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The e�ect of time-periodic electric �eld modulation on electroconvection in a compactly packed
dielectric liquid-permeable layer is investigated using the small perturbation method coupled with
the regular perturbation method. The dielectric constant is assumed to be a linear function of
temperature. For small amplitude electric �eld modulation, the critical correction Rayleigh number
is determinedusing the regular perturbation method. The critical Rayleigh number is obtained in
terms of the electrical Rayleigh number, Vadasz number, normalized porosity, and the modulation
frequency to determine the stability of the system. It is found that electric �eld modulation at low
frequencies can create subcritical convective motion. The impact of Vadasz number is shown to be
akin to that of the dielectrophoretic force. The stabilizing in�uence of normalized porosity is more
pronounced when the frequency of electric �eld modulation is modest and large. The study reveals
that time-varying electric �elds and a densely packed porous layer may have implications for the
control of electroconvection in heat transfer applications involving dielectric �uids as working media.
Key words: Darcy model, dielectric �uid, electric �eld, porous medium, porosity and modulation.
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I. INTRODUCTION

The simultaneous movement of mass and electric
charge is important in many areas of science and
technology, and applications range from improving heat
and mass transfer in nuclear reactors to inkjet printi-
ng and coalescence [1, 2]. Several studies have been
conducted to investigate how the electric �eld a�ects
natural convection, since there are many practical
problems involving dielectric �uids which have poor
conductivity and whose motion is governed mainly by
electric forces rather than magnetic forces. Considering
the dielectric constant and electrical conductivity as li-
near functions of temperature, Roberts [3] conducted the
�rst individual study of electrohydrodynamic convection.
A theoretical framework has been developed for studying
thermocapillary and/or buoyancy instabilities in earth
laboratories for electrically conducting �uid layers under
an ac electric �eld by Takashima and Aldridge [4], Martin
and Richardson [5], Maekawa et al. [6], and Douiebe et al.

[7]. According to Smorodin [8], an alternating electric �-
eld of arbitrary frequency a�ects the stability of convecti-
on of a dielectric �uid in a vertical layer. With the
help of the Floquet theory, the stability thresholds are
determined linearly. During the study of electroconvecti-
ve instability in a dielectric �uid, Maruthamanikandan
[9] investigated the e�ect of internal heat generati-
on, surface tension, radiation, and viscoelasticity. While
some research has been done on anisotropic media, most
is conducted on isotropic media. Again, Maruthamani-
kandan and Smita [10] investigated how the second
sound in�uences the onset of Rayleigh�B�enard instabi-

lity in a dielectric �uid subjected to alternating verti-
cal electric �elds and vertical temperature gradients si-
multaneously. The problem of convection in a thermally
radiating dielectric �uid saturating a porous medium was
considered by Smita and Maruthamanikandan [11]. In
order to convert radiative heat �ux into thermal heat
�ux, the Milne�Eddington approximation is used. It is
made clear that as the radiation parameter increases, the
fundamental temperature pro�le increases exponentially,
delaying the onset of electroconvection.

