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In this paper, the three-dimensional Casson flow of a ternary hybrid nanofluid over a porous
linearly stretching/shrinking surface in the presence of an external magnetic field is considered. The
surface deformation process is described by introducing two parameters of stretching/shrinking in
the lateral directions. Using similarity transformations, the basic set of nonlinear partial differential
equations is converted into ordinary differential equations. An exact analytical solution to this
boundary value problem is obtained. The influence of the Casson parameter, magnetic field, porosity
medium, and stretching/shrinking parameter, taking into account mass transpiration, on the velocity
profiles and the skin friction coefficients is considered in detail. It has been established that the results
obtained in some limited cases are in excellent agreement with the available data. Tables show the
new results for the skin friction coefficients in the lateral directions (x and y) for different variants

of surface deformation.
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I. INTRODUCTION

Recently, the problem of the boundary flow of non-
Newtonian fluids has attracted more and more attenti-
on. Most industrial fluids, such as polymer solutions and
melts, paints and varnishes, fuels and lubricants, drilling
fluids, liquid petroleum products, and so on, are non-
Newtonian. The Casson fluid, which he introduced in
1995 to describe the flow of viscoelastic fluids, is the
most widely used model for non-Newtonian fluids. In
the Casson viscous fluid flow model, the shear stresses
are greater than the yield strength. If the shear stresses
are less than the yield strength, then the Casson fluid
behaves like a solid. Examples of Casson fluid in the food
industry are jelly, tomato sauce, honey, concentrated
fruit juices, and, in medicine, human blood. The flow of a
viscous fluid over a stretching/shrinking surface plays an
important role in processes such as the melting of high
molecular weight polymers and the production of glass,
fiber, plastic, and rubber materials.

Sakiadis [1] and Tsou et al. [2] pioneered studies of
boundary layer flow on solid surfaces. Crane [3] found
an analytical solution for a two-dimensional stationary
flow in a boundary layer caused by an expanding surface
whose velocity varies linearly with distance from a fi-
xed point. Numerous researchers have been motivated
by these papers [1-3] to investigate various aspects of
this problem, whether by combining the problem with
heat and mass transfer, MHD, chemical processes, sucti-
on/injection, mass transpiration, non-Newtonian fluids,
or other different scenarios. Studies on two-dimensional
boundary layer flows caused by stretching surfaces are
extensively studied with various fluids under different
conditions due to their numerous applications. There are
a huge amount of articles published about this issue for a
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long time. Therefore, in the review part of this study, the
main focus is on the articles devoted to three-dimensional
MHD flows of a non-Newtonian (Casson) fluid over a
stretching/shrinking surface.

Wang [4] obtained an exact similarity solution of
the Navier-Stokes equations for a three-dimensional
flow of a boundary layer of a viscous fluid over a
flat surface that is stretched with a linear veloci-
ty in two lateral directions. The concepts presented
in this paper provided inspiration for the study of
three-dimensional flows under more complex physical
circumstances. The problem of steady laminar three-
dimensional magnetohydrodynamic (MHD) boundary
layer flow and heat transfer over a stretching surface in a
viscoelastic fluid was investigated by Ahmad and Nazar
[5]. They obtained coupled non-linear ordinary differenti-
al equations to describe the flow, which they solved
numerically using the finite difference scheme known
as the Kellerbox method. Ramzan et al. [6] investi-
gated the three-dimensional flow of a viscoelastic fluid,
taking into account the Soret and Dufour effects. In
[6], solution expressions of velocity, temperature and
nanoparticle concentration are computed via homotopy
analysis method (HAM). Ashraf et al. [7] considered the
heat and mass transfer effects in the three-dimensional
flow of a Maxwell fluid over a stretching surface wi-
th convective boundary conditions. Nadeem et al. [§]
investigated the Casson fluid flow on a permeable sheet
caused by sheet stretching in the x and y directi-
ons in a transverse magnetic field. In a later study,
Nadeem et al. [9] extended the study to a Casson
nanofluid over a linearly stretching sheet, taking into
account surface convective conditions. Mahanta and
Shaw [10] investigated a three-dimensional Casson fluid
flow past a porous linearly stretching sheet, introducing
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a convective boundary condition at the surface where the
fluid’s thermal conductivity varies linearly concerning
temperature. They used the Spectral Relaxation Method
(SRM) to solve the governing equations, and computati-
ons were performed for the velocity and temperature fi-
elds for different parameters. Krishna Murthy [11] solved
MHD Casson fluid flow past a porous, linearly stretching
surface with wall mass transfer analytically. In [11] the
fluid velocity and skin friction coefficient were calculated,
and it was demonstrated that increasing the Casson and
porosity parameters suppressed the velocity field.

