)

where θ, η are parameters of noncommutativity i, j =
(1, 2).

Let us consider the in�uence of noncommutativity of
coordinates and noncommutativity of momenta on thea
motion of a particle in a uniform gravitational �eld with
Hamiltonian

H =
P 2
1

2m
+
P 2
2

2m
−mgX1, (64)

and examine the weak equivalence principle [41, 43, 44].

The Poisson brackets that correspond to relations of
the deformed algebra (61)-(63) read

{X1, X2} = θ, (65)

{Xi, Pj} = δij , (66)

{P1, P2} = η. (67)

The de�nition of the deformed Poisson brackets is as
follows

{f, g} =
∑
i

(
∂f

∂Xi

∂g

∂Pi
− ∂f

∂Pi

∂g

∂Xi

)
+ θ

(
∂f

∂X1

∂g

∂X2
− ∂f

∂X2

∂g

∂X1

)
+ η

(
∂f

∂P1

∂g

∂P2
− ∂f

∂P2

∂g

∂P1

)
. (68)

One obtains the following equations of motion and expressions for the trajectory of the particle in the gravitational
�eld in a noncommutative phase space of a canonical type

Ẋ1 = {X1, H} =
P1

m
, (69)

Ẋ2 = {X2, H} =
P2

m
+mgθ, (70)

Ṗ1 = {P1, H} = mg + η
P2

m
, (71)

Ṗ2 = {P2, H} = −ηP1

m
, (72)

X1(t) =
mυ01
η

sin
η

m
t+

(
m2g

η2
− m2gθ

η
+
mυ02
η

)(
1− cos

η

m
t
)
+X01, (73)

X2(t) =

(
m2g

η2
− m2gθ

η
+
mυ02
η

)
sin

η

m
t− mυ01

η

(
1− cos

η

m
t
)
− mg

η
t+mgθt+X02. (74)

Here we use notations X01, X02, υ01, υ02 for the initial coordinates and velocities of the particle, X1(0) = X01,

X2(0) = X02, Ẋ1(0) = υ01, Ẋ2(0) = υ02.
From the obtained results we can conclude that the motion of a particle in a gravitational �eld depends on its mass.

So, in a noncommutative phase space of a canonical type we also face a problem of violation of the weak equivalence
principle. It can be solved in the case when parameters of noncommutativity depend on mass as

θm = γ = const, (75)

η

m
= α = const, (76)

where γ, α are constants that have the same values for di�erent particles [43]. Using (75), (76), (73), (74), we have
that the mass is canceled in the expressions for the trajectory of a particle in a gravitational �eld in a noncommutative
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phase space

X1(t) =
υ01
α

sinαt+
( g
α2

− gγ

α
+
υ02
α

)
(1− cosαt) +X01, (77)

X2(t) =
( g
α2

− gγ

α
+
υ02
α

)
sinαt− υ01

α
(1− cosαt)− g

α
t+ γgt+X02. (78)

and the problem of violation of the weak equivalence principle is solved [43].

Here it is worth adding that in the case of a space with
noncommutativity of coordinates θ ̸= 0, η → 0 on the
basis of (73), (74), we have that the trajectory of a parti-
cle in a uniform �eld is not a�ected by noncommutativity
X1(t) = gt2/2 + υ01t+X01, X2(t) = υ02t+X02, but for
the momenta we have the following expressions P1 =
mẊ1, P2 = m(Ẋ2 + mgθ). Note, that the momentum
P2 is not proportional to mass. It is also worth menti-
oning that for η → 0 expressions (73), (74) transform
to the well known result for the trajectory of a parti-
cle in a uniform gravitational �eld in the ordinary space,
X1(t) = gt2/2 + υ01t+X01, X2(t) = υ02t+X02. At the
same time, if relation (75) is satis�ed, the proportionality

of momentum to mass is recovered P2 = m(Ẋ2 + γg).

Let us consider a more general case. Let us study the
motion of a composite system in a nonuniform gravitati-
onal �eld in a noncommutative phase space and exami-
ne the weak equivalence principle. For this purpose, we
need to generalize relations of noncommutative algebra
for coordinates and momenta for di�erent particles. We
have

{X(a)
1 , X

(b)
2 } = δabθa, (79)

{X(a)
i , P

(b)
j } = δabδij , (80)

{P (a)
1 , P

(b)
2 } = δabηa, (81)

where indices a, b label the particles, X
(a)
i , P

(a)
i are

coordinates and momenta of the particle with index
a, i = (1, 2), j = (1, 2). In (79)�(81) we consider a
general case when coordinates and momenta of di�erent
particles satisfy a noncommutative algebra with di�erent
parameters of noncommutativity. We use notations θa, ηa
for the parameters of noncommutativity corresponding
to a particle with index a. Also, in (79)�(81) we assume
that the Poisson brackets for coordinates and momenta
corresponding to di�erent particles are equal to zero.

Let us consider a composite system made of N
particles with masses ma. De�ning the coordinates
and momenta of the center-of-mass, coordinates and
momenta of the relative motion as in the ordinary space

P̃ =
∑
a

P(a), X̃ =
∑
a

µaX
(a), (82)

∆Pa = P(a) − µaP̃, ∆X(a) = X(a) − X̃, (83)

(here X(a) = (X
(a)
1 , X

(a)
2 ), P(a) = (P

(a)
1 , P

(a)
2 ), µa =

ma/
∑

bmb) and using (79)�(81), one obtains the follow-

ing relations

{X̃1, X̃2} = θ̃, {P̃1, P̃2} = η̃, (84)

{X̃i, P̃j} = {∆Xi,∆Pj} = δij , (85)

{∆X(a)
1 ,∆X

(b)
2 } = −{∆X(a)

2 ,∆X
(b)
1 }

= δabθa − µaθa − µbθb + θ̃, (86)

{∆P (a)
1 ,∆P

(b)
2 } = −{∆P (a)

2 ,∆P
(b)
1 }

= δabηa − µbηa − µaηb + µaµbη̃. (87)

Parameters θ̃, η̃ are de�ned as

θ̃ =

∑
am

2
aθa

(
∑

bmb)2
, (88)

η̃ =
∑
a

ηa, (89)

and are called e�ective parameters of noncommutativi-
ty. So, coordinates and momenta of the center-of-mass
of a composite system satisfy a noncommutative algebra
with e�ective parameters which depend on the masses of
particles forming it and on parameters of noncommutati-
vity θa, ηa [43]. It is important that the motion of the
center-of-mass is not independent of the relative motion
because of relations

{X̃1,∆X
(a)
2 } = −{X̃2,∆X

(a)
1 } = µaθa − θ̃, (90)

{P̃1,∆P
a
2 } = −{P̃2,∆P

a
1 } = ηa − µa

∑
b

ηb. (91)

The situation changes if we consider conditions on the
parameters of noncommutativity (75), (76). In this case

{X̃1,∆X
(a)
2 } = −{X̃2,∆X

(a)
1 } = 0, (92)