The Darcy�B�enard convection occurs when buoyancy
causes heat to �ow uniformly through a porous layer
heated from below. As thermal convection occurs
naturally in porous �uid-saturated media, extensive
studies have been conducted on its e�ects on a variety of
scienti�c, engineering, and technological �elds, including,
but not limited to, medicine and aerospace engineering
[12, 13]. There are many applications of this con�gurati-
on, such as in biomedical engineering, drying processes,
thermal insulation, radioactive waste disposal, transpi-
ration cooling, geophysics, transport of contaminants in
groundwater, ceramic processing, and solid matrix heat
exchangers. It is well documented in the literature that
various developments in this �eld have occurred; see
for instance Bear [14], Rees [15, 16], Bejan et al. [17],
Nield and Bejan [18], Vafai [19], Nield and Simmons [20].
When magnetic �uids and couple stresses are involved,
Saravanan and Yamaguchi [21, 22] studied the same
problem.
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According to Bhatta et al. [23], a horizontal mushy
layer saturating a porous medium exhibits steady
magnetoconvection. When the �uid is dielectric, the
electric force drives the motion more than the magnetic
force. Swamy [24] performed linear and nonlinear stabili-
ty analysis for a porous layer saturated with a dielectric
�uid in the presence of a vertical ac electric �eld and
time-periodic vertical oscillations. A �uid semiconductor
layer that has an open unstable surface was investigated
by Smorodin et al. [25] for its e�ect on the instabili-
ty of a �rst quasi-equilibrium �uid caused by intermi-
ttent temperature �uctuations. The number of Raylei-
gh numbers and the frequency of the electric �eld play
an important role in destabilizing and stabilizing the
ground state, according to Smorodin [26]. It is only
the positive response to the electric �eld that is consi-
dered in the horizontal layer. In the �uctuation period,
the dielectrophoretic force does not change its direction
because it does not depend on the direction of the electric
�eld [27�29]. Rudresha et al. [30, 31] investigated thermo-
electroconvection in a dielectric �uid subjected to time-
periodic electric �eld modulation. It is shown that the
onset of electroconvection can be accelerated or delayed
by proper adjustment of the mechanisms of electric �eld
modulation, electric force and couple stresses.
This study aims at analyzing the combined e�ect of

small amplitude electric �eld modulation on the onset of
electroconvection in a horizontal densely packed porous
�uid layer with a wide range of values of the frequency
of modulation besides the Vadasz number, the Raylei-
gh number, the electric Rayleigh number, and normali-
zed porosity. The Darcy model is taken into account
because the �uid layer under consideration is treated as
a permeable one. The outcomes of this work are expected
to be helpful for crystal development under microgravity
conditions.

II. MATHEMATICAL FORMULATION

The electric force per unit volume acting on the �uid
is represented as follows:

fe = ρe E− 1

2
(E ·E) ∇ε+∇ ·

(
1

2
ρ
∂ε

∂ρ
(E ·E)

)
. (1)

The Coulomb force owing to a free charge is the �rst term
on the right. It is the most powerful term of the EHD
force and generally takes precedence when dc electric �-
elds are present. The second term is determined by the
gradient of ε and takes precedence when an ac electric
�eld acts on the dielectric �uid. The application of a dc
electric �eld causes the dielectric �uid to accumulate free
charges. The free charge has no time to accumulate when
an ac electric �eld is supplied at a frequency substantially
greater than the reciprocal of the electric relaxation peri-
od. Furthermore, the electrical relaxation durations of
most dielectric �uids appear to be long enough to exclude
free charge accumulation at typical power frequencies. At
the same time, the dielectric loss at these frequencies is

so little that it has little e�ect on the temperature �eld
[4]. Under these conditions, only the force caused by the
non-uniformity of the dielectric constant is taken into
account. The last term in Eq. (1), known as electrostri-
ction force, may be summed up with the pressure term
and has no e�ect on an incompressible dielectric �uid.
We investigate a densely packed porous layer of a

dielectric �uid that spreads between in�nite horizontal
surfaces z = 0 and z = d under the in�uence of a verti-
cally acting electric �eld and a varying electric potential
with time t.

Fig. 1. Physical con�guration

On the boundaries of the horizontal layer, ϕ =
±U (η 1 + η 2 cosω t) (see Fig. 1) is achieved, where U is
the magnitude of the modulation of the electric potenti-
al, ω is the frequency of modulation and, η1 and η2 are
the relative amplitudes of the components of constant
and alternating potential di�erence. We assume that
the dielectric �uid constant ε is a linear function of
temperature, the �uid is incompressible, and the porous
medium is densely packed. The governing equations for
the problem of convection in a densely packed porous
layer saturated with an incompressible dielectric Boussi-
nesq �uid are as follows [3, 4, 30]

∇ · q = 0, (2)

ρ0
1

δ

[
∂ q

∂ t
+

1

δ
(q · ∇)q

]
= −∇p+ ρg − µ

K
q− 1

2
(E ·E)∇ε, (3)