With the development of nanotechnology, a new type
of liquid has arisen, the so-called “nanofluids” [12]. A
nanofluid is a colloidal suspension of a nanoscale parti-
cle in a base fluid. Metals, oxides, carbides, and carbon
nanotubes are commonly used as nanoparticles, while
water and ethylene glycol are used as the base fluid.
Nanofluids have a greater thermal conductivity than
regular fluids, which is needed for the efficient transfer of
thermal energy. Nanofluids can take the place of current
refrigerants in a number of sectors, including energy,
electronics, transportation, and manufacturing. In this
regard, researchers have been particularly interested in
the applications of nanofluids since the discovery of this
original concept. The suspension of many nanoparti-
cles in the base fluid results in the creation of a novel
type of nanofluid known as a hybrid nanofluid. A new
class of nanofluids has emerged, consisting of three solid
nanoparticles distributed in an ordinary liquid. The term
“ternary hybrid nanofluid” is commonly used to descri-
be these fluids [13]. Recent studies [14-16] by numerous
researchers looked at the thermal properties of ternary
fluid.

Madhusudan et al. [17] numerically studied the
convective, three-dimensional, electrically conducting
Casson nanofluid flow over an exponentially stretchi-
ng sheet embedded in a saturated porous medium and
subjected to thermal as well as solute slip in the
presence of an externally applied transverse magnetic
field. Ibrahim and Anbessa [18] investigated the three-
dimensional MHD mixed convection flow of Casson
nanofluid over an exponentially stretching sheet usi-
ng the impacts of Hall and ion slip currents, taking
into account thermal radiation and the heat source. Vi-
shalakshi et al. [19] obtained exact analytical soluti-
ons for the three-dimensional flow of a non-Newtonian
fluid due to a porous stretching/shrinking sheet. The
importance of paper [19] is to examine the problem
analytically and find the domain in terms of mass
transpiration that is used in the heat transfer equati-
on to analyze the heat equation. Mahabaleshwar et al.
[20] conducted an investigation of the exact analyti-
cal solution for velocity and concentration field for 3D
MHD flow viscoelastic HNF due to a porous sheet that
stretched /shrunk along both z and y axes with linear
velocity and Navier slip. Exact analytical solutions in
exponential and hypergeometric form for velocity and
concentration fields were obtained in [20]. The flow of
Marangoni convection MHD Casson fluid with carbon
nanotubes under the effects of transpiration and radi-
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ation was analyzed by Vishalakshi et al. [21]. The ordi-
nary differential equations (ODEs) obtained in [21] are
solved analytically, first using the momentum equation to
obtain the solution domain, and then using this domain,
the energy equation is solved to obtain the temperature
profile in terms of the Laguerre polynomial. Recently,
Khan et al. [22] found an exact solution of a Casson
fluid flow induced by dust particles with hybrid nanofluid
over a stretching sheet under a Lorentz force. They
obtained the analytical solutions of momentum equati-
ons for the fluid and dust phases velocities of the normal
nanofluid (Fe3O4/H20) and hybrid nanofluid (FesO4-
MWCNT/H;0).

Most of the above investigations are based on numeri-
cal solutions. Therefore, inspired by the above-mentioned
articles, the present work is devoted to an analytical
study of the three-dimensional MHD Casson flow of a
ternary hybrid nanofluid due to stretching/shrinking of
a porous surface. In contrast to previous works [19-21],
the novelty of this work is an analytical consideration
of the problem that takes into account various options
for the deformation caused by stretching/shrinking of
a porous surface in the lateral directions z and y. Usi-
ng various physical parameters, the problem is checked
precisely, and velocity profiles and skin friction coeffici-
ents in directions z and y are examined. In this work, we
will study in detail the effect of the volume concentration
of nanoparticles of lower density on the flow of a ternary
hybrid nanofluid over a stretching/shrinking sheet under
conditions of mass transpiration. Unlike work [19], we
will examine the area of exact solutions for velocity
profiles depending on the mass transpiration parameter.
Furthermore, in contrast to [19], we will compare the new
findings for the skin friction coefficients in both lateral
directions with those of other studies that are well-known
in the literature. All newly discovered results will be di-
splayed graphically and in tables.

