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In the paper, a review of the results for recovering the weak equivalence principle in a space
with deformed commutation relations for operators of coordinates and momenta is presented. Di-
fferent types of deformed algebras leading to a space quantization are considered, among them
noncommutative algebra of a canonical type, algebra of the Lie type, the Snyder algebra, the Kempf
algebra and nonlinear deformed algebra with an arbitrary function of deformation depending on
momenta. The motion of a particle and a composite system in a gravitational field is examined
and the implementation of the weak equivalence principle is studied. We conclude that the Eétvos
parameter is not equal to zero even in the case when the gravitational mass is equal to the inertial
mass. The principle is preserved in a quantized space if we consider parameters of deformed algebras
to be dependent on mass. It is also shown that the dependencies of parameters of deformed algebras
on mass lead to preserving the properties of the kinetic energy in quantized spaces and solving the
problem of the significant effect of space quantization on the motion of macroscopic bodies (the
problem is known as the soccer-ball problem).
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I. INTRODUCTION

Deformed commutation relations for coordinates and
momenta were firstly proposed by Heisenberg. The
author of the first paper with the formalization of the
idea of deformed commutation relations is Snyder [1].
It is worth noting that a great interest in studies of di-
fferent types of deformed algebras leading to the minimal
length follows from investigations in the String Theory
and Quantum Gravity (see, for instance, [2, 3]).

Snyder’s algebra is well known and studied (see, for
example, [4-8]). The algebra in a nonrelativistic case
reads

[Xi, Xj] = ihB(XiP; — X, P;), (1)
[Xi, Pj] = ih(d;; + BP; Py), (2)
[P, Pj] = 0. (3)

Also, a well studied algebra leading to a minimal
length is the deformed algebra proposed by Kempf (see,
for instance, [9-15])

(28— ') + (28 + B")BP?

(X, X;] = ih P

X(Pin — Pin), (4)
[X;, Bj] = ih(8;; (1 + BP?) + B'P,P;), (5)
[PZ-,PJ'}:O, (6)

where [, 8/ are constants. In the space, the minimal
length is defined by the parameters of deformations and

it reads hy/5 + (.

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-
v bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI.

It is worth noting that algebras (1)-(3), (4)-(6) are not
invariant under translations in the configuration space.
The deformed algebra characterized by the following
commutation relation

[Xi, X;] =0, (7)
(X, Pj] = ih(5;;(1 + BP?) + 2BP,P;), (8)
[P, Pj] =0, 9)

describes a uniform space. This algebra can be obtained
from (4)-(6) up to the first order in the parameter of
deformation, considering particular case 3’ = 23. We
can also write a deformed algebra

[Xi,Xj] =0, (10)
IXi, P = ih/1 1 BP2(S,; + BP,P,), (1)
[Pivpj] =0, (12)

which is invariant upon translations in the configuration
space and leads to the minimal length (see [16]).

In a more general case, one can consider the following
commutation relations for coordinates and momenta

[X;, P;] = ihF;;(\/BP1, \/BP2, /BPs), (13)

where F;(v/BP1,v/BPs,/BPs) are deformation functi-
ons. For preserving the time-reversal symmetry and for
invariance upon the parity transformations, the functi-
ons have to be even

Fij(—=/BPy,—\/BPy, —\/3Ps)
Fi;(\/BP1,\/BP2,\/BPs3). (14)
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Algebra (13) with

Fij(v/BP1,v/BPy, V/BPs) = 85— \/B (P(Sij + Pfj)

+ B(P?*6;; +3PP;),  (15)

was considered in the literature to describe a space with
minimal length and maximal momentum [17]. Also one-
dimensional algebras

[X, P] = ihF(\/BIP)), (16)

were examined [18, 19]. In (16) F'(v/B|P]) is a deformati-
on function, g is a parameter, 5 > 0, F'(0) = 1.

In the case of F(y/B|P|) = 1+ BP2%, from deformed
commutation relation (16) follows the well known
generalized uncertainty principle (GUP)

h (1
AXEQ(AP+5AP)’ (17)
leading to the minimal length X,.;, = Av/B.

Also, other cases of the deformation functions leading
to a minimal length and to a minimal momentum have
been studied. Namely, in [20, 21] the authors proposed
to consider F(y/B|P|) = 1/(1 — BP?). In the paper [22]
F(y/B|P]) was chosen to be F'(v/B|P]) = (1—+v/B|P])?. In
[23] the case of F'(v/B|P|) = 1/(1—+/B|P|) was examined.
The minimal length and the minimal momentum are defi-
ned by the parameter of deformation and are proporti-
onal to iiv/B and 1/+/f, respectively [17, 20, 22, 23].

Algebras it which commutators for operators of coordi-
nates and momenta are modified and give constants are
known as noncommutative algebras of a canonical type.
In a general case these algebra read

(X, X;] = ihb;;, (18)
[Xi, Pj] = ih(dij + 045), (19)
[P;, Pj] = ihmj, (20)

where 0;; are parameters of coordinate noncommutativi-
ty, 1;; are parameters of momentum noncommutativity
and o0;; are constants. Noncommutativity of coordinates
leads to a minimal length. From the noncommutativity
of momenta follows existence of the minimal momentum
[24]. Because of the simplicity of the algebra, it has recei-
ved much attention [25-34]. More complicated types of
noncommutative algebras are those of the Lie type

(X5, X;] = ihb) X, (21)

where ij are constants [35-38].

An important problem is the construction of deformed
algebra which leads to a space quantization and does
not cause violation of fundamental physical laws and
principles. For instance, a well known problem within
the frame of deformed algebras of different types is the
violation of the weak equivalence principle or the Gali-
lean equivalence principle or universality of the free fall
principle. The deformation of a commutation relation
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for coordinates and momenta leads to the dependence
of the velocity and the position of a point mass in
a gravitational field on mass. In the case of algebras
with noncommutativity of coordinates of a canonical
type, the equivalence principle was considered in [39-
44]. A more general case of noncommutativity of coordi-
nates and noncommutativity of momenta was examined
in [39, 40, 43, 44] and the problem of the ununiversali-
ty of free fall in the space was studied. In paper [40] it
was concluded that the equivalence principle holds in the
quantized space in the sense that an accelerated frame
of reference is locally equivalent to a gravitational field,
unless parameters of noncommutativity are anisotropic
(Ney #Msz). Generalized uncertainty relations preserving
of the equivalence principle were studied in [45].

In the paper, we present a way to recover the weak
equivalence principle in spaces characterized by different
types of deformed algebras, including noncommutative
algebra of a canonical type, noncommutative algebra of
the Lie type, the case of a nonlinear deformed algebra
with an arbitrary deformation function depending on
momentum. The solution of the problem is besed on
the idea of dependence of the parameters of deformed
algebras on mass. It is important to stress the the idea
leads also to recovering the properties of a kinetic energy
and solving the well known soccer-ball problem (the
problem of description of the motion of a macroscopic
body) in a space with the minimal length.

The structure of the paper is as follows. In Secti-
on II, a space with GUP is considered (16), (13) and
the implementation of the weak equivalence principle
in the case of nonlinear deformed algebras is recovered.
In Section III, a noncommutative algebra of a canoni-
cal type is examined. The influence of noncommutativi-
ty of coordinates and noncommutativity of momenta on
the Eotves parameter for the Sun—Earth—-Moon system
is found. Relations for the parameters of nocommutati-
vity with mass for preserving the weak equivalence pri-
nciple are found. The noncommutative algebra which is
rotationally- and time-reversal invariant and does not
lead to a violation of the weak equivalence principle is
studied in Section IV. Implementation of the Galilean
equivalence principle in a space with noncommutative
algebra of the Lie type is considered in Section V. Secti-
on VI is devoted to conclusions.

II. PRESERVING OF THE WEAK
EQUIVALENCE PRINCIPLE IN A SPACE WITH
GUP

A. DMotion in a gravitational field in a space with
nonlinear deformed algebras

As a first step of studying the weak equivalence pri-
nciple in spaces with nonlinear deformed algebras, let us
consider a one-dimensional case of algebra with an arbi-
trary function of deformation dependent on momenta
(16). Relation (16) corresponds to the following deformed
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Poisson bracket

{X, Py = F(/BIP). (22)
For a particle with mass m in gravitational field V' (X),
writing Hamiltonian
P2

and taking into account the deformation of the Poisson
brackets, we find equations of motion as

X = (X, 1) = L F(VIP), (24)
p=ipuy=-m® X p/Bp). (25

On the basis of the obtained expressions, we can conclude
that even if we consider in (23) the inertial mass, to be
equal to the gravitational mass the motion of a particle
in a gravitation field in a space with GUP depends on
its mass and the weak equivalence principle is violated.

From equations (24), (25) follows that the motion of a
particle in a gravitational field in the space (16) depends
on its mass. So, deformation of commutation relation
(16) leads to a violation of the weak equivalence princi-
ple.

One faces the same problem in the three-dimensional
case of deformed algebra (13) and deformed Poisson
brackets

{Xi,P;} = F;;(\/BP1,\/BPy, \/BPs),  (26)
{Xi,Xj} = {PZ,PJ} =0. (27)

Here we would like to note that we use the ordinary Poi-
sson brackets {X;, X;} and {P;, P;} (27) because in this
case, the deformed algebra (26), (27) is invariant with
respect to translations in the configuration space. Simi-
larly as in the one-dimensional case we study a particle
with Hamiltonian H =}, P?/2m+mV (X). Using (26),
(27), the equations of motion of the particle in the gravi-
tational field read

X; = Z %Fz‘j(\/BPh V/BP2,\/BPs), (28)

Bg)(;i) Fij(\/BP1,\/BP2, \/BPy). (29)

Pi = —-m
J
On the basis of the obtained results, we conclude that
the weak equivalence principle is violated.