{P̃1,∆P
a
2 } = −{P̃2,∆P

a
1 } = 0, (93)

and we have that the motion of the center-of-mass is
independent of the relative motion. Also due to relations
(75), (76), the e�ective parameters of noncommutativi-
ty do not depend on the masses of particles forming the
system or its composition. Using (88), (89) and consi-
dering conditions (75), (76), we obtain that the e�ective
parameter of coordinate noncommutativity is proporti-
onal inversely to the total mass of the system

θ̃ =
γ

M
. (94)
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The e�ective parameter of momentum noncommutativi-
ty is proportional to the total mass of the system

η̃ = αM. (95)

So, conditions (75), (76) are also satis�ed for e�ective
parameters of noncommutativity [43].
Let us examine the motion of a composite system in

a gravitational �eld in a noncommutative phase space
of a canonical type taking into account the obtained
results and conclusions about features of noncommutati-
ve algebra for coordinates and momenta of the center-of-
mass and relative motion. We study the following Hami-
ltonian

H =
P̃2

2M
+MV (X̃1, X̃2) +Hrel. (96)

Coordinates and momenta of the center-of-mass X̃i,
P̃i (82) satisfy noncommutative algebra (84), (85) with

parameters θ̃, η̃ given by (88), (89), M is the total mass
of the system, the term Hrel corresponds to the relative
motion.

If parameters of noncommutativity are related with
mass (75), (76), the Poisson brackets for coordinates and
momenta of the center-of-mass and relative motion are
equal to zero (92), (93), therefore,{

P̃2

2M
+MV (X̃1, X̃2), Hrel

}
= 0. (97)

So, the equations of motion for the center-of-mass of a
composite system in a gravitational �eld read

˙̃X1 =
P1

M
+Mθ̃

∂V (X̃1, X̃2)

∂X̃2

=
P1

M
+ γ

∂V (X̃1, X̃2)

∂X̃2

, (98)

˙̃X2 =
P2

M
−Mθ̃

∂V (X̃1, X̃2)

∂X̃1

=
P2

M
− γ

∂V (X̃1, X̃2)

∂X̃1

, (99)

˙̃P1 = −M ∂V (X̃1, X̃2)

∂X̃1

+ η̃
P2

M
= −M ∂V (X̃1, X̃2)

∂X̃1

+ αP2, (100)

˙̃P2 = −M ∂V (X̃1, X̃2)

∂X̃2

− η̃
P1

M
= −M ∂V (X̃1, X̃2)

∂X̃2

− αP1. (101)

Note that if conditions (75), (76) are not satis�-
ed, the equations of motion of a composite system in
a gravitational �eld depend on e�ective parameters of
noncommutativity (88), (89), within are determined by
the masses and parameters of noncommutativity of parti-
cles forming the system and depend on its composition.
This causes a violation of the weak equivalence princi-
ple. If relations (75), (76) are preserved, the weak equi-
valence principle holds, the motion of a composite system
(a body) in a gravitational �eld depends on the constants
γ, α and does not depend on its mass or composition [43].

Also, due to conditions (75), (76) the properties of the
kinetic energy are preserved in a noncommutative phase

space of a canonical type. This will be shown in the next
Subsection.

B. Motion of a composite system in a gravitational
�led and the properties of kinetic energy

Let us consider a composite system which is made ofN
particles that move with the same velocities. On the basis
of (69)�(72), considering the case when the in�uence of
relative motion on the motion of the center-of-mass of the
system is small, for the composite system in a uniform
gravitational �eld we can write

P̃1 =Mυ̃01 cos
η̃

M
t+ (Mυ̃02 +

M2g

η̃
−M2gθ̃) sin

η̃

M
t, (102)

P̃2 = −Mυ̃01 sin
η̃

M
t+ (Mυ̃02 +

M2g

η̃
−M2gθ̃) cos

η̃

M
t− M2g

η̃
, (103)

where M is the total mass of the system, θ̃, η̃ are e�ective parameters of noncommutativity corresponding to the

system (88), (89), υ̃01, υ̃02 are initial velocities of the center-of-mass of the system,
˙̃X1(0) = ˙̃υ01, X̃2(0) = υ̃02. Using
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(102)�(103), the kinetic energy of the system can be written in the following form

T =
P̃ 2
1

2M
+
P̃ 2
2

2M
= T0 + g2M3

(
1

η̃2
+
θ̃2

2
− θ̃

η̃

)
+M2gυ̃02

(
1

η̃
− θ̃

)

+
M2g

η̃

(
υ̃01 sin

η̃

M
t+

(
Mg

η̃
−Mgθ̃ + υ̃02

)
cos

η̃

M
t

)
. (104)

According to the additivity property, taking into account that the velocities of particles are the same, we can write

T =
∑
a

Ta =
∑
a

(P
(a)
1 )2

2ma
+

(P
(a)
2 )2

2ma

=
∑
a

[
T0a + g2m3

a

(
1

η2a
+
θ2a
2

− θa
ηa

)
+m2

agυ̃02

(
1

ηa
− θa

)

+
m2

ag

ηa

(
υ̃01 sin

ηa
ma

t+

(
mag

ηa
−magθa + υ̃02

)
cos

ηa
ma

t

)]
. (105)

Expression (105) does not correspond to (104). The properties of kinetic energy are violated in a noncommutative
phase space. Namely, if parameters of noncommutativity are considered to be the same for di�erent particles, one
faces a problem of nonadditivity of the kinetic energy and its dependence on composition. Considering conditions
(75), (76), we can rewrite (104), (105) as

T = T0 +
∑
a

ma

[
g2
(

1

α2
+
γ2

2
− γ

α

)
+ gυ̃02

(
1

α
− γ

)
.+

g

α

(
υ̃01 sinαt+

( g
α
− gγ + υ̃02

)
cosαt

)]
. (106)

On the basis of (106), we can conclude that the addi-
tivity property of kinetic energy is preserved and the
kinetic energy of a composite system does not depend
on its composition [43].
So, besides preserving the weak equivalence principle

in a noncommutative phase space of a canonical type,
conditions (75), (76) give a possibility to recover the
properties of kinetic energy, to consider the motion of
the center-of-mass independently of the relative motion
[41, 43, 54].
In the next Subsection, using the obtained results we

study the e�ect of noncommutativity of coordinates and
noncommutativity of momenta on the weak equivalence
principle considering the Sun�Earth�Moon system.

C. E�ect of noncommutativity on the E�otv�os
parameter

According to the Lunar laser ranging experiment, the
weak equivalence principle holds with accuracy

∆a

a
=

2(aE − aM)

aE + aM
= (−0.8± 1.3) · 10−13, (107)

(see [47]). In (107) aE, aM are the free fall accelerati-
ons of Earth and the Moon toward the Sun when the
bodies are at the same distance from the source of gravi-
ty. On the basis of this result, one can examine condi-
tions for the parameters of coordinates and momentum

noncommutativity (75), (76) proposed for preserving the
weak equivalence principle. For this purpose, we study
the in�uence of noncommutativity of coordinates and
noncommutativity of momenta on the motion of Earth
and the Moon in the gravitational �eld of the Sun.

