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Earlier [V. P. Lesnikov, Ukr. J. Phys. 64, 126 (2019)] it was pointed out that for thermal
hydrodynamic �uctuations in open hydrodynamic steady states (OHSS) the determining factor for
derivation of reciprocal relations is not the principle of microscopic reversibility, but the presence or
absence of a �ux. In the present work this idea is applied to open chemical steady states (OCSS),
where chemical oscillations are possible. The behavior of concentration �uctuations when there are
no macroscopic oscillations yet is considered. The reciprocal relations for such OCSS are found.
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I. INTRODUCTION

Reciprocal relations established by Onsager follow
from even parity of two-time correlation functions of
macroscopic �uctuations [2, 3]. Later Casimir showed
that the corresponding correlation functions can be not
only even, but also odd [4]. As a result, the Onsager�
Casimir reciprocal relations arose. The equality express-
ing a de�nite parity of two-time correlation functions is
called the detailed balance.
To explain the detailed balance, Onsager put forward

the principle of microscopic reversibility, according to
which macroscopic quantities are functions of the canoni-
cal coordinates of the microparticles of matter. The
parity with respect to time reversal of the macroscopic
quantity depends on the parity of these functions. If both
macroscopic quantities included in the correlation functi-
on have the same parity, then the correlation function is
even. If the parity of the corresponding quantities is di-
�erent, then the correlation function is odd. The kinetic
coe�cients will also have the same symmetry.
This explanation led to the belief that the Onsager�

Casimir reciprocal relations cannot be derived wi-
thin the phenomenological thermodynamics and can be
deduced only using statistical physics because they are a
consequence of the reversibility of microscopic dynamics
[5, 6]. In this regard, it was assumed that the Onsager�
Casimir reciprocal relations should always hold. In parti-
cular, this was a mandatory requirement for the study
of thermodynamic (hydrodynamic) �uctuations in open
hydrodynamic steady states (OHSS) that began in the
last century.
It is clear that open systems with stationary �uxes

are non-equilibrium. For these systems, the requirement
to ful�ll the Onsager�Casimir reciprocal relations led
to contradictory results in the calculation of two-
time correlation functions of �uctuations performed
using di�erent and seemingly mathematically equivalent
methods [7�9]. All contradictions are eliminated if, in
order to explain the Onsager�Casimir reciprocal relati-
ons, we replace the principle of microscopic reversibi-
lity with a completely thermodynamic condition, i. e.
that is absence of �uxes. This statement means that

the Onsager�Casimir reciprocal relations are satis�ed
only in equilibrium systems, and are not related to non-
equilibrium ones. The �ux breaks the detailed balance
and temporal symmetry and we will have completely di-
�erent reciprocal relations. To do this, remaining within
the framework of thermodynamics, it is su�cient to know
only the dynamics of �uctuations and their locally equi-
librium distribution function of the initial values.
In this paper, we apply the above idea to chemical

oscillators. Chemical reactions represent an important
branch of non-equilibrium thermodynamics [10]. The
OCSS have such interesting phenomena as oscillations,
spatial structures, waves, chaos. All of them must be
described on the basis of thermodynamics, since the
main characteristic of any reaction is the concentrati-
on of chemical species, which is a macroscopic variable
same as temperature, pressure, etc.

II. THEORY OF THERMODYNAMIC

FLUCTUATIONS IN NON-EQUILIBRIUM

STEADY STATES

The theory of �uctuations in non-equilibrium systems
with �uxes di�ers from the theory of equilibrium
�uctuations precisely by the violation of the Casimir�
Onsager reciprocal relations [1, 11]. It is based on only
two hypotheses. That is Onsager's regressive hypothesis
that dynamics of �uctuations occurs on macroscopic laws
and that is the hypothesis of local equilibrium, which is
general for a continuous medium in thermodynamics.
Linear stability theory gives the dynamics of small

�uctuations

.
xi = −λijxj , (1)

where here and below we use the notation and de�nitions
adopted in [12].
The probability density of initial �uctuations in the

steady state will be

w (x) ∝ e∆S = exp

(
−1

2
βijxixj

)
, (2)
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where ∆S determines �uctuation deviation from the
maximum value S0 of entropy corresponding to the
steady state. Here entropy is a dimensionless quantity,
and temperature is measured in energy units.
For the derivatives Xi = −∂S/∂xi we have

Xi = βijxj . (3)

The averaging with (2) gives

⟨xixk⟩ = β−1
ik , ⟨xiXk⟩ = δik, ⟨XiXk⟩ = βik. (4)

Equation (1) can be represented now in the form

.
xi = −γijXj . (5)