It is important to stress that the deformation of the
commutation relations causes great corrections to the
Eo6tvos parameter and a great violation of the weak equi-
valence principle. For instance, in the case of uniform
field V(X) = —gX (g is the gravitational acceleration)
equations of motions (24), (25) transform to

X = ZR(/BIP), (30)

P =mgF(y/B|P)), (31)

and the expression for the acceleration written up to the
first order in the parameter of deformation is as follows

X = g+3F(0)gy/Bmlv]
+ (2F"(0) = (F'(0))*)gB8m*v?, (32)

where F'(z) = dF/dx, F"(z) = d*F/dz? and v is a
velocity of motion in gravitational field V(X) = —¢gX in
the case of 8 = 0. On the basis of (32), for particles with
masses mi, my the E6tvos parameter reads

Ao 2(XM - X2)
— = =2 =3F'(0 -
p SN (0)|v]v/B(m1 — ma)

+ (2F"(0) = (F(0))*)v*B(mi — m3). (33)

If we consider the minimal length to be equal to the
Planck length fiv/3 = lp, we obtain

Aa _ 3F'(0)M(m1 )

a c mp
v? (mf —m3)

2 2 )
c mp

(34)
where ¢ is the speed of light, G is the gravitational
constant, mp is the Planck mass [46].

For bodies with masses m; = 1 kg, ma = 0.1 kg and
F(/B|P|) = 1+ BP2, the Eotvos parameter has large
value Aa/a ~ 0.1. Such a violation of the weak equi-
valence principle could be easily seen in an experiment.
But we know that the equivalence principle holds with
hight precision; for instance, from the Lunar Laser rangi-
ng experiment follows Aa/a = (—0.8 £ 1.3) - 10713 [47].

The problem is solved if the parameter of deformation
B is considered to be dependent on mass as follows

Bama = 7y = const. (35)

Here constant v which is the same for different particles,
is introduced [46, 48, 49].

If relation (35) holds the Eotvos parameter (33) is
equal to zero and equations (24), (25) transform to

x=Lp (fy'jz') , (36)
P_ V0, (2. (37)

In (36), (37) we have that the mass is present only in
expression P/m. So, X(t), P(t)/m do not depend on
mass and the problem of violation of the weak equi-
valence principle is solved [46, 48].

The same conclusion can be made in the three-
dimensional case. In the case of preserving the condition
(35), introducing P/ = P;/m from (28), (29) we have

Xi =Y P/Fy; (yP{,vP3,7P}), (38)
J
N V(X)
: ~ X

J

Fij (YP{,vP5,vP}).  (39)
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So, the mass is canceled in (38), (39), and the motion in
a gravitational field does not depend on mass, the weak
equivalence principle is preserved.

Let us recall that we considered deformed algebra with
ordinary relations for {X;, X;}, {P;, P;} (27). But even
in the case of a more complicated deformed algebra, the
idea of dependence of parameters of deformation on mass

Algebra (40)—(42) is a generalization of the well known
Snyder (1)-(3) and Kempf (4)-(6) algebras. Functions
G(P?), F(P?), f(P?) in (40)-(42) cannot be chosen
independently [50]. From the Jacobi identity follows the
following relation

fF -Gy -2

PARNES
gives a possibility to recover the weak equivalence princi- 237p(f + FP7) =0. (43)

ple. For instance, in the case of the following commutati-

on relations Let us study the weak equivalence principle in a

quantized space (40)—(42). Considering a particle in a

2
X, X5] = GIP)X:P; = X;F), (40) gravitational field with Hamiltonian H = ), 5;2
[X;, Pj] = f(P?)d;; + F(P?)P,P;, (41)  mV(X) in a space with deformed algebra (40)—(42) and
the parameter of deformation satisfying condition (35),
[P;, P;]=0. (42)  we can write the equations of motion as follows

Xi = PGP 4973 %LQGW(P’V) (XiPj = X;PY) (44)
- oV (X) = 5 / ! pt
Fl= -5 107 (P PP, (45)

where f(BP?), F(8P?), G(8P?) are dimensionless functions corresponding to f(P?2), F(P?), G(P?) respectively. On
the basis of equations (44), (45) we have that the weak equivalence principle is preserved in the general case of the
deformed algebra (40)-(42) due to condition (35) [46].

In the next subsection, in addition we will show that with the help of relation (35) the properties of the kinetic
energy can be preserved within the frame of the deformed algebra.

B. Properties of kinetic energy in a space with GUP and dependence of the parameter of deformation on
mass

Using the relation of momenta with velocity (36), the kinetic energy of a free particle (a body) of mass m in the
space with GUP (22) up to the first order in S reads

P2 mXx>2

. ﬁm3X4
= 5= F 0)v/Bm?| X | X2 + (5(F'(0))% — F"(0)) S (46)

On the other hand, from the additivity property for a system of N particles with masses m, that move with the
same velocities, we can write

7= ST = T POVAIXIX S+ (0 - F0) T (47)
where m =) m,
T, = mTXQ — F(0)y/Bm2 X X2 + (5(F(0))? — F"(0)) 2. m;X4 (48)

and we take into account X, = X. The obtained results (47), (46) are not the same. Note that m? = (3°, m,)? >
> m2and m® = (35, m,)? > >, m3. Therefore, absolute values of the corrections to the kinetic energy (46) of the
first and the second order are bigger than absolute values of the corrections in (47).

It is worth noting that for a system made of N particles with the same masses, we have

X Bm3 X4
2 )

- m3 4
-N (F’<o>ﬁmi|X|X2 ~ (B(F(0))? — F(0)) e ) ,

T =N N2E(0)y/Bm2| X | X2 + N3(5(F'(0))% — F”(0)) (49)

T =NT, =

me X2
50
: (50

here we take into account that m = Nm,,.
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The dependencies of corrections to the kinetic energy on
the number of particles N caused by the deformation
(22) are different in (49) and (50). Analyzing (49) we
have that corrections of the first and the second order
B are proportional to N2 and N3, respectively. The
zero order term in (49) is proportional to N. So, with
an increase in the number of particles in a system (in
a macroscopic body), corrections to the kinetic energy
caused by GUP increase faster than the zero order term.
From this follows that the effect of space quantization on
the motion of a macroscopic body is significant [46].

The problem is similar to the problem of macroscopic
bodies in Double Special Relativity, which is well known
as the soccer-ball problem [51-53].

If condition (35) is satisfied for the parameters of
deformation of particles /B,m, = ¥ = const and for
the parameter of deformation of a composite system
(macroscopic body) v/Bm = v = const, the kinetic
energy has additivity property, does not depend on the
composition; besides it is proportional to the mass. On

the basis of (49) and (50) we obtain
i
T = 5 — F'(0)ym|X|X
2, %4
+ BP0 = F'0) 5. (1)

So, the problem of the violation of the properties of the
kinetic energy and the soccer-ball problem are solved due
to relation (35).

The same conclusion can be made in all orders in the
parameter of deformation. If condition (35) is satisfied,
we can rewrite (36) as

k= 2r(+1). (52)

m m

From this equation, we have that P/m is a function of
velocity X and

= (X 53
— = f(X.7), (53)
So, P is proportional to mass m. Using relation (53),
we can rewrite the kinetic energy of the particle in the
following form

2 ; 2
P ()P o)
2m 2
Let us consider a system of N particles which move with
the same velocities. This is equivalent to the case of a
body divided into N parts that can be considered as
particles. The kinetic energy of the system according to

the additivity property can be written as

ma(f(X,7))* _ m(f(X,7))?
2= -
Here we use notation m for the total mass of the system
m = )., m,. Note that we obtain the same result (55)
on the basis of expression (54), substituting m = maq.

Another property of kinetic energy, its independence
of composition, is also preserved due to relation (35).
According to (55), the kinetic energy of a system is
proportional to its total mass and does not depend on
its composition as it is in the ordinary space (space
with 8 = 0). So, besides recovering the weak equivalence
principle, relation (35) gives a possibility to preserve
the properties of kinetic energy in the space with GUP
[46, 48].

Similarly, in a three-dimensional space (26) the kinetic
energy has additivity property and is independent of the
composition if relation (35) is satisfied. For a free particle
H =Y. P?/2m in the space (26) we have

PA
(X, H} =) —2Fi;(\/BP1,v/BPy, V/BPs)
J
P; P P P
=) F; (717273)- (56)
—m m’'m’'m
Therefore, if relation (35) holds, the values P;/m depend

on velocities X; and 4 and do not depend on mass

E :fi(X17X27X37’Y)' (57)

So, the kinetic energy of a particle with mass m can be
written as

T — Z fz X17X2,X377)) ) (58)

For a system of particles which move with the same
velocities according to the additivity property, we can
write

T

_ ma(fi(X1, Xo, X3,7))?
_ m(fi(X1, Xa, X3,7))?
= 2

K3
here m = ) m,. Result (59) corresponds to (58).
So, the properties of kinetic energy are satisfied in all
orders in the parameter of deformation if one consi-
ders the dependence of the parameters of deformation
corresponding to particles and macroscopic bodies on
their masses (35) [46].

According to condition (35), parameters of deformati-
on of macroscopic bodies are lower than those
corresponding to elementary particles. From (35) the
parameter of deformation of a macroscopic body reads

; (59)

2
B=Bu—k, (60)

where mpg, Og are the mass and the parameter of
deformation of an elementary particle. On the basis of
(60), we can conclude that there is a reduction by the
factor m%/m? of the parameter of macroscopic body
B with respect to the parameter of deformation [g
corresponding to an elementary particle. Because of this
reduction, the problem of macroscopic bodies does not
appear.
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At the end of this section, we would like to note that if
relation (35) is satisfied for the parameter of deformati-
on of a macroscopic body, the motion of the body in a
gravitational field in a space with GUP does not depend
on its mass and composition and the weak equivalence
principle is satisfied.

III. MOTION IN A GRAVITATIONAL FIELD
IN A NONCOMMUTATIVE PHASE SPACE

A. Recovering the weak equivalence principle in a
space with noncommutativity of coordinates and
noncommutativity of momenta

In a two-dimensional space with noncommutativity
of coordinates and noncommutativity of momenta of a
canonical type, the commutation relations for operators
of coordinates and operators of momenta are as follows

[X1, Xo] = ihd, (61)
(X, Pj] = ihdyj, (62)
[Pl, PQ] = Zh?’]7 (63)

J

af 0Og

af Og

where 6, n are parameters of noncommutativity ¢,j =
(1,2).

Let us consider the influence of noncommutativity of
coordinates and noncommutativity of momenta on thea
motion of a particle in a uniform gravitational field with
Hamiltonian

(64)

and examine the weak equivalence principle [41, 43, 44].