We consider the following Hamiltonian

H =
(PE)2

2mE
+

(PM)2

2mM
−G

mEmS

RES

− G
mMmS

RMS
−G

mMmE

REM
. (108)

The distances between bodies RES, RMS, REM in the
case when the Sun is considered to be at the origin of
the coordinate system read

RES =
√
(XE

1 )
2 + (XE

2 )
2,

(109)

RMS =
√

(XM
1 )2 + (XM

2 )2,

REM =
√

(XE
1 −XM

1 )2 + (XE
2 −XM

2 )2. (110)
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Coordinates and momenta XE
i , X

M
i , PE

i , P
M
i correspond

to Earth and the Moon, G is the gravitational constant,
mS, mE, mM are the masses of the Sun, Earth and the
Moon, respectively. It is worth noting that in (108) we
consider the case when the inertial mass o� Earth (mass

in the �rst term) is equal to its gravitational mass (mass
in the third and the �fth terms), also the inertial mass of
the Moon (mass in the second term) is equal to its gravi-
tational mass (mass in the fourth and the �fth terms).

In noncommutative phase space of canonical type we have the following Poisson brackets

{XE
1 , X

E
2 } = θE, {PE

1 , P
E
2 } = ηE, {XE

i , P
E
j } = δij , (111)

{XM
1 , X

M
2 } = θM, {PM

1 , PM
2 } = ηM, {XM

i , P
M
j } = δij , (112)

{XM
i , X

E
j } = {PM

i , PE
j } = 0, (113)

θE, θM, ηE, ηM are parameters of coordinates and momentum noncommutativity corresponding to Earth and the
Moon. Taking this into account we can write equations of motion [44]

ẊE
1 =

PE
1

mE
+ θE

GmEmSX
E
2

R3
ES

+ θE
GmEmM(XE

2 −XM
2 )

R3
EM

, (114)

ẊE
2 =

PE
2

mE
− θE

GmEmSX
E
1

R3
ES

− θE
GmEmM(XE

1 −XM
1 )

R3
EM

, (115)

ṖE
1 = ηE

PE
2

mE
− GmEmSX

E
1

R3
ES

− GmEmM(XE
1 −XM

1 )

R3
EM

, (116)

ṖE
2 = −ηE

PE
1

mE
− GmEmSX

E
2

R3
ES

− GmEmM(XE
2 −XM

2 )

R3
EM

, (117)

ẊM
1 =

PM
1

mM
+ θM

GmMmSX
M
2

R3
MS

− θM
GmEmM(XE

2 −XM
2 )

R3
EM

, (118)

ẊM
2 =

PM
2

mM
− θM

GmMmSX
E
1

R3
MS

+ θM
GmEmM(XE

1 −XM
1 )

R3
EM

, (119)

ṖM
1 = ηM

PM
2

mM
− GmMmSX

M
1

R3
MS

+
GmEmM(XE

1 −XM
1 )

R3
EM

, (120)

ṖM
2 = −ηM

PM
1

mM
− GmMmSX

M
2

R3
MS

+
GmEmM(XE

2 −XM
2 )

R3
EM

. (121)

On the basis of these equations accelerations of Earth and the Moon can be found. Up to the �rst order in the
parameters of coordinate and momentum noncommutativity we obtain

ẌE
1 = −GmSX

E
1

R3
ES

− GmM(XE
1 −XM

1 )

R3
EM

+ ηE
ẊE

2

mE
+ θE

GmSmEẊ
E
2

R3
ES

+ θE
GmMmE

R3
EM

(ẊE
2 − ẊM

2 )− θE
3GmSmE

R5
ES

(RES · ṘES)X
E
2

− θE
3GmMmE

R5
EM

(REM · ṘEM)(XE
2 −XM

2 ),

(122)

ẌM
1 = −GmSX

M
1

R3
MS

+
GmE(X

E
1 −XM

1 )

R3
EM

+ ηM
ẊM

2

mM
+ θM

GmSmMẊ
M
2

R3
MS

− θM
GmMmE

R3
EM

(ẊE
2 − ẊM

2 )− θM
3GmSmM

R5
MS

(RMS · ṘMS)X
M
2

+ θM
3GmMmE

R5
EM

(REM · ṘEM)(XE
2 −XM

2 ),

(123)

where RES(X
E
1 , X

E
2 ), RMS(X

M
1 , X

M
2 ), REM(XE

1 −XM
1 , X

E
2 −XM

2 ) [44].
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In the case when the distance from the bodies to the Sun is the same, we can write RMS = RES = R. For
convenience we consider the X1 axis to pass through the middle of REM and to be perpendicular to REM, the X2

axis to be parallel to the REM. Let us remind that we have chosen the origin of the frame of references to be at the
Sun's center. So, taking into account that REM/R ∼ 10−3, one obtains

XE
1 = XM

1 = R

√
1−

R2
EM

4R2
≃ R, XE

2 = −XM
2 =

REM

2
. (124)

Note that

ẊE
1 = 0, ẊM

1 = υM, ẊE
2 = ẊM

2 = υE, (125)

where υM, υE are the orbital velocities of the Moon and Earth. So, the free fall accelerations of the Moon and Earth
toward the Sun in the case when the bodies are at the same distance to it read

aE = ẌE
1 = −GmS

R2
+ ηE

υE
mE

+ θE
GmSmEυE

R3

(
1− 3REM

2υER2
(RES · ṘES)

)
, (126)

aM = ẌM
1 = −GmS

R2
+ ηM

υE
mM

+ θM
GmSmMυE

R3

(
1 +

3REM

2υER2
(RMS · ṘMS)

)
. (127)

We have REM/R ∼ 10−3, υM/υE ∼ 10−2, therefore

3REM(RES · ṘES)

2υER2
∼ 10−6,

3REM(RMS · ṘMS)

2υER2
∼ 10−5, (128)

and the last terms in the expressions for the accelerati-
ons (126), (127) can be neglected. So, for the E�otv�os
parameter for Earth and the Moon in a noncommutative
phase space we obtain the following result

∆a

a
=

υER
2

GmS

(
ηE
mE

− ηM
mM

)
+
υE
R

(θEmE − θMmM)

=
∆aη

a
+

∆aθ

a
, (129)

where ∆aη/a, ∆aθ/a are corrections to the E�otv�os
parameter caused by the coordinate noncommutativity
and momentum noncommutativity

∆aη

a
=
υER

2

GmS

(
ηE
mE

− ηM
mM

)
, (130)

∆aθ

a
=
υE
R

(θEmE − θMmM) , (131)

respectively.
It is important to stress that even if we consider

the inertial masses of the bodies to be equal to their
gravitational masses [see (108)], the E�otv�os parameter
is not equal to zero. Noncommutativity of coordinates
and noncommutativity of momenta causes the violation
of the weak equivalence principle. In addition, it is worth
emphasizing that parameters θE, ηE, θM, ηM correspond
to macroscopic bodies; they are e�ective parameters of
noncommutativity which depend on the composition of
the bodies and are de�ned as (88), (89). So, even for two
bodies with the same masses but di�erent compositions
the E�otv�os-parameter is not equal to zero [44].