A
∂ T

∂ t
+ (q · ∇)T = κ∇2 T, (4)

where E is the electric �eld, T is the temperature, g is
the gravitational acceleration ε is the dielectric constant,

p∗ = p− 1
2ρ

∂ ε
∂ ρ (E ·E) and A =

(ρ c)m

(ρ cp)f
is the speci�c heat

ratio, ρ0 is the density at reference temperature, ρ is the
density of the �uid, δ is the porosity of the porous medi-
um, µ is the �uid viscosity, K is the porous permeabi-
lity, κ is the thermal di�usivity. Assuming that the free
charge density is negligibly small, the relevant Maxwell
equations are

∇ · [εE] = 0, (5)
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∇×E = 0 ⇒ E = −∇ϕ, (6)

where ϕ is the electric potential and, ρ and ε are
assumed to be a linear function of temperature of the
form

ρ = ρ0 [1− α (T − T0)] , (7)

ε = ε0 [1− e (T − T0)] , (8)

where e (> 0) denotes the thermal expansion coe�ci-
ent of the dielectric constant and α is the thermal
expansion coe�cient of the temperature. For example,
for 10 cs silicone oil, e = 2.86 × 10−1K−3 and
ε = 2.6× 10−11 F ·m−1 [6].

III. BASIC STATE

The ground state is at rest and is given by ∂
∂t = 0;

q = q b (z) = 0; T = Tb (z) ; p = p b (z) ; ρ = ρ b (z) ; ε =
ε b (z) ; ϕ = ϕ b (z) ; E = E b = [0, 0, E b (z)], where the
su�x represents the basic state. Using these in equations
(2) though (8), we obtain

0 = −∇pb + ρb g − 1

2
E2

b ∇εb, (9)

Tb = T0 − β z, (10)

ρb = ρ0 [1 + αβ z] , (11)

εb = ε0 [1 + eβ z] (12)

with Eb = −∇ϕ b and the solution of Eq. (10) using the
boundary conditions Tb = T0 at z = 0 and Tb = T1 at
z = 1, we obtain

ϕ b =
−E0

eβ
log (1 + eβ z) + U (η 1 + η 2 cosω t) (13)

and

Eb =
2U (η 1 + η 2 cosω t)

d
(1− eβ z) , (14)

where E0 = 2U(η 1+η 2 cosω t)eβ
log(1+eβ d) and β = T0−T 1

d .

IV. LINEAR STABILITY ANALYSIS

To study the stability of the basic state, we superi-
mpose in�nitesimally small perturbations on the basic
state in the form q = q′ = (u′, v′, w′) ; p = pb + p′, T =
Tb+T ′, ε = εb+ ε′, ϕ = ϕb+ϕ′,E = Eb+E′. Substituti-
ng these into equations (2) through (8), linearizing and
eliminating the pressure term, we obtain

∇ · q′ = 0, (15)

E ′ = −∇ϕ′, (16)

ρ′ = −αρ0 T
′, (17)

ε′ = −e ε0 T
′. (18)

The perturbed equations of the study at hand are the
following

ρ0
δ

∂

∂t

(
∇2 w′) = αρ0 g∇2

1 −
µ

K
∇2 w′ +

A1

d

∂

∂z

(
∇2 ϕ′)

+
2A1e

d2
∇2

1 T
′, (19)

∇2ϕ′ =
−2U (η 1 + η 2 cosω t) e

d

∂T ′

∂ z
, (20)

A
∂T ′

∂ t
− β w′ = κ∇2T ′, (21)

where A1 = 2U (η 1 + η 2 cosω t) eβ ε0, ∇ 2
1 = ∂2/∂ x2 +

∂2/∂ y2, f = cosω t, ∇ 2 = ∂2/∂ x2+ ∂2/∂ y2+ ∂2/∂ z2.
Equations (19) through (21) are rendered dimensionless
through the following transformations (x∗, y∗, z∗) =(
x
d ,

y
d ,

z
d

)
; ϕ∗ = ϕ′

2U(η 1+η 2f) e∆T ; T
∗ = T ′

∆T ; t
∗ = κ t

A d2 ;

w∗ = w′d
κ to obtain the following dimensionless equati-

ons (after omitting the asterisks for simplicity)(
1

V a

∂

∂t
+ 1

)
∇2w =

[
R+Re(1 + η 3f)