The quantities γ are called kinetic coe�cients. Also the
notation L is often used for them. From (1), (3), and (5)
it follows

γij = λikβ
−1
kj . (6)

As explained above, the Casimir�Onsager reciprocal
relations

γij = ±γji (7)

are a consequence of the temporal symmetry condition
substantiated by the principle of microscopic reversibili-
ty:

⟨xi(t)xj⟩ = ±⟨xj(t)xi⟩ . (8)

Indeed, if we di�erentiate (8) and set t = 0, then we
obtain (7). In fact, the opposite is true. Equation (8)
does not determine (7), but the kinetic coe�cients found
from (6) determine the parity of the two-time correlation
functions or its absence.
It is easy to �nd reciprocal relations in the case of

two variables in (1) and (2) that will be needed later. It
was done in work [1]. It is necessary to solve the Cauchy
problem for equations (1) and use the second formula in
(4). We have the following result for i ̸= j and λij ̸= 0:

⟨xi(t)Xj⟩
⟨xj(t)Xi⟩

=
λij

λji
. (9)

If the initial values are not correlated, i. e. matrix β is
diagonal, then we get

⟨xi(t)xj⟩
⟨xj(t)xi⟩

=
γij
γji

(10)

here γij = λijβ
−1
jj .

Formula (10), despite being just a special case
of common reciprocal relations (9), turns out to be
important for chemical reactions, since, as will be shown
below, the initial values of chemical reagents do not
correlate with each other.
Equations (1), (2) determine the random Ornstein�

Uhlenbeck process. We can calculate correlation functi-
ons of �uctuations directly solving the Cauchy problem

and then using averaging (2). The equivalent calculati-
on methods are �uctuation-dissipation theorems (FDT)
� the �rst (Callen�Welton) and the second (Langevin).
The �rst FDT follows from the de�nition of susceptibili-
ty. Most used in the study of non-equilibrium �uctuati-
ons is the second FDT. In that case, the solution of a
homogeneous system of equations (1) is replaced by wi-
th the solution of inhomogeneous equations by adding
to the right side �uctuating forces yi with correlation
functions

⟨yi(t)yj(0)⟩ = Qijδ(t). (11)

The intensity Q is determined by the formula named
Langevin FDT

Qij = γij + γji. (12)

In work [11], it was shown that the FDT are
mathematical theorems, the use of which leads to the
same results as the solution of the Cauchy problem for
(1) upon averaging (2) without any statistical justi�-
cation for the kinetic coe�cients. They are de�ned in
thermodynamics only by formula (6) without imposing
any restrictions on them. It should be emphasized that
it fully concerns chemical reactions.
Note that for chemical reactions, the method of obtain-

ing intensities by using the shot noise theory [13, 14] is
still thriving. The output in [15�17] is the master equati-
on for the distribution function of the number of parti-
cles. The number of particles is supposed to increase or
decrease by one in the course of the reaction. The distri-
bution function in the master equation is expanding into
a power series with respect to �1�. This gives the Fokker�
Planck equation from which follow the expressions for
the intensities.
This approach is not thermodynamic, since, the used

macroscopic rate equations describe on the one hand the
dynamics of changing a large number of particles, and, on
the other hand, the birth-death processes for changing on
one particle. Within the framework of thermodynamics,
the Fokker�Planck equation for the process (1), (2), as
it is easy to show, cannot give anything except (12).

III. RECIPROCAL RELATIONS FOR THE

LOTKA OSCILLATOR

For any chemical reactions, we can write the rate
equations. In a well stirred system, the solution of these
equations is sought in the form of the sum of steady-state
concentrations [Xi]S and concentration �uctuations xi.
In this way, the rate equations give us a matrix λ in (1).
At a steady state, concentrations of the order 1M

are typical for chemical reactions. Therefore, reagent
particles behave like a rare�ed gas. In this case, stati-
stical properties of each variable are obviously speci�-
ed by [Xi]S . So the matrix β is diagonal with entries

NAV [Xi]
−1
S and the inverse matrix β−1 that gives one-

time correlation functions of �uctuations is also diagonal

with entries
[Xi]S
NAV . Here NA is the Avogadro number, and

V is the volume in liters.
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In 1910, Lotka predicted the possibility of damped
chemical oscillations [18]. His chemical oscillator is
described by the reaction scheme

k0−→ X,

X + Y
k1−→ 2Y,

Y
k2−→,

, (13)

where substance X is formed, say, from substance A,
which is an excess, and substance Y is removed from the
reaction reservoir turning into B. In (13) k0, k1, k2 are
rate constants. The result of the reaction is the formation
of a substance B and the consumption of a substance A.
So the net reaction is A → B. The �ow of matter makes
the system non-equilibrium.
The kinetics of the Lotka model is described by the

rate equations:

d [X]

dt
= k0 − k1 [X] [Y ] ,

d [Y ]

dt
= k1 [X] [Y ]− k2 [Y ] .