The Poisson brackets that correspond to relations of
the deformed algebra (61)-(63) read

{Xl,Xg} =40, (65)
{Xi, P} = b4y, (66)
{P1, P2} = . (67)

The definition of the deformed Poisson brackets is as
follows

af dg

{f.e}=>_

i

(af dg

of 99 _ 0 B Of 99 _ 9f 99
09X, 0P, 0P, 0X, 0X,0X, 0X,0x,) ""\apr or,  op, 0P, )

(68)

One obtains the following equations of motion and expressions for the trajectory of the particle in the gravitational

field in a noncommutative phase space of a canonical type

) P,
X, ={X, Hy =1
1 { 1 } m7
. P
Xo={Xo,H} = EQ + mgb,

. P
P1={P1,H}=mg+77%2,

Py

Py={P, H = —n—
2 {27} 77m7

2

2 0
Xl(t):mUol Sinnt+<m2gmg "

n m n n

2

Xs(t) = (

n n n

2 2
m m=gd muv
g_mIa7, O2)sin:1t—

(69)

(70)

(71)

(72)

m717102) (1 — cos %t) + Xo1, (73)

muoy (1 ~ cos Qt) 9y 1 mgbt + Xoo. (74)
n m n

Here we use notations X1, Xo2, vo1, vo2 for the initial coordinates and velocities of the particle, X;(0) = Xo1,

X5(0) = Xo2, X1(0) = vo1, X2(0) = voa.

From the obtained results we can conclude that the motion of a particle in a gravitational field depends on its mass.
So, in a noncommutative phase space of a canonical type we also face a problem of violation of the weak equivalence
principle. It can be solved in the case when parameters of noncommutativity depend on mass as

fm = v = const, (75)
D 0= const, (76)
m

where 7y, o are constants that have the same values for different particles [43]. Using (75), (76), (73), (74), we have
that the mass is canceled in the expressions for the trajectory of a particle in a gravitational field in a noncommutative
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phase space

Xl(t):@sinat—l—(%—@—i—@) (1 —cosat) + X1, (77)

a a a

Xo(t) = (% _Ir @) sinat — 2% (1 —cosat) — 94 + gt + Xoz. (78)
a a a a a

and the problem of violation of the weak equivalence principle is solved [43].

Here it is worth adding that in the case of a space with
noncommutativity of coordinates § # 0, n — 0 on the
basis of (73), (74), we have that the trajectory of a parti-
cle in a uniform field is not affected by noncommutativity
X1 (t) = gt*/2 4+ vort + Xor, Xa(t) = voat + Xo2, but for
the momenta we have the following expressions P, =
mXiy, P, = m(Xs + mg0). Note, that the momentum
P, is not proportional to mass. It is also worth menti-
oning that for n — 0 expressions (73), (74) transform
to the well known result for the trajectory of a parti-
cle in a uniform gravitational field in the ordinary space,
Xl(t) = gt2/2 + vort + Xo1, Xz(t) = vgot + Xo2. At the
same time, if relation (75) is satisfied, the proportionality
of momentum to mass is recovered Py = m(Xs + 7g).

Let us consider a more general case. Let us study the
motion of a composite system in a nonuniform gravitati-
onal field in a noncommutative phase space and exami-
ne the weak equivalence principle. For this purpose, we
need to generalize relations of noncommutative algebra
for coordinates and momenta for different particles. We
have

(X1, x5} = 570, (79)
b a

(X[, P} = g, (80)

(P{, PP} = 57, (81)

where indices a, b label the particles, Xi(a), Pi(a) are
coordinates and momenta of the particle with index
a, i = (1,2), 7 = (1,2). In (79)—(81) we consider a
general case when coordinates and momenta of different
particles satisfy a noncommutative algebra with different
parameters of noncommutativity. We use notations 6, 7,
for the parameters of noncommutativity corresponding
to a particle with index a. Also, in (79)—(81) we assume
that the Poisson brackets for coordinates and momenta
corresponding to different particles are equal to zero.
Let us consider a composite system made of N
particles with masses m,. Defining the coordinates
and momenta of the center-of-mass, coordinates and
momenta of the relative motion as in the ordinary space

P= Z P@, X = Z,uax(a)7 (82)
a a
AP =P — P, AX@ = X(@ _ X (83)

(here X@ = (x x{y p@ = (P P\, p, =
mq/ Y, mp) and using (79)-(81), one obtains the follow-

[

ing relations
{XI;XQ}:év {P17p2}:ﬁ7 (84)
{Xi, P} = {AX;, AP;} = 645, (85)

{ax{?, ax{} = —{ax{", ax{"}
=00, — gl — 10y + 0, (86)

(AP AR} = —{AP" AP}
=0""N0 — fpNa — Halo + MalisT]. (87)

Parameters 6, 7 are defined as

B 2
§o 2aale (88)

(> my)?’
7= Ma, (89)

and are called effective parameters of noncommutativi-
ty. So, coordinates and momenta of the center-of-mass
of a composite system satisfy a noncommutative algebra
with effective parameters which depend on the masses of
particles forming it and on parameters of noncommutati-
vity 04, 1o [43]. It is important that the motion of the
center-of-mass is not independent of the relative motion
because of relations

(X1, AX5} = —{X0, AX{V} = 1o, — 0, (90)

{P1,APs} = —{Py, AP{} = 0 — pia »_ - (91)
b

The situation changes if we consider conditions on the
parameters of noncommutativity (75), (76). In this case

(X1, AX{"} = —{Xy,AX( "} =0, (92)
{P,AP$} = —{P,, AP} =0, (93)

and we have that the motion of the center-of-mass is
independent of the relative motion. Also due to relations
(75), (76), the effective parameters of noncommutativi-
ty do not depend on the masses of particles forming the
system or its composition. Using (88), (89) and consi-
dering conditions (75), (76), we obtain that the effective
parameter of coordinate noncommutativity is proporti-
onal inversely to the total mass of the system

v

0= U (94)
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The effective parameter of momentum noncommutativi-
ty is proportional to the total mass of the system
7= oM. (95)
So, conditions (75), (76) are also satisfied for effective
parameters of noncommutativity [43].
Let us examine the motion of a composite system in
a gravitational field in a noncommutative phase space
of a canonical type taking into account the obtained
results and conclusions about features of noncommutati-
ve algebra for coordinates and momenta of the center-of-
mass and relative motion. We study the following Hami-
ltonian

Coordinates and momenta of the center-of-mass X;,
P; (82) satisfy noncommutative algebra (84), (85) with
parameters 0, 7j given by (88), (89), M is the total mass
of the system, the term H,. corresponds to the relative

motion.

If parameters of noncommutativity are related with
mass (75), (76), the Poisson brackets for coordinates and
momenta of the center-of-mass and relative motion are
equal to zero (92), (93), therefore,

-, o
{P + MV(X17X2),Hrel} =0. (97)

2M

So, the equations of motion for the center-of-mass of a

2 ~ ~
H = 2P—M + MV (X1, Xs3) + Hral. (96) composite system in a gravitational field read
J
< P1 ~6V(X1,X2) P1 8V(X1,X2)
X, ==+ M6 = = — = , 98
T M 09X, M 90X, (98)
Py ~8V(X1,X2) Py aV(leXQ)
Xy === - M6 = —= — = , 99
T M aX, M ax, (99)
: oV(X1,Xs) _P, AV (X1, X5)
= . 2 . +aPs, 100
' 09X, M 0X, ? (100)
2 X, X P, X, X
Py=— V(X1 Xo) B OVIRL Xs) —aPy. (101)
0Xo M 0Xo

Note that if conditions (75), (76) are not satisfi-
ed, the equations of motion of a composite system in
a gravitational field depend on effective parameters of
noncommutativity (88), (89), within are determined by
the masses and parameters of noncommutativity of parti-
cles forming the system and depend on its composition.
This causes a violation of the weak equivalence princi-
ple. If relations (75), (76) are preserved, the weak equi-
valence principle holds, the motion of a composite system
(abody) in a gravitational field depends on the constants
~v, & and does not depend on its mass or composition [43].

Also, due to conditions (75), (76) the properties of the
kinetic energy are preserved in a noncommutative phase
J

Pl = M’E)Ol COS %t + (M’(NJOQ +

Py = — Mo, sin %t + (Mags +

space of a canonical type. This will be shown in the next
Subsection.

B. Motion of a composite system in a gravitational
filed and the properties of kinetic energy

Let us consider a composite system which is made of N
particles that move with the same velocities. On the basis
of (69)—(72), considering the case when the influence of
relative motion on the motion of the center-of-mass of the
system is small, for the composite system in a uniform
gravitational field we can write

2 ~

M=g 2 AN i M
— M*=g0 —t 102
9 w2gdysin L, (102
M? ~ 7 M?
9 M?g0) cos %t - ﬁg, (103)

where M is the total mass of the system, 6, 7j are effective parameters of noncommutativity corresponding to the

system (88), (89), To1, Doz are initial velocities of the center-of-mass of the system, X;(0) = g1, X2(0) = Op2. Using
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(102)—(103), the kinetic energy of the system can be written in the following form

P P} 162 9 1
T = L+ -2 =Ty+¢’M*| 5+ - — = | + M?gio, <~_0>
2M  2M 72 2 qf 7

M? i M ~ 7]
+ 7 g <7§01 sin %t + ( ﬁg — Mgb+ 1702) cos ]\Zt> . (104)

According to the additivity property, taking into account that the velocities of particles are the same, we can write

(@)
T =)T, :Z(Zlma)Q“L

a

(Py"))?
2my,

1 62 4, . 1
=y |:T0a +g*m} (2 + 2 - ) + m?2 g2 ( = 9a)
Ma 2

. Tla

2
+ Mad (1701 sin % ¢ + (mag — megb, + 602) cos nat)} ) (105)
m n m

a a a a

Expression (105) does not correspond to (104). The properties of kinetic energy are violated in a noncommutative
phase space. Namely, if parameters of noncommutativity are considered to be the same for different particles, one
faces a problem of nonadditivity of the kinetic energy and its dependence on composition. Considering conditions
(75), (76), we can rewrite (104), (105) as

,y2

1 . 1 . .
T="T,+ Zma {gz (2 + — - 7) + g0o2 ( - 'y) .+ Ll (1101 sin ait + <g —g’y+v02) cosat)] . (106)
- a 2 «a @ o «o

[

On the basis of (106), we can conclude that the addi-
tivity property of kinetic energy is preserved and the
kinetic energy of a composite system does not depend
on its composition [43].