Let us introduce constants

αE =
ηE
mE

, αM =
ηM
mM

,

(132)

γE = θEmE, γM = θMmM,

and estimate the values |αE − αM|, |γE − γM| on the
basis of the Lunar laser ranging experiment results [47].
We assume that the following inequality is satis�ed∣∣∣∣∆aθ +∆aη

a

∣∣∣∣ ≤ 2.1 · 10−13. (133)

Here 2.1 · 10−13 is the largest value in (107) [47]. To
estimate the orders of the values |αE−αM|, |γE−γM| we
consider inequalities∣∣∣∣∆aθa

∣∣∣∣ ≤ 10−13,

∣∣∣∣∆aηa
∣∣∣∣ ≤ 10−13. (134)

From the inequalities, using (130), (131), we �nd [44]

|αE − αM| ≤ 10−20 s−1, |γE − γM| ≤ 10−7 s. (135)

It is important to stress that considering conditions
on the parameters of noncommutativity proposed in the
previous section, namely, assuming that αE = αM, γE =
γM, we obtain that the E�otv�os parameter for Earth and
the Moon (129) is equal to zero. So, the weak equivalence
principle is preserved in a noncommutative phase space
of a canonical type.
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IV. QUANTIZED SPACE WITH PRESERVED
ROTATIONAL AND TIME-REVERSAL

SYMMETRIES AND WEAK EQUIVALENCE
PRINCIPLE

A. Rotationally-invariant noncommutative algebra
of a canonical type

In a six-dimensional noncommutative phase space of a
canonical type (a three dimensional con�guration space
and a three dimensional momentum space) (18)�(20),
the rotational and time reversal symmetries are not
preserved [55].
Algebra which is rotational invariant and equivalent

to a noncommutative algebra of a canonical type and
does not cause the time reversal symmetry breaking, was
proposed in [55]. It reads

[Xi, Xj ] = iℏθij = icθ
∑
k

εijkp
a
k, (136)

[Xi, Pj ] = iℏ(δij + γij) (137)

= iℏ
(
δij +

cθcη
4ℏ2

(pa · pb)δij −
cθcη
4ℏ2

paj p
b
i

)
,

[Pi, Pj ] = iℏηij = icη
∑
k

εijkp
b
k. (138)

The algebra is constructed, considering tensors of
noncommutativity de�ned as

θij =
cθ
ℏ
∑
k

εijkp
a
k, (139)

ηij =
cη
ℏ
∑
k

εijkp
b
k, (140)

here pai , p
b
i are additional momenta, cθ, cη are constants,

limℏ→0 cθ/ℏ = const, limℏ→0 cη/ℏ = const [55]. From
the symmetric representation of noncommutative coordi-
nates and noncommutative momenta (see, for instance,
[25, 56, 57] ) follows that parameters σij are de�ned as
σij =

∑
k θikηjk/4. So, using (139), (140), we obtain

σij =
cθcη
4ℏ2

(pa · pb)δij −
cθcη
4ℏ2

paj p
b
i . (141)

The symmetric representation for noncommutative
coordinates and noncommutative momenta reads

Xi = xi +
1

2
[θ × p]i, Pi = pi −

1

2
[η × x]i. (142)

Coordinates and momenta xi, pi satisfy the ordinary
commutation relations

[xi, xj ] = [pi, pj ] = 0, [xi, pj ] = iℏδij . (143)

In (142) we use notations θ = (θ1, θ2, θ3), η = (η1, η2, η3)

θi =
∑
jk

εijkθjk
2

=
cθp

a
i

ℏ
,

(144)

ηi =
∑
jk

εijkηjk
2

=
cηp

b
i

ℏ
.

Additional momenta pai , p
b
i and additional coordi-

nates ai, bi satisfy the ordinary commutation relations
[ai, aj ] = [bi, bj ] = [ai, bj ] = 0, [pai , p

a
j ] = [pbi , p

b
j ] =

[pai , p
b
j ] = 0, [ai, p

a
j ] = [bi, p

b
j ] = iℏδij , [ai, pbj ] = [bi, p

a
j ] =

0, [ai, Xj ] = [ai, Pj ] = [pbi , Xj ] = [pbi , Pj ] = 0. So, the
tensors of noncommutativity commute with coordinates
and momenta

[θij , Xk] = [θij , Pk] = [ηij , Xk] = [ηij , Pk] = 0,(145)

[σij , Xk] = [σij , Pk] = 0. (146)

The same relations (145), (146) are satis�ed within the
frame of the noncommutative algebra of a canonical type
(18)�(20). In this sense, algebra (136)-(138) is equivalent
to (18)-(20) [55].
To preserve the rotational symmetry, additional

coordinates and momenta ai, bi, p
a
i , p

b
i have to be

governed by rotationally-symmetric systems. For simpli-
city, in [55] these systems were considered to be harmonic
oscillators

Ha
osc =

(pa)2

2mosc
+
mosc ω

2
osca

2

2
,

(147)

Hb
osc =

(pb)2

2mosc
+
mosc ω

2
oscb

2

2
,

with
√
ℏ/√moscωosc = lP and very large frequency ωosc

(oscillators put into the ground states remain in the
states) [55].

B. Particle in a gravitational �eld in a
noncommutative phase space with preserved
rotational and time reversal symmetries

Let us study the motion of a particle in a uniform �eld
within the frame of the algebra (136)�(138) and examine
the weak equivalence principle. We consider the following
Hamiltonian

HP =
P2

2m
+mgX1, (148)

here m is the mass of the particle, g is the free fall
acceleration. The X1 axis is chosen to correspond to the
�eld direction. Coordinates and momenta of the parti-
cle satisfy relations of noncommutative algebra (136)�
(138) which contain additional momenta. So, to study
the motion of the particle in a gravitational �eld, we
have to take into account additional terms correspondi-
ng to harmonic oscillators. Therefore, we consider the
total Hamiltonian as follows

H = HP +Ha
osc +Hb

osc. (149)

It is convenient to use representation (142) and rewrite
the Hamiltonian in the following form

H =
p2

2m
+mgx1 −

(η · L)
2m

+
mg

2
[θ × p]1

+
[η × x]2

8m
+Ha

osc +Hb
osc, (150)
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here L = [x × p]. The Hamiltonian also can be
represented as

H = H0 +∆H, (151)

H0 = ⟨HP⟩ab +Ha
osc +Hb

osc, (152)

∆H = H −H0 = HP − ⟨HP⟩ab, (153)

where ⟨...⟩ab = ⟨ψa
0,0,0ψ

b
0,0,0|...|ψa

0,0,0ψ
b
0,0,0⟩, ψa

0,0,0, ψ
b
0,0,0

are the well known eigenfunctions of the harmonic osci-
llators Ha

osc, H
b
osc in the ground states.

