Journal of Physical Studies 27(2), Article 2601 [7 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.2601

AB INITIO STUDIES OF ELASTIC PROPERTIES OF THE CUBIC SOLID-STATE CdTe1−xSex SOLUTIONS

A. Kashuba 

Department of General Physics, Lviv Polytechnic National University
12, Stepan Bandera St., Lviv, UA–79013, Ukraine
e-mail: andrii.i.kashuba@lpnu.ua

Received 14 October 2022; in final form 16 February 2023; accepted 04 April 2023; published online 15 June 2023

Elastic properties of the solid-state CdTe$_{1-x}$Se$_x$ ($x= 0-0.5$, with $Δ x= 0.125$) solutions within the framework of density functional theory calculations were investigated. The structures of the CdTe$_{1-x}$Se$_x$ samples are obtained by the substitution of tellurium with selenium atoms in cubic CdTe. Young's modulus, shear modulus, bulk modulus, and the Poisson ratio of CdTe$_{1-x}$Se$_x$ crystals were calculated from the first principles. The dependences of the elastic properties of the CdTe$_{1-x}$Se$_x$ solid solution on the content index $x$ within the interval 0 $≤ x≤$ 0.5 are analyzed. According to the Frantsevich rule and the value of the Poisson ratio, the materials have been classified as ductile. The Zener anisotropy factor and the Kleimann parameter are calculated on the basis of the elastic constants $\textit{C}_{ij}$. Also, the concentration dependence of longitudinal elastic wave velocity, transverse elastic wave velocity, and average sound velocity, are calculated. Based on the average sound velocity the concentration behavior of the Debye temperature was calculated. The correlation analysis shows a good agreement between the calculation results (elastic modulus and Debye temperature) and known experimental data.

Key words: solid state solution, elastic properties, elastic modulus, Poisson ratio, Debye temperature.

Full text


References
  1. H. A. Ilchuk et al., Ukr. J. Phys. Opt., 22, 101 (2021);
    Crossref
  2. H. A. Ilchuk et al., Semicond. Phys., Quant. Electron. Optoelectron. 23, 355 (2020);
    Crossref
  3. B. E. McCandless, K. D. Dobson, Sol. Energy. 77, 839 (2004).
    Crossref
  4. H. A. Ilchuk et al., Phys. Chem. Solid State 23, 261 (2022);
    Crossref
  5. R. Yavorskyi et al., Appl. Nanosci. 9, 715 (2019);
    Crossref
  6. Y. P. Saliy, L. I. Nykyruy, R. S. Yavorskyi, S. Adamiak, J. Nano- Electron. Phys. 9, 05016 (2017);
    Crossref
  7. Z. R. Zapukhlyak et al., Phys. Chem. Solid State. 21, 660 (2020);
    Crossref
  8. R. B. Kale, C. D. Lokhande, Semicond. Sci. Technol. 20, 1 (2005);
    Crossref
  9. R. C. Kainthla, D. K. Pandya, K. L. Chopra, J. Electrochem. Soc. 127, 277 (1980);
    Crossref
  10. J. D. Poplawsky et al., Nature Commun. 7, 12537 (2016);
    Crossref
  11. S. M. Asadov, A. N. Mamedov, S. A. Kulieva, Inorg. Mater. 52, 876 (2016);
    Crossref
  12. C. Li et al., Mater. Res. Express. 6, 066415 (2019);
    Crossref
  13. M. Lingg et al., Energy Mater. 19, 19 (2018);
    Crossref
  14. J. P. Mangalhara, R. Thangaraj, O. P. Agnihotri, Sol. Energy Mater. 19, 157 (1989);
    Crossref
  15. A. I. Kashuba et al., Appl. Nanosci. 12, 335 (2022);
    Crossref
  16. R. Petrus et al., Mol. Cryst. Liq. Cryst. 717, 128 (2021);
    Crossref
  17. M. Jamal, M.S. Abu-Jafar, D. Dahliah, Results Phys. 7, 2213 (2017);
    Crossref
  18. M. Shakil et al., Chin. Phys. B. 25, 076104 (2016);
    Crossref
  19. M. T. Hussein, H. A. Fayyadh, Chalcogenide Lett. 13, 537 (2016).
  20. S. Ouendadji et al., J. Mater. Sci. 46, 3855 (2011);
    Crossref
  21. A. H. Reshak, I. V. Kityk, R. Khenata, S. Auluck, J. Alloys Compd. 509, 6737 (2011);
    Crossref
  22. A. I. Kashuba et al., Condens. Matter Phys. 24, 23702 (2021);
    Crossref
  23. J. P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008);
    Crossref
  24. A. I. Kashuba et al., Mater. Today: Proc. 62, 5812 (2022);
    Crossref
  25. A. V. Franiv, A. I. Kashuba, O. V. Bovgyra, O. V. Futey, Ukr. J. Phys. 62, 679 (2017);
    Crossref
  26. C. C. Swan, I. Kosaka, Int. J. Numer. Meth. Eng. 40, 3033 (1997);
    Crossref
  27. C. M. Kube, J. A. Turner, AIP Conf. Proc. 1650, 926 (2015);
    Crossref
  28. S. F. Pugh, Philos. Mag. 45, 823 (1954);
    Crossref
  29. H. Gercek, Int. J. Rock Mech. Min. Sci. 44, 1 (2007);
    Crossref
  30. I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals (Nauk. Dumka, Kyiv, 1982).
  31. M. Aynyas, P. K. Jha, S. P. Sanyal, Adv. Mat. Res. 1047, 27 (2014);
    Crossref
  32. Kh. Kabita et al., Mater. Res. Express. 3, 015901 (2016);
    Crossref
  33. L. Vegard, Z. Phys. 5, 17 (1921);
    Crossref
  34. https://mateck.com/info/cadmium-telluride-cdte.html
  35. S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, Chechester, 2005).
  36. D. M. Freik, T. O. Parashchuk, B. P. Volochanska, Phys. Chem. Solid State 15(2), 282 (2014).