II. PROBLEM STATEMENT

Let us consider a laminar flow of an incompressi-
ble three-dimensional (3D) flow of a ternary hybrid
nanofluid (for example, TiO2—Si03-Aly03-H,O [14])
flowing around a stretching/shrinking porous layer. It
is assumed that the surface is stretched/shrunk along
the = and y axes, and the fluid is sucked (V. < 0) or
injected (V. > 0) along the z axis (mass transpiration).
In the case where (V. = 0), we have an impermeable
surface. An external constant magnetic field By is applied
to the fluid flow, and the induced magnetic field is consi-
dered negligible. Fig. 1 illustrates the physical model’s
flow. It is assumed that the sheet has linear velocities
along the zy plane: u = dyax and v = dsby, respectively;
(di1,d2) are constant stretch and shrink parameters, wi-
th (di,d2) > 0 indicating a stretched sheet, (dy,ds) < 0
indicating a shrinking sheet, and (d;,d2) = 0 indicating
a static sheet.
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Fig. 1. The physical model for stretching/shrinking of a porous surface: a) stretching-stretching (d; > 0,dz > 0); b) shrinking-
shrinking (d1 < 0,d2 < 0); c) stretching-shrinking (di1 > 0,d2 < 0); d) shrinking-stretching (d1 < 0,d2 > 0)

Based on these assumptions, the three-dimensional

incompressible Casson ternary hybrid nanofluid
boundary layer equations are as follows:
ou Ov OJw
—+—+—=0 1
Ox + Oy 0Oz ’ (1)
u% + v@ + w@ (2)

or oy 0z

et 1 ) 0%u  pnt Othf -9
=12 ) = - u— ——B2u,
Ptht ( A) 022 Kpue Pint °

u% —i—v@ +w@ (3)
ox oy 0z

HMthf 1\ 9% Hthf Othf 2
=221+ 2 ) == — v — —= B2y.
Pthf ( A) 022 Kpent Pint ©

The following are the boundary conditions for the investi-
gated model:

u=Uy(x) =diaz, v = Viu(y) = doby, w=wy (4)
at z =0

u—0, v—0 at z— o0 (5)
Here pyne is the dynamic viscosity of the ternary
hybrid nanofluids, pg, is the density of the ternary
hybrid nanofluids, oy, the electrical conductivity, A is
the Casson (non-Newtonian) fluid parameter, K is the
permeability of a porous medium, By is the magnetic
induction, a and b are stretching rates along x and y
axes.

In equations (2)—(3), the subscript “thf” denotes the
physical quantities for the ternary hybrid nanofluid, whi-
ch are defined below as

1. Density

pint = (1= ¢3){(1 = 2)[(1 = ¢1)pt + d1ps1] + dapsa}

+¢3ps3 . (6)

2. Dynamic viscosity

1
S (7)

e (1= ¢1)25(1 — ¢2)25(1 — ¢p3)23"
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3. Electrical conductivity

owmi (1 +2¢3)0s3 + (1 — 2¢3)0nnt

— = , where
Ont (1 —¢3)os3 + (14 ¢3)0nne

Ohnf _ (1 + 2¢2)052 + (]- - 2¢2)Unf

Onf 1 - ¢2)Us2 (1 + ¢2)Unf ’

ont _ (14 2¢1)0s1 + (1 — 2¢1)o¢
and or  (1—¢1)os+ (L+¢1)or ®)

Here p¢ is the density of the base fluid, of is the
electrical conductivity of the base fluid. The subscripts
(1,s1),(2,s2), and (3,s3) denote the characteristics of
nanoparticles TiO5, SiO2, and Al; O3, respectively. Table
1 shows the physical constants for nanoparticles and base
fluid.