2
]
∇2

1T

+ R e(1 + η 3f)
2 ∂

∂z
∇2

1ϕ, (22)

(
1

χ

∂

∂t
−∇2

)
T = w, (23)

∇2ϕ = −∂T

∂ z
, (24)

where R = αρ0gKd∆T
µκ is the Darcy-Rayleigh number,

V a = δ γd2

K κ is the Vadasz number, R e =
4e2U2β2ε0dη

2
1K

µκ is

the electrical Rayleigh number, χ = κ
Ad2 is the normali-

zed porosity, η
3
= η 2

η 1
is the ratio of amplitudes. The

appropriate boundary conditions are

w = T = Dϕ = 0 at z = 0, 1. (25)

Combining equations (22) through (24) yields

(
1

V a

∂

∂ t
+ 1

)(
1

χ

∂

∂ t
−∇2

)
∇4 w

=
[
R∇2 +R e∇2

1(1 + η 3 cosω t)
2
]
∇2

1 w. (26)

Equation (26) must be solved under the dimensionless
homogeneous boundary conditions [31, 32]

w =
∂2 w

∂ z2
=

∂4 w

∂ z4
= 0 at z = 0, 1. (27)

We employ the regular perturbation method to derive an
expression for the correction critical Rayleigh number.
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V. PERTURBATION PROCEDURE WITH
SMALL AMPLITUDE APPROXIMATION

We search for the fundamental temperature pro�le
which deviates from the linear pro�le by measures of
order η 3. We, therefore, assume that the solution of
equation (26) has the form

(w,R) = (w0, R0)+η3 (w1, R1)+η23 (w2, R2)+. . . . (28)

Substituting equation (28) into (23) and equating the
coe�cients of like powers of η3, we obtain the following
system of equations

Lw0 = 0, (29)

Lw 1 = R 1∇2 ∇2
1 w0 + 2R e f ∇2

1 w0, (30)

Lw 2 = R 1 ∇2 ∇2
1 w 1 +R 2 ∇2 ∇2

1 w0

+ 2R e f ∇4
1 w 1 +R e f

2 ∇4
1w0, (31)

where

L=

(
1

V a

∂

∂ t
+ 1

)(
1

χ

∂

∂ t
−∇2

)
∇4−R 0∇2

1∇2 −R e∇4
1.

(32)
It is necessary to determine w0, w1, and w2 using the
boundary conditions in equation (27).
When studying convection in a horizontal, dielectric,

�uid-saturated, tightly packed porous layer exposed to
a uniform electric �eld, equation (29) is utilized, and it
should be only minimally stable. The marginally stable
solution for that problem is

w 0 = sinπz. (33)

The corresponding eigenvalues are given by

R 0 =

(
α2 + π2

)3 −R eα
4

α2 (α2 + π2)
. (34)

Equation (34) expresses the thermal Rayleigh number as
a function of wavenumber α and the electric Rayleigh
number Re. It is identical to that obtained by Nagouda
and Maruthamanikandan [33] in the case of the non-
classical heat conduction e�ect being absent.
In the absence of electric force (i. e., when Re = 0),

Eq. (34) reduces to

R 0 =

(
α2 + π2

)2
α2

which is exactly the same relation as available in the
literature [19, 20].
In Fig. 2, the thermal Rayleigh number R0 is plotted

against wave number α for di�erent values of the electric
Rayleigh number Re. The destabilizing e�ect of the di-
electrophoretic force is evident from Fig. 2.

Fig. 2. Variation of the thermal Rayleigh number R0 with
the wavenumber α for di�erent values of the electric Rayleigh

number Re

We take the solution of w in the form w (x, y, z, t) =
w (z, t) ei (αxx+αyy) and thus obtain ∇2

1 w = −α2 w.
Equation (32) now becomes

Le−i ω t sinnπz = L (ω, n) e−i ω t sinnπz, (35)

where

L (ω, n) = − 1

χ

ω2

V a

(
n2π2 + α2

)2
+

(
n2π2 + α2

)3
−R 0 α

2
(
n2π2 + α2

)
−R eα

4

− i ω

{
1

V a

(
n2π2 + α2

)3
+

1

χ

(
n2π2 + α2

)2}
.