For a particle in a uniform �eld, we have

H0 =
p2

2m
+mgx1 +

⟨η2⟩x2

12m
+Ha

osc +Hb
osc, (154)

∆H = − (η · L)
2m

+
mg

2
[θ × p]1

+
[η × x]2

8m
− ⟨η2⟩x2

12m
. (155)

To �nd these expressions, the following results are used

⟨ψa
0,0,0|θi|ψa

0,0,0⟩ = 0, ⟨ψb
0,0,0|ηi|ψb

0,0,0⟩ = 0, (156)

⟨θ2⟩ =
∑
i

⟨θ2i ⟩ =
∑
i

c2θ
ℏ2

⟨ψa
0,0,0|(pai )2|ψa

0,0,0⟩ =
3c2θ
2l2P

,(157)

⟨η2⟩ =
∑
i

⟨η2i ⟩ =
∑
i

c2η
ℏ2

⟨ψb
0,0,0|(pbi )2|ψb

0,0,0⟩ =
3c2η
2l2P

.(158)

In [58] it was shown that the corrections to H0 caused by
term∆H vanish up to the second order of the perturbati-
on theory. So, up to the second order in ∆H (or up to the
second order in the parameters of noncommutativity),
we can study Hamiltonian (154) and write the following
equations of motion

ẋi =
pi
m
, ṗi = −mgδi,1 −

⟨η2⟩xi
6m

. (159)

Ther solution of the equations with initial conditions
xi(0) = x0i, ẋi(t) = υ0i reads [59]

xi(t) =

(
x0i + 6g

m2

⟨η2⟩
δ1,i

)
cos

(√
⟨η2⟩
6m2

t

)

+ υ0i

√
6m2

⟨η2⟩
sin

(√
⟨η2⟩
6m2

t

)
− 6g

m2

⟨η2⟩
δ1,i.(160)

From this result, we can conclude that up to the second
order in the parameters of noncommutativity the motion

of a particle in a uniform gravitational �eld is not a�ected
by noncommutativity of coordinates. Also, it is worth
noting that in limit ⟨η2⟩ → 0 from (160) we �nd the well
known result xi(t) = δ1,igt

2/2 + x0i, which corresponds
to the motion of a particle in a gravitational �eld in the
ordinary space.
It is important to mention, that the trajectory of a

particle in a gravitational �eld (160) depends on its
mass. So, the weak equivalence principle is violated in
a noncommutative phase space of a canonical type with
preserved rotational and time reversal symmetries.
Note that if we consider the tensor of momentum

noncommutativity to be dependent on mass as

ηij = α̃mℏ
∑
k

εijkp
b
k, (161)

namely, if constant c
(n)
η in (140) satis�es condition

c
(n)
η

mn
= α̃ = const, (162)

(here α̃ is the same for di�erent particles), the motion
of a particle in a uniform �eld does not depend on mass
and the weak equivalence principle is recovered [59, 60].
From (162) follows that

⟨η2⟩
m2

=
3α̃2

2l2P
= B = const, (163)

and the trajectory of a particle reads

xi(t) =

(
x0i +

6g

B
δ1,i

)
cos

(√
B

6
t

)

+ υ0i

√
6

B
sin

(√
B

6
t

)
− 6g

B
δ1,i. (164)

In the case of a non-uniform gravitational �eld for a
particle with mass m, we consider the following Hami-
ltonian

H = HP +Ha
osc +Hb

osc, HP =
P 2

2m
− GM̃m

X
, (165)

here X =
√∑

iX
2
i . The Hamiltonian HP written in

representation (142) up to the second order in the
parameters of noncommutativity has the following form

HP =
p2

2m
− GM̃m

x
− (η · L)

2m
+

[η × x]2

8m
− GM̃m√

x2 − (θ · L) + [θ×p]2

4

=
p2

2m
− GM̃m

x
− (η · L)

2m
+

[η × x]2

8m

− GM̃m

2x3
(θ · L)− 3GM̃m

8x5
(θ · L)2 + GM̃m

16

(
1

x2
[θ × p]2

1

x
+

1

x
[θ × p]2

1

x2
+

ℏ2

x7
[θ × x]2

)
, (166)
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where x = |x| (the details of calculations of the expansion can be found in [61]). So, for ∆H we have

∆H = − (η · L)
2m

+
[η × x]2

8m
− ⟨η2⟩x2

12m
− GM̃m

2x3
(θ · L) + GM̃mL2⟨θ2⟩

8x5
(167)

+
GM̃m

16

(
1

x2
[θ × p]2

1

x
+

1

x
[θ × p]2

1

x2
+

ℏ2

x7
[θ × x]2

)
− 3GM̃m

8x5
(θ · L)2 − GM̃m⟨θ2⟩

24

(
1

x2
p2

1

x
+

1

x
p2

1

x2
+

ℏ2

x5

)
.

Up to the second order in the parameters of noncommutativity to study the motion of a particle in a nonuniform
gravitational �eld, we can consider the following Hamiltonian

H0 =
p2

2m
− GM̃m

x
+

⟨η2⟩x2

12m
− GM̃mL2⟨θ2⟩

8x5
+
GM̃m⟨θ2⟩

24

(
2

x3
p2 +

6iℏ
x5

(x · p)− ℏ2

x5

)
+Ha

osc +Hb
osc, (168)

and �nd the following equations of motion

ẋ =
p

m
− GM̃m⟨θ2⟩

12

(
1

x3
p− 3x

x5
(x · p)

)
, (169)

ṗ = −GM̃mx

x3
− ⟨η2⟩x

6m
− GM̃m⟨θ2⟩

4

(
1

x5
(x · p)p− 2x

x5
p2 +

5x

2x7
L2 +

5ℏ2x
6x7

− 5iℏ
x7

x(x · p)
)
.

(170)

These equations in the classical limit (ℏ → 0) transform to

ẋ = p′ − GM̃m2⟨θ2⟩
12

(
1

x3
p′ − 3x

x5
(x · p′)

)
, (171)

ṗ′ = −GM̃x

x3
− ⟨η2⟩x

6m2
− GM̃m2⟨θ2⟩

4

(
1

x5
(x · p′)p′ − 2x

x5
(p′)2 +

5x

2x7
[x× p′]2

)
, (172)

here p′ = p/m [59]. Let us consider the dependence of the tensor of coordinates noncommutativity on mass as follows

c
(n)
θ mn = γ̃ = const, (173)

θij =
γ̃

m
ℏ
∑
k

εijkp
a
k, (174)

⟨θ2⟩m2 =
3γ̃2

2l2P
= A = const, (175)

where constants A, γ̃ are the same for di�erent particles. So, in the case when the relations (162), (173) hold, from
(169), (170) we obtain

ẋ = p′ − GM̃B

12

(
1

x3
p′ − 3x

x5
(x · p′)

)
, (176)

ṗ′ = −GM̃x

x3
− Bx

6
− GM̃A

4

(
1

x5
(x · p′)p′ − 2x

x5
(p′)2 +

5x

2x7
[x× p′]2 +

5ℏ2x
6m2x7

− 5iℏ
mx7

x(x · p′)

)
. (177)

In the classical limit, on the basis of (176), (177) we �nd

ẋ = p′ − GM̃A

12

(
1

x3
p′ − 3x

x5
(x · p′)

)
, (178)

ṗ′ = −GM̃x

x3
− Bx

6
− GM̃A

4

(
1

x5
(x · p′)p′ − 2x

x5
(p′)2 +

5x

2x7
[x× p′]2

)
. (179)
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The equations of motion of a particle in a gravitational �-
eld in the quantum case (176), (177) depend on the ratio
ℏ/m, as it has to be. This is caused by the dependence of

the commutation relation on mass [x,p′] = iℏÎ/m [62].
Classical equations of motion (178), (179) do not depend
on mass. So, the weak equivalence principle is satis�-
ed in a noncommutative phase space with preserved
rotational and time reversal symmetries if tensors of
noncommutativity are related with mass (162), (173)
[59].
It is worth noting that the conditions (162), (173)

considered in this section are in agreement with those
presented in section III (76), (75) to recover the weak
equivalence principle in noncommutative phase space of
a canonical type.