The partial differential equations (1)-(3) are
transformed into ordinary differential equations through
similarity transformation (see, for example, [19]):

u=azf (n), v=ayg(n),
9)
w=—/ave(f(n) +9(n)), n== l%

where f, g are the dimensionless functions, 7 is the simi-
larity variable, v¢ is the kinematic viscosity of the base
fluid. Primes denote differentiation with regard to 7 in
this context. Using the similarity transformations (9),
the system PDEs (1)—(3) will transform into

(1+5) 28" + o (10)
€2
— (Q}MJF“I?) =0
€9 €9

1\ e 4,
14 -2
( +A> Lot

g% <63M+611~() g =0
€9 €9

(f+9)9d" (11)

and the related boundary conditions (4)—(5) are
transformed as follows:
'(0)=d 0)=V, = ——2 0)=0
70y =di, 5(0) a0 =0
(12)
g(0)=— at n=0
f'm) =0, g —0 at n—oo (13)
In equations (10)—(11), the quantities €, €o, €3 are defi-
ned as
o =M g = PR = T (14)
1223 Pt of
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Property H>0O Ti0» Si0» Al,O3

p [kg-m™3)| 997.1 4250 2270 6310

2.4-10°%|3.5-10° |5.96 - 107
01 =1% |2 =1%| 3 = 1%

g[S-m'] |55-107°

¢ [%] No

Table 1. Physical properties of the nanoparticles and the base
fluid [14]

BZ . . = .
and M = =2 is the magnetic parameter, K = &
aps a

is the porosity parameter, V, is the transpiration mass
parameter.

III. ANALYTICAL SOLUTION

In this section, we will obtain the exact analytical
solutions of equations (10)—(11) taking into account the
boundary conditions (12)—(13). Based on Crane’s [3]
solution, we suggest that the general solution of equati-
ons (10)—(11) can be found in the exponential form:

Fn) = Ay + Age™ 1,
(15)
g(n) = As + Age™Pn
where Ay, As, A3, A4 are the arbitrary constants. Applyi-

ng boundary conditions (12)—(13) to solutions (15), we
obtain expressions for the coefficients:

d d
A1:%+EI7A2:_E13
(16)
o, b
a a

Substituting the values of the coefficients (16) into (15),
we get the final form of the exact solution of equations

(10)~(11):

fn)="V. —l—%(l—e*ﬂ"),
(17)
g(n) = %ﬁb (1—e ).

The value of the coefficient 5 can be easily determi-
ned using solutions (17). In order to do this, we substi-
tute (17) into equations (10)—(11), as a result, we obtain,
respectively, two equations of the following form:

€ dab
=B — V. —di — = (18)
€9 a
_ (63M+ 61[?) + @67’877 —
€1 €9 a
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dob
g% - BV, —d - =2 (19)
€9 a

- (esM + €1I~(> +die P =0.
€1 €2

Then we multiply equation (18) by d;, and equation
(19) by d2b/a, and subtracting these equations from each
other we get

dab -
(qqﬂZ BV, —dy — 2 - (*Mﬁ%))
€2 a €1 €2

% (dl - dj’) 0. (20)

From (20), we find the quadratic equation for S3:

dab
P c@—<d1+2+ M+ K)qq 0. (21)

€1 €2

where (5 is determined by solving the quadratic equation
(21) and given in the form

2 K
ﬁ:‘/CGQi\/VCEQ —|—7(d1+d26)—|—7M—|—f

2qe; 4¢%68  qe qe1 q
b 1
-2 — 14 . 22
c=— q=1+% (22)

Obviously, we need only positive values of 5 > 0.

By differentiating expression (17) with respect to 7,
we can determine the velocity profiles in the z and y
directions:

@e—ﬂn
a

g'(n) =

The skin friction coefficient Ct on the surface along the
x and y axes is expressed as follows (see, for example,

[8]):

() =die™ ", (23)

1
Crav/Rey = “;‘“f <1 + A) (0,
f

Hthf Y\
Co/Re =12 (14 1) (£) 400

where Re, = U,z/v¢ is the local Reynolds number,
f(0) = —d18, g"(0) = —dacp.