(36)

The above equation is inhomogeneous and its solution
poses a problem because of the presence of a resonance
term. The mathematical properties and solvability condi-
tions of the di�erential equations with time periodic
coe�cients have been extensively discussed by Yakubo-
vich and Starzhinskii [34]. If this equation is to have
a solution, the right-hand side must be orthogonal to
the null space of the operator L. This requires that the
time-independent part of the right-hand side should be
orthogonal to its steady state solution w0. It follows that
all the odd coe�cients R 1, R 3, R 5, . . . in equation (28)
are zero because a change of the sign of η 3 shifts the ti-
me origin by half period but does not change the physical
problem.
We now solve equation (30) by inverting the operator

L term by term and obtain the expression for w1 in the
form

w 1 = 2R e α
4 Re

[ ∞∑
n=1

1

L(ω, n)
e−iωt sinnπz

]
. (37)

It is not essential to solve equation (31) for w2 since we
are only concerned with identifying the value of R2, the
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non-zero correction of R. The continuity of the right-
hand side of equation (31) must be orthogonal to sinπz
in order for it to be solvable. It follows that

R 2 =
− 2R e α2

(α2 + π2)

2 1∫
0

f w1 sinπz dz

 , (38)

where the overbar indicates the time average. Using

equation (30) and (37) in equation (38) yields

R 2 =
2R2

e α
6

(α2 + π2)

[ ∞∑
n=1

Cn

Dn

]
, (39)

where

Cn =
1

χ

ω 2

V a

(
n2π2 + α2

)2 − (
n2π2 + α2

)3
+R 0 α

2
(
n2π2 + α2

)
+R e α

4

and

Dn =

[
1

χ

ω 2

V a

(
n2π2 + α2

)2 − (
n2π2 + α2

)3
+R 0 α

2
(
n2π2 + α2

)
+R e α

4

] 2

+ ω 2

{
1

V a

(
n2π2 + α2

)3
+

1

χ

(
n2π2 + α2

)2}2

.

VI. RESULTS AND DISCUSSION

Analytical research involving the linear stability
theory is done on the simultaneous impact of the time-
periodically varying electric �eld and a porous medi-
um on the initiation of thermal convection in a hori-
zontal dielectric �uid layer. The critical Rayleigh number
R2c and the wave number are determined using the
regular perturbation approach, which is based on a li-
mited amplitude of modulation. The expression for the
critical correction Rayleigh number R2c is computed as
a function of the frequency of modulation, the Ray-
leigh number, the Vadasz number, the electrical Rayleigh
number, and the normalized porosity, and the impact of
these parameters on the stability of the system is di-
scussed.

The analysis presented in this work is based on the
assumptions that the amplitude of the electric �eld
modulation is very small compared to the mean electric
�eld and that the convective currents are weak so that
nonlinear e�ects may be neglected. The violation of these
assumptions would alter the results signi�cantly only
when the modulating frequency ω is low. This is due to
the perturbation method's requirement that the ampli-
tude of η 3w1 should not be more than that of w0, whi-
ch results in the condition ω > η3. Thus, the value of
the frequency of the modulation determines the appli-
cability of the results achieved here. The boundaries of
the �uid are a�ected by the modulation of the electric
�eld when ω is su�ciently small (i. e., when the peri-
od of the modulation is large). High frequencies, on the
other hand, correspond to a renormalization of the static
modulation of the electric �eld, which means that for
large values of ω, the in�uence of the modulation is restri-
cted to a thin border layer close to the boundary. As a

result, the buoyancy force takes an average value outside
of this layer thickness, resulting in the non-modulated
case's equilibrium state.

Since the modulation amplitude is an externally
controllable variable, it is possible to prevent �nite ampli-
tude instabilities by preventing it from growing too large.
Although it cannot be controlled, the nonlinear interacti-
ons are used to determine the magnitude of the convecti-
on currents. In order to maintain the notion that the
nonlinear terms are tiny, it is signi�cantly more crucial
that the �ow �elds under discussion remain of modest
amplitude at some point in a modulation cycle.