So, besides preserving the weak equivalence principle
in a noncommutative phase space of a canonical type,
conditions (75), (76) give a possibility to recover the
properties of kinetic energy, to consider the motion of
the center-of-mass independently of the relative motion
[41, 43, 54].

In the next Subsection, using the obtained results we
study the effect of noncommutativity of coordinates and
noncommutativity of momenta on the weak equivalence
principle considering the Sun—Earth—-Moon system.

C. Effect of noncommutativity on the E6tvis
parameter

According to the Lunar laser ranging experiment, the
weak equivalence principle holds with accuracy

Aa _ 2ap —am) _ (—0.8+£1.3)-10713

(107)
a ag + am

(see [47]). In (107) ag, am are the free fall accelerati-
ons of Earth and the Moon toward the Sun when the
bodies are at the same distance from the source of gravi-
ty. On the basis of this result, one can examine condi-
tions for the parameters of coordinates and momentum

noncommutativity (75), (76) proposed for preserving the
weak equivalence principle. For this purpose, we study
the influence of noncommutativity of coordinates and
noncommutativity of momenta on the motion of Earth
and the Moon in the gravitational field of the Sun.

We consider the following Hamiltonian

P L

M\2
@),
2mE

2mm REgs

mgms

mmyms

mmymeg
Rus

-G -G

108
Ront (108)

The distances between bodies Rgs, Rms, Rewm in the
case when the Sun is considered to be at the origin of
the coordinate system read

Rps = \/(XT')? + (X3)?,

(109)
Rms = 4/ (X2 + (X212,
Ren = /(XE — X})2 + (XP - X})2. (110)
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Coordinates and momenta X, XM, PE, PM correspond  in the first term) is equal to its gravitational mass (mass
to Earth and the Moon, G is the gravitational constant,  in the third and the fifth terms), also the inertial mass of
ms, mg, my are the masses of the Sun, Earth and the  the Moon (mass in the second term) is equal to its gravi-
Moon, respectively. It is worth noting that in (108) we  tational mass (mass in the fourth and the fifth terms).
consider the case when the inertial mass off Earth (mass

J

In noncommutative phase space of canonical type we have the following Poisson brackets

{(XT, X3} =0, {P", Py} =ne, {X[, P]}=dy, (111)
{X%A7X§/[}:9M7 {PIM’P2M}:77Ma {Xszij}:(sijv (112)

0g, O, ME, Mv are parameters of coordinates and momentum noncommutativity corresponding to Earth and the
Moon. Taking this into account we can write equations of motion [44]

. PE G Xk G XE _ xM
Xf‘ _ s mET:S 2 +0g WLEWLM(‘3 2 2 )7 (114)
mg Rig Ry
. PE XE XE _ XM
X; _ 5 *0EGmET3nS 1 70EGmEmM(3 1 1 )7 (115)
mg Rig Ry
Pr=np—— 3 - 73 ) (116)
ES EM
E_ PE GmpmsXY  Gmemu (XY — X3
Py =—np— - 3 - 3 ’ (117)
Mg Rgg Ry
pM G xM G XE_xM
Xiv[ — Loy mMgnS 2 On mEmM(3 2 2 )7 (118)
mm Ryg Ry
. pPM G XE G XE _ xM
Xé\/[ _ " mgg’bs 1 1Oy mEmMR(3 1 1 )7 (119)
mm MS EM
PM _ % _ Gmams XM Gmepmy(XT — XM) (120)
! MmM RYs Rin 7
pPM _ _nMﬂ B Gmyms XYt Gmepmy(XE — XM (121)
2 mMm R%AS Rin .

On the basis of these equations accelerations of Earth and the Moon can be found. Up to the first order in the
parameters of coordinate and momentum noncommutativity we obtain

.s GmsXE  Gmy(XE - XM XE GmgmpXE
§p = GmsXD CmaXp ZX0) | X5 Gmsmin Xy
Rig R Ry
Gmymg | ¢ . 3Gmgm .
+ bk 24 BXPE - X)) — g 5S E(Rgs - Rig) X5
R\ Ry
3GmMmE E M
— e—ps (Rem - Rem) (X3 — X5,
EM
(122)
. GmsXM  Gmg(XE - XM XM G XM
im oo GmsXE | Ome(X =X)L Ko Omsmin Xy
Rys Ry mum Ryq
GmMmE o) M 3GmsmM .
On——p5— (Xo — X3") —Ou = (Rums - Rus) X5
Rign Ryg
3GmMmE M
+ O—ps — (Rem - Ren) (Xy' - X3),
EM
(123)

where Rgs(XE, XE), Rys (XM, XM), Rpn(XE — XM, XE — XM) [44].
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In the case when the distance from the bodies to the Sun is the same, we can write Rys = Rgs = R. For
convenience we consider the X7 axis to pass through the middle of Rgy and to be perpendicular to Rgy, the Xo
axis to be parallel to the Rgy. Let us remind that we have chosen the origin of the frame of references to be at the

Sun’s center. So, taking into account that Rgn/R ~ 1073, one obtains
R? REM
XF:Xf/[:R\/lfME%l\Q/IzR, X3 =-X'=—~

- E M v E M
Xl :0, Xl = UM, X2 :X2 = Vg,

Note that

(124)

(125)

where vy, vg are the orbital velocities of the Moon and Earth. So, the free fall accelerations of the Moon and Earth

toward the Sun in the case when the bodies are at the same distance to it read

. Gms UVE GmsmEvE 3REM .
=XE_-_—_>= — 4+ g——— (1— Res R 126
ap 1 Rz T o +oe—13 2UER2( s - Res) | (126)
. Gms VE GmSmMUE 3REM .
=XM=- — + 0 1 Rus - R . 127
am 1 T Mo + 73 2UERQ( ms - Rs) (127)
We have Rpyv/R ~ 1073, vy /v ~ 1072, therefore
3Rem(Res - R 3Rem(Rus - R
em(REs - Rgs) ~ 1076, EM(Rums - Rus) ~ 1077, (128)
QUERQ 2UER2
[
and the last terms in the expressions for the accelerati- Let us introduce constants
ons (126), (127) can be neglected. So, for the E6tvos
parameter for Earth and the Moon in a noncommutative ap = 777E’ an = M,
phase space we obtain the following result me mm
(132)
e = bgme, M = Oumum,

A R?
24 e ( T M > + ol (Oemy — O

a Gmg \mg mum R
n 6
_ 4dl AL (129)
a a

where Aa"/a, Aa’/a are corrections to the Etvos
parameter caused by the coordinate noncommutativity
and momentum noncommutativity

Aa"  wgR® (g nu
= _ = M 1
a Gmg (mE mym ) (130)
Ad® v
T = fE (9EmE — GMmM) s (131)

respectively.

It is important to stress that even if we consider
the inertial masses of the bodies to be equal to their
gravitational masses [see (108)], the E6tvos parameter
is not equal to zero. Noncommutativity of coordinates
and noncommutativity of momenta causes the violation
of the weak equivalence principle. In addition, it is worth
emphasizing that parameters g, ng, 6n, nv correspond
to macroscopic bodies; they are effective parameters of
noncommutativity which depend on the composition of
the bodies and are defined as (88), (89). So, even for two
bodies with the same masses but different compositions
the E6tvos-parameter is not equal to zero [44].

and estimate the values |ag — aml, |y — ym| on the
basis of the Lunar laser ranging experiment results [47].
We assume that the following inequality is satisfied

<21-1071, (133)

Aa? + Aa"
a

Here 2.1 - 10713 is the largest value in (107) [47]. To
estimate the orders of the values |ag — am|, |vE — Y| We
consider inequalities

Ad?

a

Aa"

< 10713, ‘ <10713, (134)
a

From the inequalities, using (130), (131), we find [44]
log — an| 10720571 |y — | < 1077 s. (135)

It is important to stress that considering conditions
on the parameters of noncommutativity proposed in the
previous section, namely, assuming that ag = ay, 75 =
M, wWe obtain that the E6tvos parameter for Earth and
the Moon (129) is equal to zero. So, the weak equivalence
principle is preserved in a noncommutative phase space
of a canonical type.
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IV. QUANTIZED SPACE WITH PRESERVED
ROTATIONAL AND TIME-REVERSAL
SYMMETRIES AND WEAK EQUIVALENCE
PRINCIPLE

A. Rotationally-invariant noncommutative algebra
of a canonical type

In a six-dimensional noncommutative phase space of a
canonical type (a three dimensional configuration space
and a three dimensional momentum space) (18)-(20),
the rotational and time reversal symmetries are not
preserved [55].

Algebra which is rotational invariant and equivalent
to a noncommutative algebra of a canonical type and
does not cause the time reversal symmetry breaking, was
proposed in [55]. It reads

[XZ', X]] = zh@u = ng Z Eijkp%a (136)
k
[Xi,P»} = m(&ij + 7ij) (137)
a CoCn g4
[Pi, Pj] = iﬁmj = icn Z Eijkpz- (138)

k

The algebra is constructed, considering tensors of

noncommutativity defined as

Z] h Zsljkpkv
c
Nij = En Zgijkpkv
k

here p¢, p? are additional momenta, cy, ¢y are constants,
limp_,0 cg/h = const, limp_,oc,/f = const [55]. From
the symmetric representation of noncommutative coordi-
nates and noncommutative momenta (see, for instance,
[25, 56, 57] ) follows that parameters o;; are defined as
oij = Y Qiknjr/4. So, using (139), (140), we obtain

C9Cn 09077 e b

(139)

(140)

045 = (141)
The symmetric representation for noncommutative
coordinates and noncommutative momenta reads

X, = s + %[n «xli. (142)
Coordinates and momenta x;, p; satisfy the ordinary

commutation relations

1
5[9 xpli, Pi=pi—

[i, 2] = [pi,p;] = 0, [ws,p;] = ihdy;. (143)
In (142) we use notations 8 = (01, 62,6s), n = (11,12, M3)
e Gkl copd
b= 5 =
jk
(144)

b

o €ijkNik _ Cnb;

m=) g =T
jk

1001-12

Additional momenta p¢, p? and additional coordi-
nates a;, b; satisfy the ordinary commutation relations
[ai7aj] = [b“b]] = [aivbj] = 0, [p(ilvp}l] = [pgvp?‘] =

@05 =0, [ai,p}] = [bmpé’] = ihdij, lai, p3] = [bi, p}] =
0, [aivXj] = [alv ] [me] = [p?,Pj] = 0. So, the
tensors of noncommutativity commute with coordinates
and momenta

[0i5, Xi] = 035, P) = [, X] = = 0(145)
[0ij, Xi] = [0ij, Ps] = 0. (146)

The same relations (145), (146) are satisfied within the
frame of the noncommutative algebra of a canonical type
(18)—(20). In this sense, algebra (136)-(138) is equivalent
o (18)-(20) [55].