V. WEAK EQUIVALENCE PRINCIPLE
WITHIN THE FRAME OF THE

NONCOMMUTATIVE ALGEBRA OF THE LIE
TYPE

A. The Lie algebra with space coordinates
commuting to time and the weak equivalence

principle

Let us study the motion of a particle in a gravitational
�eld in a space with noncommutativity of the Lie type
in the case when space coordinates commute to time

[Xi, Xj ] =
iℏt
κ

(δiρδjτ − δiτδjρ) , (180)

[Xi, Pj ] = iℏδij , [Pi, Pj ] = 0, (181)

here i, j = (1, 2, 3), indexes ρ, τ are �xed and di�erent,
κ is a parameter [35, 63]. The deformed Poisson brackets
corresponding to (180)-(181) are as follows

{Xi, Xj} =
t

κ
(δiρδjτ − δiτδjρ) , (182)

{Xi, Pj} = δij , {Pi, Pj} = 0, (183)

(see [35]).
For a particle with mass m in a gravitational �eld V =

V (X1, X2, X3), the Hamiltonian reads

H =
P2

2m
+mV (X1, X2, X3). (184)

Taking into account (182), (183), we can write equations
of motion as follows

Ẋi = {Xi, H} =
Pi

m
+
tm

κ

∂V

∂Xk
(δiρδkτ − δiτδkρ) , (185)

Ṗi = {Pi, H} = −m ∂V

∂Xi
, (186)

(see [35, 64]). Note that in (185) because of
noncommutativity of the Lie type, we have a term
proportional to mass m. Therefore the weak equivalence
principle is violated. Similarly as in a noncommutative

space of a canonical type, let us consider the dependence
of the parameter of the noncommutative algebra on mass
and write the following condition

κ

m
= γκ = const, (187)

here γκ does not depend on mass and is the same for
di�erent particles. Taking into account relation (187),
the equations of motion of a particle in a gravitational
�eld can be rewritten as

Ẋi = P ′
i +

t

γκ

∂V

∂Xk
(δiρδkτ − δiτδkρ) , Ṗ

′
i = − ∂V

∂Xi
, (188)

where P ′
i = Pi/m. So, on the basis of the obtained result,

we have that Xi(t), P
′
i (t) do not depend on mass and the

weak equivalence principle is recovered if condition (187)
is satis�ed [64].
Let us also study the case of the motion of a composi-

te system in a gravitational �eld and examine the weak
equivalence principle. For coordinates and momenta of
di�erent particles, the noncommutative algebra of the
Lie type (182), (183) can be generalized as

{X(a)
i , X

(b)
j } =

t

κa
(δiρδjτ − δiτδjρ) δab, (189)

{X(a)
i , P

(b)
j } = δabδij , {P (a)

i , P
(b)
j } = 0, (190)

here X
(a)
i , P

(a)
i , κa are coordinates, momenta and

parameters of the noncommutative algebra correspondi-
ng to the particle with index a [64]. The noncommutati-
ve algebra for coordinates and momenta of the center-
of-mass, coordinates and momenta of the relative moti-
on introduced in the traditional way (P̃ =

∑
a P

(a),

X̃ =
∑

a µaX
(a), ∆Pa = P(a)−µaP̃, ∆X(a) = X(a)−X̃,

µa = ma/M , M =
∑

ama) is as follows

{X̃i, X̃j} = t
∑
a

µ2
a

κa
(δiρδjτ − δiτδjρ) , (191)

{X̃i, P̃j} = δij , {P̃i, P̃j} = 0 (192)

{∆X(a)
i ,∆X

(b)
j } = t

(
δab

κa
− µa

κa
− µb

κb
+
∑
c

µ2
c

κc

)
× (δiρδjτ − δiτδjρ) , (193)

{∆X(a)
i ,∆P

(b)
j } = δab − µb, (194)

{∆X(a)
i , X̃j} = t

(
µa

κa
−
∑
c

µ2
c

κc

)
× (δiρδjτ − δiτδjρ) , (195)

{∆P (a)
i ,∆P

(b)
i } = {P̃i,∆P

(b)
j } = 0. (196)

The Poisson brackets for coordinates of the center-of-
mass and coordinates of the relative motion vanish

{∆X(a)
i , X̃j} = 0, (197)
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if the parameters of the noncommutative algebra are
determined by mass as (187) [64]. Namely, if relation
κa = maγκ is satis�ed. Also, in this case the e�ecti-
ve parameter of noncommutativity depends on the total
mass of the system and is independent of its composition

θ̃0ij =
∑
a

µ2
a

κa
(δiρδjτ − δjτδiρ) =

1

κeff
(δiρδjτ − δiτδjρ)

=
1

γκM
(δiρδjτ − δjτδiρ) . (198)

Let us study the motion of a composite system of
mass M in a gravitational �eld in the space with the Lie
algebraic noncommutativity (182), (183) on the basis of
the obtained results. The Hamiltonian reads

H =
P̃2

2M
+MV (X̃1, X̃2, X̃3) +Hrel. (199)

The term Hrel corresponds to the relative motion, X̃i,
P̃i are coordinates and momenta of the center-of-mass of
the composite system that are de�ned in the traditional
way.
Considering the condition on the parameter of

noncommutative algebra (187), we have (197) and{
P̃2

2M
+MV (X̃1, X̃2, X̃3), Hrel

}
= 0, (200)

So, for a composite system we can write the following
equations of motion in the gravitational �eld

˙̃Xi =
P̃i

M
+ tM

∑
a

µ2
a

κa
(δiρδjτ − δiτδjρ)

∂V

∂X̃j

= P̃ ′
i + t

∑
a

1

γκ
(δiρδjτ − δiτδjρ)

∂V

∂X̃j

, (201)

˙̃Pi = −M ∂V

∂X̃i

= − ∂V

∂X̃i

, (202)

here P̃ ′
i = P̃i/M . From equations (201), (202) follows

that expressions for X̃i(t), P̃
′
i (t) do not depend on the

mass of the composite system or its composition. So, the
weak equivalence principle is recovered within the frame
of the algebra (182), (183) due to condition (187) [64].