For a densely packed porous dielectric �uid layer, Fi-
gs. 3 through 5 show the frequency dependence of the
critical correction Rayleigh number R2c. These �gures
demonstrate that across a narrow range of values ω,
R2c is negative, showing that the system is destabi-
lised by the application of electric �eld modulation,
with electroconvection occurring at an earlier point when
compared with the unmodulated system. However, the
critical correction Rayleigh number is positive for modest
and large values of the frequency of modulation indicat-
ing that the electric �eld modulation has a stabilizing
impact on the system with convection occurring at a later
point in comparison with the unmodulated system. In
addition, we discover that the critical Rayleigh number
magnitude rises with rising ω, reaches a peak value at
some frequency ω = ω∗, and then falls with rising ω. The
magnitude of the electric force determines the frequency
at which the critical Rayleigh number peaks. Figure 3
demonstrates the e�ect of the electrical Rayleigh number
on the correction Rayleigh number with �xed values of
the Vadasz number and normalized porosity. The �xed
values are taken to be V a = 50 and χ = 0.5.
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Fig. 3. Variation of R2c with ω for di�erent values of Re for
the Darcy porous layer

Fig. 4. Variation of R2c with ω for di�erent values of Va for
the Darcy porous layer

It is observed that the value of the critical correction
Rayleigh number increases negatively with the electri-
cal Rayleigh number at low frequencies, but positively
with the electrical Rayleigh number at moderate and hi-
gh frequencies, indicating that the e�ect of the electri-
cal Rayleigh number is to destabilize the system at low
frequencies while stabilizing the system at moderate and
high values of frequency of the electric �eld modulation.
The impact of the Vadasz number V a on the stability

system is seen in Fig. 4. The size of the critical correction

Rayleigh number R2c intensi�es adversely with cumulati-
ve V a when the value of ω is large. The tendency does,
however, sharply reverse itself. As a result, when the
frequency is low, an increase in the Vadasz number
destabilizes the system and when the frequency is high,
it enhances the stability of the system. It is noteworthy
that the critical correction Rayleigh number R2c begins
to positively decline over a period of V a for adequately
large ω values, showing that the electric �eld modulation
has the stabilizing e�ect for this range of frequencies.

Fig. 5. Variation of R2c with ω for di�erent values of χ for
the Darcy porous layer

Figure 5 illustrates the e�ect of normalized porosity χ
on the stability of the system in the presence of electric
�eld modulation. we discover that the impact of χ on
the stability of the system is less signi�cant for small
values of ω. However, normalized porosity χ tends to
stabilize the dielectric �uid layer when ω is moderate and
large. As a result, electroconvection can be postponed
with increasing values of χ provided frequency of the
electric �eld modulation is not small enough.

VII. CONCLUSIONS

The e�ect of electric �eld modulation on the onset
of convection in a horizontal dielectric �uid layer and
a �uid-densely packed porous layer is examined using
the perturbation method. The following conclusions are
drawn:

1. Subcritical instability is noticeable due to the
electric �eld modulation for low frequency of the
modulation.

2. Dielectrophoretic force tends to destabilize the
system for low frequency of the modulating electric
�eld and the opposite is true for moderate and large
values of the frequency.
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3. The impact of the Vadasz number on the stability
of the system is akin to that of the dielectrophoretic
force.

4. The system is stabilized only slightly due to
the normalized porosity for low frequency of the
modulation.

5. Electroconvection can be delayed by the normali-

zed porosity for moderate and large values of the
frequency of the modulation.