(24)

IV. RESULTS AND DISCUSSION

In this section, analytical solutions for velocity profi-
les f'(n), ¢’(n) and solution domain of 8 are discussed
as a function of changes in various physical parameters
A, M, K. The results obtained are presented graphi-
cally as shown in Figs. 2-5 for four variants of surface

deformation (see Fig. 1). The range of the following
parameters is taken into account for the calculations:

A=(1,3,00), M =(0.5,1,1.5),

=(0.5,1,1.5,2,2.5),

V. =[-10...10], ¢1 =¢5=0.01, ¢=
Figure 2 shows dependences of the solution domain of
£ on mass transpiration (suction/injection) V. for four
variants of surface deformation (see Fig. 1) at ¢1 = ¢ =

¢3 = 0.01, ¢ = 0.5 and different values of A, M, K. We
notice that for ¢ = 0, we get the case of a one-dimensional
linear stretching/shrinking sheet. If ¢ = 1, the sheet will
stretch /shrink with the same ratio in both directions.
We take the ratio parameter ¢ other than 0 or 1, i.e.
¢ = 0.5, then the flow behavior along both directions
will be different.

As can be seen from Fig. 2,a-b, an increase in the
Casson parameter A leads to an increase in 3. The case
A = oo corresponds to a Newtonian fluid. For the mass
suction parameter (V. < 0), the values 8 are low and
are in the range about (0.1...1.2), and for a case of
the mass injection parameter (V. > 0), a growth of A
leads to g reaching higher positive values. Furthermore,
we can see from Fig. 2,a—b that different variants of
surface deformation have a different effect on the soluti-
on domain of 8. The value of the parameter [ is greater
for a stretching/stretching surface than for other variants
of surface deformation. Figs. 2,c-d and 2,ef show that
with the growth of the parameters M and K, the value
of B increases significantly in the case of mass injecti-

n (V. > 0). In this case, the value of the S parameter
for the stretching/stretching surface is also greater than
that for other variants of surface deformation.

The effects of the non-Newtonian parameter A on
the velocity profiles f'(n), ¢’(n) for various variants of
surface deformation are shown in Fig. 3. Fig. 3,a, it can
be seen that with an increase in the parameter A, the
resistance to the fluid flow on the stretching/stretching
surface increases. This leads to a decrease in the thi-
ckness of the boundary layer. Furthermore, Fig. 3,a depi-
cts the effect of increasing the fluid flow velocity with an
increase in the volume fraction of less dense nanoparti-
cles (¢sio, = 0.01 — ¢si0, = 0.5). Because the less
dense nanoparticles pull the fluid along with them in
their direction of motion, the velocity of the fluid flow
increases. An increase in the parameter A in the case of
a shrinking/shrinking surface leads to a decrease in the
absolute values of f'(n) and ¢'(n), as shown in Fig. 3,b.
However, while a surface is shrinking in two lateral di-
rections, the increase in the volume fraction of less dense
nanoparticles (¢sio, = 0.01 — ¢gio, = 0.5) resists the
fluid’s flow, which causes the absolute values of f'(n)
and ¢'(n) to decrease. Figs. 3,c and 3,e show the effect
of the Casson parameter A on velocity profiles f'(n) and
g'(n) for the cases of stretching/shrinking and shrinki-
ng/stretching surfaces, respectively. In these figures, we

(0.01,0.5).
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also observe a decrease in the absolute values of f'(n)
and ¢'(n) with an increase in parameter A.

A similar behavior of velocity profiles f/(n) and ¢'(7n)
can be seen in Fig. 4, which shows that the Lorentz
force increases in accordance with the increase in the
values of the magnetic parameter M. As a result, there
is some resistance to the fluid flow, which leads to a
decrease in the flow velocity profiles. On the stretch-
ing/stretching surface, we also see the effect of increasing
the fluid flow velocity (see Fig. 4,a) with an increase in

Wouonon

ooQo

the volume fraction of less dense nanoparticles (¢sio, =
0.01 = ¢sio, = 0.5). On the other hand, on the shrink-
ing/shrinking surface, we also see the effect of a decrease
in the absolute value of the fluid flow velocity (see Fig.
4,b) with an increase in the volume fraction of less dense
nanoparticles (¢sio, = 0.01 = ¢gio, = 0.5). In the cases
of stretching-shrinking and shrinking-stretching surfaces,
Figs. 4,c and 4,d show a decrease in the absolute values
of f'(n) and ¢'(n) with increasing magnetic parameter
M.