To preserve the rotational symmetry, additional
coordinates and momenta a;, b;, p?, pi-’ have to be
governed by rotationally-symmetric systems. For simpli-
city, in [55] these systems were considered to be harmonic
oscillators

(M35, Pr]

He — (p*)? _~_mos‘cW§sca2

o8¢ 2mOSC 2 ’
(147)

_ (pb)2 Mosc Wgsch

Hb

osc

2Trlosc 2 ’

with \/ﬁ/ VMoscWose = Ip and very large frequency woge
(oscillators put into the ground states remain in the

states) [55].

B. Particle in a gravitational field in a
noncommutative phase space with preserved
rotational and time reversal symmetries

Let us study the motion of a particle in a uniform field
within the frame of the algebra (136)—(138) and examine
the weak equivalence principle. We consider the following
Hamiltonian

2
Hp = P— +mgXi,

2m
here m is the mass of the particle, g is the free fall
acceleration. The X; axis is chosen to correspond to the
field direction. Coordinates and momenta of the parti-
cle satisfy relations of noncommutative algebra (136)—
(138) which contain additional momenta. So, to study
the motion of the particle in a gravitational field, we
have to take into account additional terms correspondi-
ng to harmonic oscillators. Therefore, we consider the

total Hamiltonian as follows

H = Hp + HS, + H

osc osc”

(148)

(149)

It is convenient to use representation (142) and rewrite
the Hamiltonian in the following form

2 -L m
e
2
TR U (150)
8m
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here L = [x x p]. The Hamiltonian also can be
represented as
H = Hy + AH, (151)
Ho = (Hp)ap + Hose + Hoye, (152)
AH = H — Hy = Hp — (Hp)a, (153)

_ b b b
where <~-->ab = <T/’3,0,0¢0,0,0|-~-\¢370,0¢0,0,0>a z/)g,opa z/10,070
are the well known eigenfunctions of the harmonic osci-

llators HS,, HS, in the ground states.
For a particle in a uniform field, we have
Hy = % +mga + <7£>mQ + HE, + HY, (154)
AH = —("%L) + 910 x pl:

To find these expressions, the following results are used
<¢8,0,0|9i|¢8,0,0> =0, <1/J8,0,0|77i|1/}8,0,0> =0, (156)
303

2
(07) =3210%) =3 35 Wil IW00) = 75-(157)

i
2

2 3
() =320 =7 ol ()71 00) = 73 (139)

1 K3

In [58] it was shown that the corrections to Hy caused by
term A H vanish up to the second order of the perturbati-
on theory. So, up to the second order in AH (or up to the
second order in the parameters of noncommutativity),
we can study Hamiltonian (154) and write the following
equations of motion

_ b
m

URED
S

m

T4 , Pi=—mgd;1 — (159)

Ther solution of the equations with initial conditions
(,CZ(O) = X0i, .’L‘Z(t) = Vo; reads [59]

60 Y eos [T
zi(t) = (x01—|—6g<n2>51,1> cos( 6m2t>

m? o (S 6 s,
o) ( 6m2t> 69,7791, (160)

From this result, we can conclude that up to the second
order in the parameters of noncommutativity the motion

+ o

of a particle in a uniform gravitational field is not affected
by noncommutativity of coordinates. Also, it is worth
noting that in limit (n?) — 0 from (160) we find the well
known result z;(t) = 61,,9t%/2 + zo;, which corresponds
to the motion of a particle in a gravitational field in the
ordinary space.

It is important to mention, that the trajectory of a
particle in a gravitational field (160) depends on its
mass. So, the weak equivalence principle is violated in
a noncommutative phase space of a canonical type with
preserved rotational and time reversal symmetries.

Note that if we consider the tensor of momentum
noncommutativity to be dependent on mass as

iy = amh’y_ eikp}, (161)
k

(n)

namely, if constant ¢’ in (140) satisfies condition

(162)

(here & is the same for different particles), the motion

of a particle in a uniform field does not depend on mass

and the weak equivalence principle is recovered [59, 60].
From (162) follows that

(n*)  3a’

—- = —% = B = const,
m? 203

(163)

and the trajectory of a particle reads

B
(xoi + 6551,1) cos <\/ 6t>
+ UOiV %Sin (M ?t) - GEQ(SLZ'. (164)

In the case of a non-uniform gravitational field for a
particle with mass m, we consider the following Hami-
ltonian

Z; (t) =

P? M
Hp— L= _GMm -6

H=Hp+ H- + H®
p+ + o X

osc osc?

here X = />, X2. The Hamiltonian Hp written in
representation (142) up to the second order in the
parameters of noncommutativity has the following form

He = P _CMm (L) [mxx? GMm _ P GMm (nL) | [nxxP
P om T 2m 8m \/132 —(0-L)+ [9x4p]2 2m x 2m 8m
GMm 3GMm 5, GMm o1 1 , 1 R? )
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where & = |x| (the details of calculations of the expansion can be found in [61]). So, for AH we have

(n-L) [nxx? @»z> GMm GMmL?(6?)
AH = — - - 0-L)+ —— 1
2m * 8m 12m 223 ( )+ 85 (167)
GMm (1 o1 1 o 1 h? .\  3GMm s GMm) (1 ,1 1,1 §?
16 <x2 16> p] P 10> pl 2 0] 8z ©-1) 24 2" x oz 2?2 2b )

Up to the second order in the parameters of noncommutativity to study the motion of a particle in a nonuniform
gravitational field, we can consider the following Hamiltonian

2 Y 2\,.2 T 72002 Y 2 ; 2
D GMm  (n°)z GMmL*{(0*) GMm(0°) (2 , 6ih I " b
Hy=—- - — —(xp)— = HS.  +H 168
7 om x + 12m 8z + 24 L + il (x-p) x5 + Hose + Hower - (168)
and find the following equations of motion
. p GMm(#?) [ 1 3x
—— -/ (—p-(x- 169
= 12 HP TS (x-p) ), (169)
_ GMmx (n®)x  GMm(#?) [ 1 2x , 5x ., B5h*x  5ih
= _ = — —(x- == il - . .
P x3 6m 4 5(xp) sl T 9T 627 x? x(xp)
(170)
These equations in the classical limit (A — 0) transform to
wmg MmO (1, X x-p) (171)
=P 12 xgp LE5 p )
) GMx (p®)x  GMm2(0?) [ 1 2X , ;.9 DX 9
P=—"F ez 4 \s PP gt gpbol ), (172)

here p’ = p/m [59]. Let us consider the dependence of the tensor of coordinates noncommutativity on mass as follows

cén)mn = 4 = const, (173)
Qij = %hz&ijkp%, (174)
k
52
(6%ym? = 312 = A = const, (175)
203

where constants A, 4 are the same for different particles. So, in the case when the relations (162), (173) hold, from
(169), (170) we obtain

GMB (1 3x
R P . /
x=p - 7 (- Been)). (176)
. GMx Bx GMA (1 2X, ;0 5 5  bh%x 5ih
pl = - 3 - ? - 4 < 5( p/) ' - 75(])/) + 2],‘7[ X /] + 6m2x7 m$7X(X pl) : (177)

In the classical limit, on the basis of (176), (177) we find

GMA [ 1 3x
., GMA /(1 , o
X=p 12 (xgp o (X P)); (178)
GMx Bx GMA/1 2x 5x
y - 7" T e N "2 "2
P=-"73 6 1 <x5(x PP’ — =)+ 5= x xp] ) (179)
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The equations of motion of a particle in a gravitational fi-
eld in the quantum case (176), (177) depend on the ratio
h/m, as it has to be. This is caused by the dependence of
the commutation relation on mass [x,p’] = ihl/m [62].
Classical equations of motion (178), (179) do not depend
on mass. So, the weak equivalence principle is satisfi-
ed in a noncommutative phase space with preserved
rotational and time reversal symmetries if tensors of
noncommutativity are related with mass (162), (173)
[59].

It is worth noting that the conditions (162), (173)
considered in this section are in agreement with those
presented in section III (76), (75) to recover the weak
equivalence principle in noncommutative phase space of
a canonical type.

V. WEAK EQUIVALENCE PRINCIPLE
WITHIN THE FRAME OF THE
NONCOMMUTATIVE ALGEBRA OF THE LIE
TYPE

A. The Lie algebra with space coordinates
commuting to time and the weak equivalence
principle

Let us study the motion of a particle in a gravitational
field in a space with noncommutativity of the Lie type
in the case when space coordinates commute to time

iht

here i,j = (1,2, 3), indexes p, 7 are fixed and different,
K is a parameter [35, 63]. The deformed Poisson brackets
corresponding to (180)-(181) are as follows

t
X, X5} = p (0ip0jr — 0irdjp) (182)

{Xi, By} =0y, {P, P} =0, (183)
(see [35]).