(14)

The steady state concentrations will be equal

[X]S = k2/k1, [Y ]S = k0/k2. (15)

For concentration �uctuations, we obtain the equations

.
x = −k1k0

k2
x− k2y,

.
y =

k1k0
k2

x.

(16)

Equations (16) describe damped �uctuation oscillations
with damping coe�cient δ = k1k0/(2k2) and frequency√
k1k0 − δ2. The expressions for one-time correlation

functions of �uctuations are〈
x2
〉
=

[X]S
NAV

, ⟨xy⟩ = 0,
〈
y2
〉
=

[Y ]S
NAV

. (17)

So

λ =

 k1k0

k2
k2

−k1k0

k2
0

 , β−1 =
1

NAV

(
[X]S 0

0 [Y ]S

)
.

(18)
For the kinetic coe�cients we get

γ =
k0

NAV

(
1 1

−1 0

)
. (19)

The variables x and y have the same parity. According to
the Casimir�Onsager reciprocal relations, there should
be ⟨x(t)y⟩ = ⟨y(t)x⟩ and γ12 = γ21. Instead, however,
according to (10) we get

⟨x(t)y⟩ = −⟨y(t)x⟩ (20)

and

γ12 = −γ21. (21)

To demonstrate the principle of microscopic reversibi-
lity in chemical reactions, Onsager, in his work [2] used
as an example a monomolecular triangle reaction

A
k1

⇄
k′
1

B,

B
k2

⇄
k′
2

C,

C
k3

⇄
k′
3

A.

(22)

The rates of change of amounts nA, nB , nC are given by
the equations

.
nA = −(k1 + k′3)nA + k′1nB + k3nC ,

.
nB = k1nA − (k2 + k′1)nB + k′2nC ,

.
nC = k′3nA + k2nB − (k3 + k′2)nC .

(23)

From (23) it follows that the total amount nA+nB +nC

is conserved. This means that the system is closed. The
net reaction is zero. So, the system is equilibrium and
that is because the Casimir�Onsager reciprocal relations
hold here.

IV. THE BRUSSELATOR AND OTHER

CHEMICAL OSCILLATORS

The most famous model of a chemical oscillator is the
Brusselator, representing a trimolecular collision and an
autocatalytic step, given by

A
k1−→ X,

B +X
k2−→ Y +D,

2X + Y
k3−→ 3X,

X
k4−→ E.

(24)

The concentrations [A] and [B] are maintained and the
system is assumed to be well stirred. The concentration
products [D] and [E] are removed as they are formed.
The net reaction is A+ B → D + E. So, there is a �ow
of matter and the system is non-equilibrium.
From rate equations for species X and Y , it is easy to

�nd stationary solutions and matrix λ of linear equations
for concentration �uctuations [10]. They look like

[X]S =
k1
k4

[A] , [Y ]S =
k4k2
k3k1

[B]

[A]
, (25)

λ =

(
k4 − k2 [B] −k3 [X]

2
S

k2 [B] k3 [X]
2
S

)
. (26)
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The matrix β−1 is the same as in (18) with [X]S and
[Y ]S from (25).

Kinetic coe�cients (6) will be

γ =
[X]S
NAV

(
k4 − k2 [B] −k2 [B]

k2 [B] k2 [B]

)
. (27)

Here we see the same situation as expressed by (20) and
(21).

It is shown by Schnakenberg that for exhibiting a li-
mit cycle behavior, a two-component chemical reaction
system has to involve at least three reactions among whi-
ch one must be autocatalytic [19]. The result is quite a
lot of limit cycle systems, which are altogether simpler
than the Brusselator with its number of four reactions.

For all oscillators, the oddness of the mutual correlati-
on functions (20) and di�erent signs of the kinetic coe�-
cients (21) should hold, which follows directly from the
oscillatory equation. The matrix of kinetic coe�cients for
an oscillator always contains an asymmetric contributi-
on. This means that conservative forces contribute to the
kinetic coe�cients. Indeed, let us represent, formula (19)
for example, for the Lotka oscillator in the form

γ =
k0

NAV

[(
1 0

0 0

)
+

(
0 1

−1 0

)]
. (28)

Only the symmetrical part of the matrix of kinetic coe�-
cients gives the entropy production. The skew part does

not change the entropy.
Formulas (20) and (21) are a consequence of the

temporal symmetry of the oscillation equations for
�uctuations which do not correlate with each other at
the initial moment. They are valid for any oscillatory
systems, both non-equilibrium and equilibrium. In parti-
cular, in [12] an example of the ful�llment of these relati-
ons for thermal �uctuations of an equilibrium oscillator
is given. In the equilibrium case, the variables in two-
time correlation functions have di�erent parity, and the
explanation based on the principle of microscopic reversi-
bility looks convincing. At the same time, this persuasi-
veness disappears for non-equilibrium steady states when
two-time correlation functions of �uctuation quantities
are calculated.