Fig. 2. The solution domain for 8 at various values of Casson parameter A (a-b), magnetic parameter M (c-d) and porosity

parameter K (e-f) as a function of the mass transpiration V. for a stretching/stretching (di = 1,ds = 1) surface, shrinking-
shrinking (di = —1,ds = —1) surface, stretching-shrinking (di = 1,d2 = —1) surface, shrinking-stretching (di = —1,d2 = 1)
surface
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Fig. 3. Influence of A on velocity profiles f'(n) and ¢'(n) at fixed parameters M = K = ¢ = 0.5 and V. = 1 for a)
stretching/stretching (d1 = 1,d2 = 1) surface; b) shrinking-shrinking (di1 = —1,d2 = —1) surface; c) stretching-shrinking
(di = 1,d2 = —1) surface; d) shrinking-stretching (di = —1,d2 = 1) surface

M=0.5,1.0,15
0.4 ¢
0.2 W7 001 MPgoz05)
0 04 M=0.5,1.0,1.5
s -
02 4 06 - -
.,, | (PSio; o.01 (pSiOZ 0.5
04 II M=05,1.0,15 -0.8
-06 -1.0
0o 1 2 3 5 6 7 8 0 1 2 3 5 6 7 8

Fig. 4. Effect of M on velocity profiles f'(n) and ¢'(n) at fixed parameters A = 1, K = ¢ = 0.5 and V., = 1 for a)
stretching/stretching (di = 1,d2 = 1) surface; b) shrinking-shrinking (di = —1,d2 = —1) surface; c) stretching-shrinking
(di = 1,d2 = —1) surface; d) shrinking-stretching (d; = —1,d2 = 1) surface
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n n
Fig. 5. Effect of K on velocity profiles f'(n) and ¢'(n) at fixed parameters A = 1,M = ¢ = 0.5 and V. = 1 for a)
stretching /stretching (di = 1,d2 = 1) surface; b) shrinking-shrinking (diy = —1,d2 = —1) surface; c) stretching-shrinking

(di = 1,d2 = —1) surface; d) shrinking-stretching (d1 = —1,d2> = 1) surface

The conclusions made above when analyzing the
influence of the Casson parameters A and the magnetic
field M on the velocity profiles in the lateral directions
of the surface remain valid for the porosity parameter
as well. From Fig. 5, it can be seen that with an
increase in the values of the porosity parameter K in
the boundary layer, the velocities decrease in both di-
rections. Therefore, the thickness of the boundary layer
also decreases at higher values of K.

Table 2 compares the analytical results obtained
from expressions (24) for local skin friction coefficients
—7"(0), —¢"(0) under the following conditions

V=0, K=0, ¢1=0¢2=¢3=0,
to the known numerical results of Ahmad and Nazar [5],
Nadeem et al. [8], and Vajravelu et al. [23]. Table 2 shows
that a good agreement is established between the exact
solution (24) and the available numerical results [5, 8,
23].

di=dy=1

A |M | ¢ |—f"(0) numerical results|—g”(0) numerical results|— f"(0) exact solutions|—g"(0) exact solutions
0|0 | 0| 1.0000 [23] 1.0042 [5],[8] 0 1.0000 0

110 0 0.7071 [23] 0 0.7071 0

20 0 0.8164 [23] 0 0.8164 0

3|0 0 0.8660 [23] 0 0.8660 0

4 10 0 0.8944 [23] 0 0.8944 0

[0 |05 1.0032 [5],[8] 0.4653 [5],[8] 1.2247 0.6123

oo |10 |0.5 3.3420 [5],[8] 1.6459 [5],[8] 3.3911 1.6955
0|100[0.5 10.058 [5],[8] 5.0208 [5],[8] 10.074 5.0373

Table 2. A comparison of exact solutions for skin friction coefficients —f”(0) and —g”(0) with numerical results [5, 8, 23]
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A MK |—f"(0) —g"(0) —£"(0) —9"(0)
¢sio, = 0.01 ¢sio, = 0.01 ¢sio, = 0.5 ¢sio, = 0.5
1 10.5(0.5|1.4086 0.7043 0.8765 0.4382
3 10.5/0.5]1.8124 0.9062 1.0951 0.5475
00(0.5]0.5(2.1804 1.0902 1.2859 0.6429
1 11.0/0.5|1.5137 0.7568 0.9806 0.4903
1 11.5/0.5|1.6106 0.8053 1.0739 0.5369
1 10.5(1.0|1.5123 0.7561 1.0191 0.5095
1 10.5(1.5|1.6080 0.8040 1.1429 0.5714