For a particle with mass m in a gravitational field V =
V (X1, Xs, X3), the Hamiltonian reads

2

P
H= % +mV(X17X2,X3). (184)

Taking into account (182), (183), we can write equations
of motion as follows

. P, tm OV
X, = (X, Hy = — + 2 (65,00 — 0 1
7 { iy } m + K 8Xk (6zp6k7 617'6143/)) ;( 85)
. ov
(see [35, 64]). Note that in (185) because of

noncommutativity of the Lie type, we have a term
proportional to mass m. Therefore the weak equivalence
principle is violated. Similarly as in a noncommutative

space of a canonical type, let us consider the dependence
of the parameter of the noncommutative algebra on mass
and write the following condition

K

— = 7y, = const,

-~ (187)

here 7, does not depend on mass and is the same for
different particles. Taking into account relation (187),
the equations of motion of a particle in a gravitational
field can be rewritten as

. t oV
X;=P +———
! N e an

- 5i76kp) 5 le = _al

(5ip5k'r 8XZ ’

(188)
where P/ = P;/m. So, on the basis of the obtained result,
we have that X;(t), P/(t) do not depend on mass and the
weak equivalence principle is recovered if condition (187)
is satisfied [64].

Let us also study the case of the motion of a composi-
te system in a gravitational field and examine the weak
equivalence principle. For coordinates and momenta of
different particles, the noncommutative algebra of the
Lie type (182), (183) can be generalized as

(@ )y _ t
(X7 X }—;

a

(6ip5jr - 6i75jp) 5ab7 (189)

b b
(X", P} = dudiy, AP, P} =0, (190)

here Xi(a), Pi(a), Ko are coordinates, momenta and
parameters of the noncommutative algebra correspondi-
ng to the particle with index a [64]. The noncommutati-
ve algebra for coordinates and momenta of the center-
of-mass, coordinates and momenta of the relative moti-
on introduced in the traditional way (P = >, P
X =Y, 5 X®, AP = P@) —, P, AX@ = X(9) _ X,
fa =mqa/M, M =" m,) is as follows

2

o o o e
{Xi, Xj} =t ? (§ip5jr - 5i76jp) ) (191)
{XlaPJ}_51]7 {pivpj}_o (192)

5 e 1z
AXIV AXPY =t -2t B 3 e
{AX;", AXG7} =t 2

KRq Ra Ry

X (0ip0jr — 0ir0jp) , (193)
{AXi(a)a Apj(b)} = 5ab — M, (194)
2
@ gy _[Ha pe
{AXi an} =t (% - zm)
X (0ip0jr — 0ir0jp) , (195)
(AP, AP}y = {P;, AP} = 0. (196)

The Poisson brackets for coordinates of the center-of-
mass and coordinates of the relative motion vanish

{ax{”, X} =0, (197)
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if the parameters of the noncommutative algebra are
determined by mass as (187) [64]. Namely, if relation
Ka = Mg7, is satisfied. Also, in this case the effecti-
ve parameter of noncommutativity depends on the total
mass of the system and is independent of its composition

1

2
00 = S Ba (5,6, — 6,0i) = —— (81007 — 0ir;
ij z@:ﬁa( pQj j p) Iieff( p9; JP)
1
= o 27 Girdir = 8jz0ip) - (198)

Let us study the motion of a composite system of
mass M in a gravitational field in the space with the Lie
algebraic noncommutativity (182), (183) on the basis of
the obtained results. The Hamiltonian reads

2

P L
H=_—+MV(X,Xs,X3)+ Hpel.

= i (199)

The term H,. corresponds to the relative motion, f(i,
P; are coordinates and momenta of the center-of-mass of
the composite system that are defined in the traditional
way.

Considering the condition on the parameter of
noncommutative algebra (187), we have (197) and

p? S
{2M + MV (X1, X2, X3), Hrel} =0,  (200)

So, for a composite system we can write the following
equations of motion in the gravitational field

< p@ /,63 ov
X = Vi + tM; P (Gip6jr — Girdjp) 875(]
~ 1 ov
= P+t - (8ip0ir — 0ir0;p) T (201)
a r J
N VR (202)

ax,  0X,

here P/ = P;/M. From equations (201), (202) follows
that expressions for X;(t), P/(¢) do not depend on the
mass of the composite system or its composition. So, the

weak equivalence principle is recovered within the frame
of the algebra (182), (183) due to condition (187) [64].

B. Preserving of the weak equivalence principle in
the general case of the Lie algebraic
noncommutativity

In a more general case of the noncommutative algebra
of the Lie type, the Poisson brackets are as follows

(203)
{Xi, P} = 615 + 05, Xp, + 05, Pe, {P;, P;} =0,(204)

here i, j, k = (1,2,3), 0%, 0%, 0%, 0F; are constants, 02, =
—09;, 05 = —0%, éfj = —éf] [38]. These constants have
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to be chosen to satisfy the Jacobi identity. This issue was
studied in [38]. The author of the paper considered the
following algebras of the Lie type

X} ==+ 2h (X} = - 2E e0s)
P N (S S T (206)
(AX,} = =25 (X0} = by, (207)
PPy =1 (PP =0, (208)

and the second ones

t Xl t Xk
X, X =—+—, {X;, X} =———, (209
{ k> v} K"' B { l v} P P ( )
X, P,
{Xk, X1} =0, {Pk7X~,}=El+EZ, (210)
X, P
{PlaXv}:?—?» {Xi, Pj} = biy, (211)
(X5, Pyt =1, {Pu, P} =0, (212)

The algebras correspond to the cases when parameters
of noncommutativity satisfy the following relations

09, =03, = % 0y, = % (213)
o, =0k =0l =0k = ()
and
o), = =0y, = % 0y, = —0f, = % (215)
Oy = =01, = % (216)
O = —0F, = % (217)
respectively.

For a particle in a gravitational field (184) taking into
account (203), (204), we obtain that the equations of
motion depend on mass

X, = 4682 +m (6%t
m

(218)

‘PZ.:

1% _ . 1%
—m(0; Xy, + 05, P) =~ (219)

"X, X

Due to the dependence of the parameters of
noncommutativity on mass proposed in [64]

00(@)

i Ma = fy?j = const, Hfj(a)ma = %kj = const, (220)

gr@

i ma = 75 = const, éfj(a) =0y, (221)
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we obtain

Xi = P/ +05P/X) + 75 PP+ (7t

°)%
+ 'ijXk)ﬁa (222)
J
. ov 1%
Pl = — o5, X kP . 22
i 8Xz ( k+7zy k)an ( 3)

Here constants ’y?j, fyfj, ’yfj do not depend on mass
W= e W = e A =~ Pl = Pi/m. So,
if conditions (220), (221) hold, the weak equivalence pri-
nciple is preserved in a noncommutative space of the Lie
type (203), (204).

Let us also study the motion of a composite system in
a gravitational field in the space (203), (204) and exami-
ne the weak equivalence principle. The noncommutative
algebra (203), (204) can be generalized for coordinates
(a) P(a)

and momenta of different particles X A

label a particle) as

(index a

(K00 = OX0,

(XD, P} = 6001 + 0unli VX4 + 844011 P2, (225)

(a) p(b)y _
Q?j(“) , Hfj(“) , éfj(“) , éfj(“) are parameters of the

noncommutative algebra corresponding to a particle
with index a [64]. The relations of the noncommutative
algebra for coordinates and momenta of the center-of-
mass read

(X0, X5 =200+ p2or VX, (227)

(X, P}y =0 + Z a0l VX + 37 a0 P, (228)
a

{P;, P;} = 0. (229)
Note that the relations (227), (229) do not reproduce
relations of the Lie algebra (203)—(204). In the right-
hand side of (227), (228), we do not have coordinates and
momenta of the center-of-mass. It is important to menti-
on that the problem is solved due to conditions (220),
(221) [64]. For coordinates and momenta of the center-
of-mass, one obtains relations of the noncommutative
algebra of the Lie type

oyl o O(eff k(eff) <
(X Xy = 00D 4 of M %, (230)
(X0, By} = 65 + 05X, + 05V By, (231)
with parameters
0 k ~k
o(eft) _ Vij k(eff) _ Vij  sk(eff) _ Vij
eij - Ma oij - Ma oij - Ma (232)

here M =) _m, is the total mass of the system [64].

So, on the basis of these results, one can write the
equations of motion of a composite system in a gravi-
tational field in a quantized space with algebra (203),
(204). Introducing notation P/ = P;/M for a composite
system in a gravitational field, we find

X, = (0’“ Xp+4k Pk) P
oV
n (%JH—VUXk) S (233)
. oV oV
P = 08 X;, + 45 P, (234
% 8XZ ( k ’YU k) 8X] ( )

Writing (233), (234), we assume that the influence of the
relative motion on the motion of the center-of-mass of
the system can be neglected. Equations of motion of a
composite system in a gravitational field (233), (234) do
not depend on its total mass, masses of particles formi-
ng it, its composition. So, the weak equivalence princi-
ple is preserved in a general case of the noncommutative
algebra of the Lie type (203), (204) due to relations (220),
(221) [64].

VI. CONCLUSIONS

We have examined quantum spaces with different
deformed Heisenberg algebras (noncommutative algebra
of a canonical type, noncommutative algebra of the Lie
type, the Snyder algebra, the Kempf algebra and their
generalizations). The motion of a particle in a gravitati-
onal field has been studied within frame of the deformed
algebras and the implementation of the weak equivalence
principle has been analyzed.

We have concluded that different types of deformati-
on of the commutation relations for coordinates and
momenta (canonical, Lie and nonlinear deformations)
lead to the dependence of the motion of a particle
(composite system) in a gravitational filed on mass and
its composition. Therefore, the weak equivalence princi-
ple is violated. The principle is violated even in the case
when the gravitational mass is equal to the inertial mass.
It is worth stressing that the deformation of the algebra
leads to a great violation of the principle, which can be
easily seen in an experiment. But from the observations
we know that the weak equivalence principle is preserved
with hight accuracy. The problem is solved if one consi-
ders parameters of deformed algebras to be dependent
on mass. In this case, the motion of a particle (composi-
te system) in a gravitational field does not depend on its
mass and composition or the weak equivalence principle
is recovered.

It is important to add that the idea to relate
parameters of deformed algebra to mass is also important
for preserving the properties of the kinetic energy
(additivity property, independence of composition) in a
quantum space and, therefore for recovering the law of
conservation of energy. Also, in the case when parameters
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of the deformed algebra depend on mass, the problem of
description of the motion of a composite system in a
space with minimal length is solved. The problem is well
known in the literature as the soccer-ball problem.

So, the idea of the dependence of parameters of
deformed algebras on mass leads to solving fundamental
problems in a space with minimal length, among them
violation of the weak equivalence principle, nonadditivity

of the kinetic energy and its dependence on composition,
the soccer-ball problem.