V. CONCLUSION

The above examples of chemical oscillators in OCSS
con�rm the made earlier, conclusion for OHSS that the
Onsager�Casimir reciprocal relations hold only in equi-
librium and are explained by the absence of stationary
�uxes. In non-equilibrium steady states, the reciprocal
relations turn out to be more complex than the Onsager�
Casimir ones.
To construct non-equilibrium thermodynamics,

Onsager's regressive hypothesis and the hypothesis of
local equilibrium are su�cient. The kinetic coe�cients
must be determined on the basis of these hypotheses
without any symmetry restrictions.
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Âèñóíåíó ðàíiøå iäåþ ïðî òå, ùî äëÿ òåïëîâèõ ãiäðîäèíàìi÷íèõ ôëóêòóàöié ó âiäêðèòèõ ãiäðî-
äèíàìi÷íèõ ñòàöiîíàðíèõ ñèñòåìàõ (ÂÃÑÑ) ñïiââiäíîøåííÿ âçà¹ìíîñòi é çàãàëîì ïîâåäiíêà ôëóêòó-
àöié âèçíà÷àþòüñÿ íå ïðèíöèïîì ìiêðîñêîïi÷íî¨ çâîðîòíîñòi, à íàÿâíiñòþ àáî âiäñóòíiñòþ ïîòîêó,
çàñòîñîâàíî äî âiäêðèòèõ õiìi÷íèõ ñòàöiîíàðíèõ ñèñòåì (ÂÕÑÑ), äå ìîæóòü âiäáóâàòèñÿ êîëèâàí-
íÿ êîíöåíòðàöi¨ ðåà åíòiâ. Äëÿ òàêèõ õiìi÷íèõ îñöèëÿòîðiâ ðîçãëÿíóòî ïîâåäiíêó êîíöåíòðàöiéíèõ
ôëóêòóàöié íà ôîíi îäíîðiäíèõ çíà÷åíü êîíöåíòðàöié ðåà åíòiâ, òîáòî òîäi, êîëè ùå íå âèíèêëè
óìîâè äëÿ ìàêðîñêîïi÷íèõ êîëèâàíü. Çíàéäåíi êiíåòè÷íi êîåôiöi¹íòè òà ñïiââiäíîøåííÿ âçà¹ìíîñòi
äëÿ õiìi÷íèõ îñöèëÿòîðiâ âiäìiííi âiä ñïiââiäíîøåííÿ âçà¹ìíîñòi Îíçà åðà�Êàçèìèðà. Ïîêàçàíî, ùî
âîíè ìàþòü çàãàëüíèé õàðàêòåð äëÿ ðiçíèõ ìîäåëåé îñöèëÿòîðiâ. Ïiäêðåñëåíî, ùî ñïiââiäíîøåííÿ
âçà¹ìíîñòi Îíçà åðà�Êàçèìèðà âèêîíóþòüñÿ òiëüêè â óìîâàõ ðiâíîâàãè é íå âèêîíóþòüñÿ â óìîâàõ
íåðiâíîâàãè ó âiäêðèòèõ ñèñòåìàõ çà íàÿâíîñòi ïîòîêiâ. Õiìi÷íi îñöèëÿòîðè ÿêðàç ¹ ïðèêëàäîì âiä-
êðèòèõ ñèñòåì, äå íåðiâíîâàãà çóìîâëåíà ïîòîêîì ðå÷îâèíè. Òàêîæ íàãîëîøåíî, ùî íåðiâíîâàæíà
òåðìîäèíàìiêà ìà¹ áóäóâàòèñÿ áåç áóäü-ÿêèõ âèìîã ñèìåòði¨ êiíåòè÷íèõ êîåôiöi¹íòiâ.

Êëþ÷îâi ñëîâà: âiäêðèòi ãiäðîäèíàìi÷íi ñòàöiîíàðíi ñèñòåìè (ÂÃÑÑ), âiäêðèòi õiìi÷íi ñòàöiî-
íàðíi ñèñòåìè (ÂÕÑÑ), õiìi÷íi îñöèëÿòîðè, êîíöåíòðàöiéíi ôëóêòóàöi¨, ñïiââiäíîøåííÿ âçà¹ìíîñòi.
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