B. Preserving of the weak equivalence principle in
the general case of the Lie algebraic

noncommutativity

In a more general case of the noncommutative algebra
of the Lie type, the Poisson brackets are as follows

{Xi, Xj} = θ0ijt+ θkijXk, (203)

{Xi, Pj} = δij + θ̄kijXk + θ̃kijPk, {Pi, Pj} = 0, (204)

here i, j, k = (1, 2, 3), θ0ij , θ
k
ij , θ̄

k
ij , θ̃

k
ij are constants, θ

0
ij =

−θ0ji, θ̄kij = −θ̄kji, θ̃kij = −θ̃kij [38]. These constants have

to be chosen to satisfy the Jacobi identity. This issue was
studied in [38]. The author of the paper considered the
following algebras of the Lie type

{Xk, Xγ} = − t

κ
+
Xl

κ̃
, {Xl, Xγ} =

t

κ
− Xk

κ̃
, (205)

{Xk, Xl} =
t

κ
, {Pk, Xγ} =

Pl

κ̃
, (206)

{Pl, Xγ} = −Pk

κ̃
, {Xi, Pj} = δij , (207)

{Xγ , Pγ} = 1, {PM, Pn} = 0, (208)

and the second ones

{Xk, Xγ} = − t

κ
+
Xl

κ̃
, {Xl, Xγ} =

t

κ
− Xk

κ̃
, (209)

{Xk, Xl} = 0, {Pk, Xγ} =
Xl

κ̄
+
Pl

κ̃
, (210)

{Pl, Xγ} =
Xk

κ̄
− Pk

κ̃
, {Xi, Pj} = δij , (211)

{Xγ , Pγ} = 1, {PM, Pn} = 0, (212)

The algebras correspond to the cases when parameters
of noncommutativity satisfy the following relations

θ0kl = −θ0kγ =
1

κ
, θ0lγ =

1

κ
, (213)

θlkγ = −θklγ = θ̃lkγ = −θ̃klγ =
1

κ̃
, (214)

and

θ0lγ = −θ0kγ =
1

κ
, θlkγ = −θklγ =

1

κ̃
, (215)

θ̃lkγ = −θ̃klγ =
1

κ̃
, (216)

θ̄lkγ = −θ̄klγ =
1

κ̄
, (217)

respectively.

For a particle in a gravitational �eld (184) taking into
account (203), (204), we obtain that the equations of
motion depend on mass

Ẋi =
Pi

m
+ θ̄kij

PjXk

m
+ θ̃kij

PjPk

m
+m(θ0ijt

+ θkijXk)
∂V

∂Xj
, (218)

Ṗi = −m ∂V

∂Xi
−m(θ̄kijXk + θ̃kijPk)

∂V

∂Xj
. (219)

Due to the dependence of the parameters of
noncommutativity on mass proposed in [64]

θ
0(a)
ij ma = γ0ij = const, θ

k(a)
ij ma = γkij = const,(220)

θ̃
k(a)
ij ma = γ̃kij = const, θ̄

k(a)
ij = θ̄kij . (221)
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we obtain

Ẋi = P ′
i + θ̄kijP

′
jXk + γ̃kijP

′
jP

′
k + (γ0ijt

+ γkijXk)
∂V

∂Xj
, (222)

Ṗ ′
i = − ∂V

∂Xi
− (θ̄kijXk + γ̃kijP

′
k)
∂V

∂Xj
. (223)

Here constants γ0ij , γ
k
ij , γ̃

k
ij do not depend on mass

γ0ij = −γ0ji, γkij = −γkji, γ̃kij = −γ̃kji, P ′
i = Pi/m. So,

if conditions (220), (221) hold, the weak equivalence pri-
nciple is preserved in a noncommutative space of the Lie
type (203), (204).
Let us also study the motion of a composite system in

a gravitational �eld in the space (203), (204) and exami-
ne the weak equivalence principle. The noncommutative
algebra (203), (204) can be generalized for coordinates

and momenta of di�erent particles X
(a)
i , P

(a)
i (index a

label a particle) as

{X(a)
i , X

(b)
j } = δabθ

0(a)
ij t+ δabθ

k(a)
ij X

(a)
k , (224)

{X(a)
i , P

(b)
j } = δabδij + δabθ̄

k(a)
ij X

(a)
k + δabθ̃

k(a)
ij P a

k , (225)

{P (a)
i , P

(b)
j } = 0, (226)

θ
0(a)
ij , θ

k(a)
ij , θ̄

k(a)
ij , θ̃

k(a)
ij are parameters of the

noncommutative algebra corresponding to a particle
with index a [64]. The relations of the noncommutative
algebra for coordinates and momenta of the center-of-
mass read

{X̃i, X̃j} =
∑
a

µ2
aθ

0(a)
ij t+

∑
a

µ2
aθ

k(a)
ij X

(a)
k , (227)

{X̃i, P̃j} = δij +
∑
a

µaθ̄
k(a)
ij X

(a)
k +

∑
a

µaθ̃
k(a)
ij P a

k , (228)

{P̃i, P̃j} = 0. (229)

Note that the relations (227), (229) do not reproduce
relations of the Lie algebra (203)�(204). In the right-
hand side of (227), (228), we do not have coordinates and
momenta of the center-of-mass. It is important to menti-
on that the problem is solved due to conditions (220),
(221) [64]. For coordinates and momenta of the center-
of-mass, one obtains relations of the noncommutative
algebra of the Lie type

{X̃i, X̃j} = θ
0(eff)
ij t+ θ

k(eff)
ij X̃k, (230)

{X̃i, P̃j} = δij + θ̄kijX̃k + θ̃
k(eff)
ij P̃k, (231)

with parameters

θ
0(eff)
ij =

γ0ij
M
, θ

k(eff)
ij =

γkij
M
, θ̃

k(eff)
ij =

γ̃kij
M
, (232)

here M =
∑

ama is the total mass of the system [64].
So, on the basis of these results, one can write the

equations of motion of a composite system in a gravi-
tational �eld in a quantized space with algebra (203),

(204). Introducing notation P̃ ′
i = P̃i/M for a composite

system in a gravitational �eld, we �nd

˙̃Xi = P̃ ′
i +

(
θ̄kijX̃k + γ̃kijP̃

′
k

)
P̃ ′
j

+
(
γ0ijt+ γkijX̃k

) ∂V

∂X̃j

, (233)

˙̃P ′
i = − ∂V

∂X̃i

−
(
θ̄kijX̃k + γ̃kijP̃

′
k

) ∂V

∂X̃j

. (234)

Writing (233), (234), we assume that the in�uence of the
relative motion on the motion of the center-of-mass of
the system can be neglected. Equations of motion of a
composite system in a gravitational �eld (233), (234) do
not depend on its total mass, masses of particles formi-
ng it, its composition. So, the weak equivalence princi-
ple is preserved in a general case of the noncommutative
algebra of the Lie type (203), (204) due to relations (220),
(221) [64].