Table 3. —f"(0) and —g” (0) values for a stretching-stretching surface (di = dz2 = 1)

A MK [—f"(0) —4"(0) —f"(0) —4"(0)
$sio, = 0.01 $sio, = 0.01 bsio, = 0.5 bsio, = 0.5
1 ]0.5]0.5]—0.2545 —0.1272 —0.5395 —0.2697
3 0.5]0.5]—0.3818 —0.1909 —0.6838 —0.3419
00[0.50.5]—0.5090 —0.2545 —0.8125 —0.4062
1 [1.0]0.5]-0.4959 —0.2479 —0.7019 —0.3509
1 [1.5]0.5]—0.8129 —0.4064 —0.8304 —0.4152
1 [0.5]1.0]—0.4884 —0.2442 —0.7563 —0.3781
1 |0.5]1.5]-0.8065 —0.4032 —0.9194 —0.4597

Table 4. —f"(0) and —g"(0) values for a shrinking-shrinking surface (d; = dz = —1)

A MK |—f"(0) —9"(0) —f"(0) -9"(0)
¢sio, = 0.01 ¢Psio, = 0.01 ¢sio, = 0.5 ¢sio, = 0.5
1 (0.5/0.5/1.1616 —0.5808 0.7821 —0.3910
3 10.5/0.5[1.5144 —0.7572 0.9798 —0.4899
00|0.50.5(1.8415 —0.9207 1.1531 —0.5765
1 11.0/0.5|1.2920 —0.6460 0.8982 —0.4491
1 [1.5]0.5{1.4078 —0.7039 0.9999 —0.4999
1 10.5/1.0{1.2903 —0.6451 0.9404 —0.4702
1 10.5(1.5|1.4047 —0.7023 1.0740 —0.5370

Table 5. —f"/(0) and —g” (0) values for a stretching-shrinking surface (di = 1,ds = —1)

A MK | —f"(0) —9"(0) —1"(0) —4"(0)
¢sio, = 0.01 ¢sio, = 0.01 ¢sio, = 0.5 ¢sio, = 0.5
1 (0.5/0.5(—0.8147 0.4073 —0.6732 0.3366
3 10.50.5|-1.1024 0.5512 —0.8468 0.4234
00[0.5/0.5| —1.3792 0.6896 —0.9999 0.4949
1 (1.0/0.5|~1.0077 0.5038 ~0.8067 0.4033
1 |1.5/0.5|—1.1606 0.5803 —0.9194 0.4597
1 |0.5/1.0{—1.0054 0.5027 —0.8538 0.4269
1 |0.5/1.5|~1.1566 0.5783 ~0.9999 0.4999

Table 6. —f"'(0) and —g" (0) values for a shrinking-stretching surface (di = —1,d> = 1)
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Next, we study the influence of the non-Newtonian
(Casson) parameter A, the magnetic field M, the porosi-
ty K, and the expansion-shrinkage coefficients (dy, d2)
on the local skin friction coefficients —f”(0), —g¢"(0)
for a ternary hybrid nanofluid TiO2-SiO2-Al;O3-H5O.
Numerical values of F and H for different values of
A M, K, ¢po,dy, and do at ¢ = 0.5,V, = 1 were obtai-
ned from exact solutions (17) and presented in Tabs. 3-6.
From the results of Tables 3-6, it can be seen that at the
limit of the Newtonian fluid (A = o0), the skin friction
coefficients of the hybrid nanofluid in the z and y di-
rections are higher compared to the non-Newtonian fluid
for various types of surface deformation and in the case
of an increased volume fraction of less dense nanoparti-
cles ¢sio, = 0.5. Furthermore, increasing the magnetic
parameter M and the porosity parameter K reduces the
fluid flow rate, causing the absolute values of the skin
friction coefficients in the x and y directions to increase.