ACKNOWLEDGMENTS

This work was partly supported by the Projects ®®-
279 (0122U001558), ®®-11Hp (No. 0121U100058) from
the Ministry of Education and Science of Ukraine.

[1] H. S. Snyder, Phys. Rev. 71, 38 (1947); https://doi.
org/10.1103/PhysRev.71.38.

[2] D. J. Gross, P. F. Mende, Nucl. Phys. B 303, 407 (1988);
https://doi.org/10.1016/0550-3213(88)90390-2.

[3] M. Maggiore, Phys. Lett. B 304, 65 (1993); https://do
i.org/10.1016/0370-2693(93)91401-8.

[4] J. M. Romero, Phys. Lett. B 661, 11 (2008); https:
//doi.org/10.1016/j.physletb.2008.02.001.

[6] S. Mignemi, Phys. Rev. D 84, 025021 (2011); https:
//doi.org/10.1103/PhysRevD.84.025021.

[6] S. Mignemi, Phys. Rev. D 90, 044019 (2014); https:
//doi.org/10.1103/PhysRevD.90.044019.

[7] L. Lu, A. Stern, Nucl. Phys. B 860, 186 (2012); https:
//doi.org/10.1016/j.nuclphysb.2012.02.012.

[8] Kh. P. Gnatenko, V. M. Tkachuk, EPL 125, 50003
(2019); https://doi.org/10.1209/0295-5075/125/50
003.

[9] A. Kempf, J. Phys. A: Math. Gen. 30, 2093 (1997); ht
tps://doi.org/10.1088/0305-4470/30/6/030.

[10] S. Benczik et al., Phys. Rev. D 66, 026003 (2022); https:
//doi.org/10.1103/PhysRevD.66.026003.

[11] S. Benczik, L. N. Chang, D. Minic, T. Takeuchi, Phys.
Rev. A 72, 012104 (2005); https://doi.org/10.1103/
PhysRevA.72.012104.

[12] A. Kempf, Phys. Rev. D 52, 1108 (1995); https://doi.
org/10.1103/PhysRevD.52.1108.

[13] L. Menculini, O. Panella, P. Roy, Phys. Rev. D 87,
065017 (2013); https://doi.org/10.1103/PhysRevD.8
7.065017.

[14] L. Menculini, O. Panella, P. Roy, Phys. Rev. D 91,
045032 (2015); https://doi.org/10.1103/PhysRevD.9
1.045032.

[15] Kh. P. Gnatenko, V. M. Tkachuk, Int. J. Mod. Phys. D.
28, 1950107 (2019); https://doi.org/10.1142/502182
71819501074.

[16] V. M. Tkachuk, Found. Phys. 46, 1666 (2016); https:
//doi.org/10.1007/s10701-016-0036-5.

[17] A. F. Ali, S. Das, E. C. Vagenas, Phys. Rev. D 84,
044013 (2011); https://doi.org/10.1103/PhysRevD.8
4.044013.

[18] A. Nowicki, V. M. Tkachuk, J. Phys. A: Math. Theor. 47,
025207 (2014); https://doi.org/10.1088/1751-8113/
47/2/025207.

[19] T. Maslowski, A. Nowicki, V. M. Tkachuk, J. Phys. A:
Math. Theor. 45, 075309 (2012); https://doi.org/10
.1088/1751-8113/45/7/075309.

[20] P. Pedram, Phys. Lett. B 714, 317 (2012); https://do
i.org/10.1016/j.physletb.2012.07.005.

[21] P. Pedram, Phys. Lett. B 718, 638 (2012); https://do
i.org/10.1016/j.physletb.2012.10.059.

[22] W. S. Chung, H. Hassanabadi, Phys. Lett. B 785,
127 (2018); https://doi.org/10.1016/j.physletb.2
018.07.064.

1001-18

[23] W. S. Chung, H. Hassanabadi, Eur. Phys. J. C 79,
213 (2019); https://doi.org/10.1140/epjc/s10052-
019-6718-3.

[24] Kh. P. Gnatenko, V. M. Tkachuk, Ukr. J. Phys. 63, 102
(2018); https://doi.org/10.15407/ujpe63.2.102.

[25] A. E. F. Djemai, H. Smail, Commun. Theor. Phys.
41, 837 (2004); https://doi.org/10.1088/0253-6102/
41/6/837.

[26] S. A. Alavi, Mod. Phys. Lett. A 22, 377 (2007); https:
//doi.org/10.1142/50217732307018579.

[27] O. Bertolami, R. Queiroz, Phys. Lett. A 375, 4116
(2011); https://doi.org/10.1016/j.physleta.2011.
09.053.

[28] A. Smailagic, E. Spallucci, Phys. Rev. D 65, 107701
(2002); https://doi.org/10.1103/PhysRevD.65.1077
01.

[29] K. Li, J. Wang, Ch. Chen, Mod. Phys. Lett. A 20,
2165 (2005); https://doi.org/10.1142/S02177323050
17421.

[30] C. Acatrinei, J. High Energy Phys. 2001, 007 (2001);
https://doi.org/10.1088/1126-6708/2001/09/007.

[31] P. R. Giri, P. Roy, Eur. Phys. J. C 57, 835 (2008); https:
//doi.org/10.1140/epjc/s10052-008-0705-4

[32] J. B. Geloun, S. Gangopadhyay, F. G. Scholtz, EPL
86, 51001 (2009); https://doi.org/10.1209/0295-507
5/86/51001.

[33] O. Bertolami et al., Phys. Rev. D 72, 025010 (2005);
https://doi.org/10.1103/PhysRevD.72.025010.

[34] C. Bastos, O. Bertolami, Phys. Lett. A 372, 5556 (2008);
https://doi.org/10.1016/j.physleta.2008.06.073.

[35] M. Daszkiewicz, C. J. Walczyk, Phys. Rev. D 77,
105008 (2008); https://doi.org/10.1103/PhysRevD.7
7.105008.

[36] J. Lukierski, M. Woronowicz, Phys. Lett. B 633,
116 (2006); https://doi.org/10.1016/j.physletb.2
005.11.052.

[37] J. Lukierski et al., Phys. Lett. B 777, 1 (2018); https:
//doi.org/10.1016/j.physletb.2017.12.007.

[38] Yan-Gang Miao, Xu-Dong Wang, Shao-Jie Yu, Ann.
Phys. 326, 2091 (2011); https://doi.org/10.1016/j.
aop.2011.04.009.

[39] C. Bastos, O. Bertolami, N. C. Dias, J. N. Prata, Class.
Quantum Gravity 28, 125007 (2011); https://doi.or
g/10.1088/0264-9381/28/12/125007.

[40] O. Bertolami, P. Leal, Phys. Lett. B 750, 6 (2015); ht
tps://doi.org/10.1016/j.physletb.2015.08.024.

[41] Kh. P. Gnatenko, Phys. Lett. A 377, 3061 (2013); http
s://doi.org/10.1016/j.physleta.2013.09.036.

[42] A. Saha, Phys. Rev. D 89, 025010 (2014); https://do
i.org/10.1103/PhysRevD.89.025010.

[43] Kh. P. Gnatenko, V. M. Tkachuk, Phys. Lett. A 381,
2463 (2017); https://doi.org/10.1016/j.physleta.?2
017.05.056.


https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1016/j.physletb.2008.02.001
https://doi.org/10.1016/j.physletb.2008.02.001
https://doi.org/10.1103/PhysRevD.84.025021
https://doi.org/10.1103/PhysRevD.84.025021
https://doi.org/10.1103/PhysRevD.90.044019
https://doi.org/10.1103/PhysRevD.90.044019
https://doi.org/10.1016/j.nuclphysb.2012.02.012
https://doi.org/10.1016/j.nuclphysb.2012.02.012
https://doi.org/10.1209/0295-5075/125/50003
https://doi.org/10.1209/0295-5075/125/50003
https://doi.org/10.1088/0305-4470/30/6/030
https://doi.org/10.1088/0305-4470/30/6/030
https://doi.org/10.1103/PhysRevD.66.026003
https://doi.org/10.1103/PhysRevD.66.026003
https://doi.org/10.1103/PhysRevA.72.012104
https://doi.org/10.1103/PhysRevA.72.012104
https://doi.org/10.1103/PhysRevD.52.1108
https://doi.org/10.1103/PhysRevD.52.1108
https://doi.org/10.1103/PhysRevD.87.065017
https://doi.org/10.1103/PhysRevD.87.065017
https://doi.org/10.1103/PhysRevD.91.045032
https://doi.org/10.1103/PhysRevD.91.045032
https://doi.org/10.1142/S0218271819501074
https://doi.org/10.1142/S0218271819501074
https://doi.org/10.1007/s10701-016-0036-5
https://doi.org/10.1007/s10701-016-0036-5
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1088/1751-8113/47/2/025207
https://doi.org/10.1088/1751-8113/47/2/025207
https://doi.org/10.1088/1751-8113/45/7/075309
https://doi.org/10.1088/1751-8113/45/7/075309
https://doi.org/10.1016/j.physletb.2012.07.005
https://doi.org/10.1016/j.physletb.2012.07.005
https://doi.org/10.1016/j.physletb.2012.10.059
https://doi.org/10.1016/j.physletb.2012.10.059
https://doi.org/10.1016/j.physletb.2018.07.064
https://doi.org/10.1016/j.physletb.2018.07.064
https://doi.org/10.1140/epjc/s10052-019-6718-3
https://doi.org/10.1140/epjc/s10052-019-6718-3
https://doi.org/10.15407/ujpe63.2.102
https://doi.org/10.1088/0253-6102/41/6/837
https://doi.org/10.1088/0253-6102/41/6/837
https://doi.org/10.1142/S0217732307018579
https://doi.org/10.1142/S0217732307018579
https://doi.org/10.1016/j.physleta.2011.09.053
https://doi.org/10.1016/j.physleta.2011.09.053
https://doi.org/10.1103/PhysRevD.65.107701
https://doi.org/10.1103/PhysRevD.65.107701
https://doi.org/10.1142/S0217732305017421
https://doi.org/10.1142/S0217732305017421
https://doi.org/10.1088/1126-6708/2001/09/007
https://doi.org/10.1140/epjc/s10052-008-0705-4
https://doi.org/10.1140/epjc/s10052-008-0705-4
https://doi.org/10.1209/0295-5075/86/51001
https://doi.org/10.1209/0295-5075/86/51001
https://doi.org/10.1103/PhysRevD.72.025010
https://doi.org/10.1016/j.physleta.2008.06.073
https://doi.org/10.1103/PhysRevD.77.105008
https://doi.org/10.1103/PhysRevD.77.105008
https://doi.org/10.1016/j.physletb.2005.11.052
https://doi.org/10.1016/j.physletb.2005.11.052
https://doi.org/10.1016/j.physletb.2017.12.007
https://doi.org/10.1016/j.physletb.2017.12.007
https://doi.org/10.1016/j.aop.2011.04.009
https://doi.org/10.1016/j.aop.2011.04.009
https://doi.org/10.1088/0264-9381/28/12/125007
https://doi.org/10.1088/0264-9381/28/12/125007
https://doi.org/10.1016/j.physletb.2015.08.024
https://doi.org/10.1016/j.physletb.2015.08.024
https://doi.org/10.1016/j.physleta.2013.09.036
https://doi.org/10.1016/j.physleta.2013.09.036
https://doi.org/10.1103/PhysRevD.89.025010
https://doi.org/10.1103/PhysRevD.89.025010
https://doi.org/10.1016/j.physleta.2017.05.056
https://doi.org/10.1016/j.physleta.2017.05.056