VI. CONCLUSIONS

We have examined quantum spaces with di�erent
deformed Heisenberg algebras (noncommutative algebra
of a canonical type, noncommutative algebra of the Lie
type, the Snyder algebra, the Kempf algebra and their
generalizations). The motion of a particle in a gravitati-
onal �eld has been studied within frame of the deformed
algebras and the implementation of the weak equivalence
principle has been analyzed.
We have concluded that di�erent types of deformati-

on of the commutation relations for coordinates and
momenta (canonical, Lie and nonlinear deformations)
lead to the dependence of the motion of a particle
(composite system) in a gravitational �led on mass and
its composition. Therefore, the weak equivalence princi-
ple is violated. The principle is violated even in the case
when the gravitational mass is equal to the inertial mass.
It is worth stressing that the deformation of the algebra
leads to a great violation of the principle, which can be
easily seen in an experiment. But from the observations
we know that the weak equivalence principle is preserved
with hight accuracy. The problem is solved if one consi-
ders parameters of deformed algebras to be dependent
on mass. In this case, the motion of a particle (composi-
te system) in a gravitational �eld does not depend on its
mass and composition or the weak equivalence principle
is recovered.
It is important to add that the idea to relate

parameters of deformed algebra to mass is also important
for preserving the properties of the kinetic energy
(additivity property, independence of composition) in a
quantum space and, therefore for recovering the law of
conservation of energy. Also, in the case when parameters

1001-17



KH. P. GNATENKO, V. M. TKACHUK

of the deformed algebra depend on mass, the problem of
description of the motion of a composite system in a
space with minimal length is solved. The problem is well
known in the literature as the soccer-ball problem.

So, the idea of the dependence of parameters of
deformed algebras on mass leads to solving fundamental
problems in a space with minimal length, among them
violation of the weak equivalence principle, nonadditivity

of the kinetic energy and its dependence on composition,
the soccer-ball problem.
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ÄÅÔÎÐÌÎÂÀÍI ÀË�ÅÁÐÈ ÃÀÉÇÅÍÁÅÐ�À ÐIÇÍÈÕ ÒÈÏIÂ ÇI ÇÁÅÐÅÆÅÍÈÌ ÏÐÈÍÖÈÏÎÌ
ÅÊÂIÂÀËÅÍÒÍÎÑÒI

Õ. Ï. Ãíàòåíêî, Â. Ì. Òêà÷óê
Êàôåäðà òåîðåòè÷íî¨ ôiçèêè iìåíi ïðîôåñîðà Iâàíà Âàêàð÷óêà,
Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Äðàãîìàíîâà, 12, Ëüâiâ, 79005, Óêðà¨íà

Ðîçãëÿíóòî iäåþ îïèñó êâàíòîâàíîñòi ïðîñòîðó (iñíóâàííÿ êâàíòà äîâæèíè) çà äîïîìîãîþ ìî-
äèôiêàöi¨ êîìóòàöiéíèõ ñïiââiäíîøåíü äëÿ îïåðàòîðiâ êîîðäèíàò òà îïåðàòîðiâ iìïóëüñiâ. Âèâ÷åíî
ðiçíi òèïè äåôîðìàöi¨ àë åáðè Ãàéçåíáåð à, à ñàìå: êàíîíi÷íà (êîìóòàòîðè êîîðäèíàò òà iìïóëüñiâ
äîðiâíþþòü êîíñòàíòàì), òèïó Ëi (êîìóòàòîðè êîîðäèíàò òà iìïóëüñiâ ïðîïîðöiéíi äî êîîðäèíàò
òà iìïóëüñiâ) òà íåëiíiéíà äåôîðìàöiÿ (êîìóòàòîðè êîîðäèíàò òà iìïóëüñiâ äîðiâíþþòü íåëiíiéíié
ôóíêöi¨ öèõ êîîðäèíàò òà iìïóëüñiâ). Äîñëiäæåíî íåêîìóòàòèâíó àë åáðó ç íåêîìóòàòèâíiñòþ êî-
îðäèíàò òà íåêîìóòàòèâíiñòþ iìïóëüñiâ êàíîíi÷íîãî òèïó, íåêîìóòàòèâíà àë åáðà òèïó Ëi, àë åáðà
Ñíàéäåðà, àë åáðà Êåìïôà òà ¨õ óçàãàëüíåííÿ â ðàçi, êîëè êîìóòàòîð êîîðäèíàò òà iìïóëüñiâ äîðiâ-
íþ¹ äîâiëüíié ôóíêöi¨, ùî çàëåæèòü âiä iìïóëüñiâ. Ó ìåæàõ ðiçíèõ äåôîðìîâàíèõ àë åáð âèâ÷åíî
ðóõ ÷àñòèíêè (ìàêðîñêîïi÷íîãî òiëà) ó  ðàâiòàöiéíîìó ïîëi òà ïðîàíàëiçîâàíî âèêîíàííÿ ñëàáêîãî
ïðèíöèïó åêâiâàëåíòíîñòi. Ïîêàçàíî, ùî ó êâàíòîâàíîìó ïðîñòîði ðóõ ó  ðàâiòàöiéíîìó ïîëi çàëå-
æèòü âiä ìàñè òà êîìïîçèöi¨. Ïàðàìåòð Åòâåøà íå äîðiâíþ¹ íóëåâi, íàâiòü ÿêùî iíåðöiéíà ìàñà
äîðiâíþ¹  ðàâiòàöiéíié. Ñëàáêèé ïðèíöèï åêâiâàëåíòíîñòi ïîðóøó¹òüñÿ ó êâàíòîâàíîìó ïðîñòîði,
ïðè÷îìó äåôîðìàöiÿ êîìóòàöiéíèõ ñïiââiäíîøåíü äëÿ îïåðàòîðiâ êîîðäèíàò òà îïåðàòîðiâ iìïóëü-
ñiâ çóìîâëþ¹ çíà÷íi ïîïðàâêè äî ïàðàìåòðà Åòâåøà, ÿêi ëåãêî ìîæíà ñïîñòåðiãàòè â åêñïåðèìåíòi. Ç
iíøîãî áîêó, âiäïîâiäíî äî åêñïåðèìåíòàëüíèõ äàíèõ ñëàáêèé ïðèíöèï åêâiâàëåíòíîñòi âèêîíó¹òüñÿ
ç âåëèêîþ òî÷íiñòþ. Öþ ïðîáëåìó ìîæíà ðîçâ'ÿçàòè, ïðèïóñòèâøè, ùî ïàðàìåòðè äåôîðìîâàíèõ
àë åáð çàëåæàòü âiä ìàñè. Òàêà iäåÿ äà¹ çìîãó âiäíîâèòè ñëàáêèé ïðèíöèï åêâiâàëåíòíîñòi, à òà-
êîæ çáåðåãòè âëàñòèâîñòi êiíåòè÷íî¨ åíåð i¨, ðîçâ'ÿçàòè ïðîáëåìó îïèñó ðóõó ìàêðîñêîïi÷íîãî òiëà
(öÿ ïðîáëåìà äîáðå âiäîìà â ëiòåðàòóði ïiä íàçâîþ ïðîáëåìà ôóòáîëüíîãî ì'ÿ÷à) ó êâàíòîâàíî-
ìó ïðîñòîði. Îòæå, çàëåæíiñòü ïàðàìåòðiâ äåôîðìàöi¨ âiä ìàñè ¹ âàæëèâîþ äëÿ ïîáóäîâè òåîði¨
êâàíòîâàíîãî ïðîñòîðó çi çáåðåæåíèìè ôóíäàìåíòàëüíèìè çàêîíàìè òà ïðèíöèïàìè.
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