In summary, electric �eld modulation in a horizontal
dielectric �uid layer saturating a Darcy porous medium
induces or delays electroconvection in a porous medium.
As a result, the mechanism of electric �eld modulation
could be employed to control convection in compactly
packed porous media saturated with dielectric �uids.
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C. RUDRESHA, C. BALAJI, V. VIDYA SHREE, S. MARUTHAMANIKANDAN

ÂÈÍÈÊÍÅÍÍß ÅËÅÊÒÐÎÊÎÍÂÅÊÖI� Â ÊÎÌÏÀÊÒÍÎ ÓÏÀÊÎÂÀÍÎÌÓ
ÄIÅËÅÊÒÐÈ×ÍÎÌÓ ÏÐÎÍÈÊÍÎÌÓ ÄËß ÐIÄÈÍÈ ØÀÐI Ç ÌÎÄÓËÜÎÂÀÍÈÌ

ÅËÅÊÒÐÈ×ÍÈÌ ÏÎËÅÌ

×. Ðóäðåøà, ×. Áàëàäæi, Â. Âiäüÿ Øðåå, Ñ. Ìàðóòãàìàíiêàíäàí
Ôàêóëüòåò ìàòåìàòèêè, Ïðåçèäåíòñüêèé óíiâåðñèòåò,

Áàí àëîð, Êàðíàòàêà, Iíäiÿ

Ìåòîäîì ìàëèõ çáóðåíü ó ïî¹äíàííi ç ìåòîäîì ðå óëÿðíèõ çáóðåíü äîñëiäæåíî âïëèâ ïåðiîäè÷íî¨
â ÷àñi ìîäóëÿöi¨ åëåêòðè÷íîãî ïîëÿ íà åëåêòðîêîíâåêöiþ â êîìïàêòíî óïàêîâàíîìó äiåëåêòðè÷íî-
ìó ïðîíèêíîìó äëÿ ðiäèíè øàði. Ââàæà¹òüñÿ, ùî äiåëåêòðè÷íà ïðîíèêíiñòü ¹ ëiíiéíîþ ôóíêöi¹þ
òåìïåðàòóðè. Äëÿ ìîäóëÿöi¨ åëåêòðè÷íîãî ïîëÿ ìàëî¨ àìïëiòóäè êðèòè÷íå ïîïðàâêîâå ÷èñëî Ðå-
ëåÿ âèçíà÷àþòü çà äîïîìîãîþ ìåòîäó ðå óëÿðíèõ çáóðåíü. Êðèòè÷íå ÷èñëî Ðåëåÿ îòðèìóþòü ÷åðåç
åëåêòðè÷íå ÷èñëî Ðåëåÿ, ÷èñëî Âàäàñà, íîðìîâàíó ïîðèñòiñòü i ÷àñòîòó ìîäóëÿöi¨ äëÿ âèçíà÷åí-
íÿ ñòàáiëüíîñòi ñèñòåìè. Âèÿâëåíî, ùî ìîäóëÿöiÿ åëåêòðè÷íîãî ïîëÿ íà íèçüêèõ ÷àñòîòàõ ìîæå
ñòâîðþâàòè ñóáêðèòè÷íèé êîíâåêòèâíèé ðóõ. Ïîêàçàíî, ùî âïëèâ ÷èñëà Âàäàñà ñõîæèé íà âïëèâ
äiåëåêòðîôîðåòè÷íî¨ ñèëè. Ñòàáiëiçóþâàëüíèé âïëèâ íîðìàëiçîâàíî¨ ïîðèñòîñòi áiëüø âèðàæåíèé,
êîëè ÷àñòîòà ìîäóëÿöi¨ åëåêòðè÷íîãî ïîëÿ ïîìiðíà i âåëèêà. Äîñëiäæåííÿ ïîêàçó¹, ùî åëåêòðè÷íi
ïîëÿ, ùî çìiíþþòüñÿ â ÷àñi, i ùiëüíî óïàêîâàíèé ïîðèñòèé øàð ìîæóòü ìàòè íàñëiäêè äëÿ êîí-
òðîëþ åëåêòðîêîíâåêöi¨ â ïðîãðàìàõ òåïëîïåðåäà÷i, ùî âêëþ÷àþòü äiåëåêòðè÷íi ðiäèíè ÿê ðîáî÷i
ñåðåäîâèùà.

Êëþ÷îâi ñëîâà: ìîäåëü Äàðñi, äiåëåêòðè÷íà ðiäèíà, åëåêòðè÷íå ïîëå, ïîðèñòå ñåðåäîâèùå,
ïîðèñòiñòü i ìîäóëÿöiÿ.
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