DEFORMED HEISENBERG ALGEBRAS OF DIFFERENT TYPES...

[44] Kh. P. Gnatenko, V. M. Tkachuk, Int. J. Theor. Phys.
57, 3359 (2018); https://doi.org/10.1007/s10773-0
18-3848-6.

[45] M. J. Lake et al., Class. Quant. Grav. 36, 155012 (2019);
https://doi.org/10.1088/1361-6382/ab2160.

[46] Kh. P. Gnatenko, V. M. Tkachuk, Mod. Phys. Lett. A
35, 2050096 (2020); https://doi.org/10.1142/502177
32320500960.

[47] J. G Williams, S. G. Turyshev, D. H. Boggs, Class.
Quantum Gravity 29, 184004 (2012); https://doi.or
g/10.1088/0264-9381/29/18/184004.

[48] V. M. Tkachuk, Phys. Rev. A 86, 062112 (2012); https:
//doi.org/10.1103/PhysRevA.86.062112.

[49] C. Quesne, V. M. Tkachuk, Phys. Rev. A 81,
012106 (2010); https://doi.org/10.1103/PhysRevA.8
1.012106.

[50] A. M. Frydryszak, V. M. Tkachuk, Czechoslov. J. Phys.
53, 1035 (2003); https://doi.org/10.1023/B:CJOP.0
000010529.32268.03.

[51] S. Hossenfelder, Phys. Rev. D 75, 105005 (2007); https:
//doi.org/10.1103/PhysRevD.75.105005.

[52] G. Amelino-Camelia, Symmetry 2, 230 (2010); https:
//doi.org/10.3390/sym2010230.

[53] S. Hossenfelder, SIGMA10, 074 (2014); https://doi.or
g/10.3842/SIGMA.2014.074.

[64] Kh. P. Gnatenko, H. P. Laba, V. M. Tkachuk, Mod.
Phys. Lett. A. 33, 1850131 (2018); https://doi.org/

10.1142/50217732318501316.

[655] Kh. P. Gnatenko, M. I. Samar, V. M. Tkachuk, Phys.
Rev. A 99, 012114 (2019); https://doi.org/doi/10.1
103/PhysRevA.99.012114.

[56] O. Bertolami, R. Queiroz, Phys. Lett. A 375, 4116
(2011); https://doi.org/10.1016/j.physleta.2011.
09.053.

[57] O. Bertolami et al., Mod. Phys. Lett. A 21, 795 (2006);
https://doi.org/10.1142/50217732306019840.

[58] Kh. P. Gnatenko, V. M. Tkachuk, Int. J. Mod. Phys. A
33, 1850037 (2018); https://doi.org/10.1142/502177
51X18500379.

[59] Kh. P. Gnatenko, EPL 123, 50002 (2018); https://do
i.org/10.1209/0295-5075/123/50002.

[60] Kh. P. Gnatenko, Eur. Phys. J. Plus 135, 652 (2020); ht
tps://doi.org/10.1140/epjp/s13360-020-00678-0.

[61] Kh. P. Gnatenko, V. M. Tkachuk, Phys. Lett. A 378,
3509 (2014); https://doi.org/10.1016/j.physleta.2
014.10.021.

[62] D. Greenberger, Ann. Phys. 47, 116 (1968); https://do
i.org/10.1016/0003-4916(68)90229-7.

[63] M. Daszkiewicz, Mod. Phys. Lett. A 23, 505
(2008); https://doi.org/10.114250217732308026479
/S0217732308026479.

[64] Kh. P. Gnatenko, Phys. Rev. D 99, 026009 (2019);
https://doi.org/10.1103/PhysRevD.99.026009.

JE®OPMOBAHI AJITEBPU TAM3EHBEPI'A PISBHUX THUIIIB 31 3BEPEXKEHVM ITPUHITUIIOM
EKBIBAJIEHTHOCTI

X. II. I'marenxo, B. M. Tkaayk
Kagedpa meopemuunoi gisuxu imeni npogecopa Isana Baxapuyxa,
JIveiscvkul HaytoHaavhul yrieepcumem iment leana Ppanka,
eya. pazomarosa, 12, JIveis, 79005, Yxpaina

PosrusinyTo izeio ouucy kBanroBanocri upocropy (iCHyBaHHs KBaHTa JOBXKUHK) 33 JOIOMOLOIO MO-
muikarii KOMyTaIitHUX CITiBBiIHONIEHE TSI OIEPATOPIB KOOPAUHAT Ta OMEpPATOPIB iMmybciB. BuBuero
pisui Tunu nedopmarnii anrebpu Laitzenbepra, a came: KaHOHIYHA (KOMYTaTOPH KOODAMHAT Ta IMILY/IbCIB
JIOPIBHIOIOTH KOHCTaHTaM), Tuily JIi (KOMyTaropu KOOpAMHAT Ta IMILYJbCIB IPOHOPLiiiHi 10 KOOpAUHAT
Ta iMIy/IbCiB) Ta HemiHiitna medopmaris (KOMyTaTopyu KOOPANHAT Ta IMIYJIbCIB JOPIBHIOIOTH HEeTiHifHIHi
dyukuil ux KoopauHAT Ta iMIyIbCiB). JLOCTIIKEHO HEKOMYTATUBHY aire0py 3 HEKOMYTATHBHICTIO KO-
OPMHAT Ta HEKOMYTATHUBHICTIO IMITYJIbCIB KAHOHIYHOIO THILY, HEKOMYyTAaTUBHA anredpa tumy Jli, anredbpa
Cuaiiziepa, anrebpa Kemmda ta ix y3aragbHeHHs B pasdi, KOJIH KOMYTaTOP KOOPJAUHAT Ta IMITy/IbCIB JOPiB-
HIOE JTOBLIBbHIM (DYHKINT, IO 3aJI€KUTH Bill IMITYIbCIB. Y MeKax pi3Hux aedOpMOBAHUX AIreOp BUBUYEHO
PYX 4YacTMHKK (MaKPOCKOIIYHOro Tijia) y rpaBiTaliiiHoMy 10Ji Ta MpOaHAII30BaHO BUKOHAHHS CJIA0KOrO
TMPHUHITAITY ekBiBaseHTHOCTI. [ToKa3amHo, M0 y KBAHTOBAHOMY MPOCTOPI PyX y I'paBiTaIiifHOMY MOJI 3aje-
KUTh Big macu Ta xkommoswuiiil. [lapamerp ETBema me mopiBHIOE HyseBi, HaBITHL AKINO iHepIifiHA Maca
JopiBHIOE TpaBiTariiiniii. CrabKuii TPUHIUAI eKBiBAJEHTHOCTI MOPYIIYETHCA Y KBAHTOBAHOMY TTPOCTOPI,
npudoMy nedopMariid KOMyTaIlliiHAX CIIBBiHOIIEHD JJIS ONEPATOPiB KOOPAWHAT Ta ONEPATOPIB iMITy/Ih-
CiB 3yMOBJIIO€ 3HAUHI TOMPABKY /10 Mapamerpa ETBerna, sKi IErko MOXKHA CIIOCTEPIraTH B €KCIEPUMEHTI. 3
inmoro 60Ky, BIAITOBIIHO M0 eKCIIEPUMEHTAIbHUX JAHUX CIAOKHUi MPUHITAI eKBiBAJTEHTHOCTI BUKOHYETHCS
3 BeJIMKOIO TOYHICTIO. 110 mpobiieMy MOXKHA PO3B’S3aTH, TPUIYCTHUBINY, IO MapaMerpu AedopMOBaHUX
anredp 3asexkarh Big macu. Taka imes mae 3Mory BigHOBUTH CIaOKUil MPWHIWMI €KBIBAJEHTHOCTI, a Ta-
KOXK 30eperTy BJACTHUBOCTI KiHETHYIHOI eHeprii, po3B’sa3aru mpobaeMy OMHUCY PyXy MaKpPOCKOITHOrO Tima
(ust upobsiema no6pe Bismoma B sireparypi uij Hazsoio upobsema GyrbOIbHOIO M’d4a) y KBAHTOBAHO-
My mpocropi. OTxke, 3ame)HiCTh mapaMerpiB gedopmarii Bim Macw € BaXKJIUBOIO I MOOYIOBU TEOPIl
KBAHTOBAHOTO MPOCTOPY 3i 30epekennvu byHIAMEHTAJTHHIMA 3aKOHAMY T, TPUHIIAIIAMHE.

Kurro4oBi cjioBa: KBaHTOBHII IIpOCTip, MiHiMaJibHA JOBXKMHA, gedopMmoBana airebpa laiizenbepra,
cabKuil MPUHITUIT €KBIBAJEHTHOCTI, MAKPOCKOII YHE Tij10, mpobieMa ¢pyTOOIbHOrO M’sT9a, KiHeTUYIHA €HeP-
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