V. CONCLUSIONS

This study has investigated for the first time the
analytical solution of the three-dimensional MHD flow
of the Casson ternary hybrid nanofluid over a linearly
deformable surface with the effect of mass transpirati-
on. Several linear stretching/shrinking sheet variants (see
Fig. 1) in the lateral directions x and y are considered.
Analytical expressions for the velocity and skin friction

coefficients in the lateral directions are obtained using
the flow arrangement of a ternary hybrid nanofluid consi-
dered. Under the condition of injection mass transpirati-
on (V. = 1), we investigated the impact of the Casson
parameter A, magnetic field M, and medium porosity K
on velocity profiles f/'(n) and ¢’(n). The main results of
this study are as follows:

1. The absolute values of skin friction coefficients in
the lateral directions = and y increase in accordance
with the growth of the parameters A, M, and K for
various variants of the stretching/shrinking sheet.

2. For the cases of a stretching/stretching, stretchi-
ng/shrinking, and shrinking/stretching sheet, the
absolute values of the skin friction coefficients
—f"(0) and —g"”(0) decrease with an increase in
the volume fraction of less dense nanoparticles.

3. In the case of a shrinking/shrinking sheet, the
absolute values of skin friction coefficients — f”(0)
and —¢"”(0) increase with an increase in the volume
fraction of less dense nanoparticles.

The results of this work can be applied to numerous
technological processes.
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TOYHI PO3B’SI3KHN MIJ TPUBUMIPHOI TEUIi KECCOHA IIOTPIMHOI I'BPUIHOI
HAHOPIIMHMU I10 IIOPUCTIN IIOBEPXHI PO3TAIYBAHHS/CTUCHEHHS 3 MACOBOIO
TPAHCIIIPAIIIEIO

M. 1. Konn®, V. III. Mara6anemsap?, JI. M. ITepec®
! Inemumym monoxpucmanie, Havyionanvna axademia nayk Yrpainu, npocn. Hayxu, 60, Xapxis, 61001, Yrpaina
2 @axyavmem mamemamury, Hlisasansompi, Ynisepcumem Hasans'epe, India, 577 007
3 Daxysrvmem Pisuxu, Ynisepcumem Tapanaxa, 6oxc 7D, Apixa, Juni

VY it poboTi PO3rISHYTO TPUBUMIPHY KECCOHIBCHKY TedWif0 MOTPifiHOI riOpuaIHOl HAHOPIAWHU MO MO-
PHCTi# MOBepXHi, MO JiHIHHO PO3TATYETHCS/CTUCKAETHCS 33 HASBHOCTI 30BHIIIHBOrO MATHITHOTO ITOJIS.
Hedopmarniro nosepxHi onucano BBeJEHHIM JBOX IapaMeTPiB PO3TAryBaHHs/CTUCHEHHS B JaTePaIbHUX
HaIPAMKaX. 34 JOHOMOrOI0 [EPETBOPEHb HOAI0HOCTI 6a30Ba cucreMa HesliHiftHuX JudepeHiiiiux piBHsaHb
y 9aCTKOBUX IMOXITHUX MMEPETBOPIOETHCA HA TPOCTi audepentiiiini piBasgnasg. OTpUMAHO TOYHUN aHAIITH-
9HUI pO3B’s30K Tii€l KpaitoBol 3amadi. JLoKmamHo poO3TIAHYTO BILIMB Mapamerpa Keccoma, MarsiTHOro
10JIs1, TIOPUCTOCTI CEPEJIOBUILA Ta IIAPAMETPA PO3TAIYBaHH /CTUCHEHHS 3 yPAXyBaHHAM TPaHcuipanii Ma-
cu Ha, TpodiIi MBUAKOCTI Ta KOeDIIIEHTH TTOBEPXHEBOTO TEPTSI. YCTAHOBJIEHO, IO PE3YIBTATH, OTPUMAHI B
JesKUX OOMEKEHUX BUIMAIKAX, IYI0BO Y3TOMKYIOThCA 3 HASABHUMU JAHUMHU. Y TAOJIUIAX TOJAHO HOBI pe-
3ysbraTy Jid KoedilleHTIB IIOBEPXHEBOrO TEPTS B JIATEPAJbHUX HANPAMKAX (z 1 y) mjis pi3Hux BapianTis
nedopmariil moBepxHi.

Kurrouosi coroBa: motik Keccona, morpiiiuuii ribpuganit HaHOMIIIOII, MACOBa TPAHCITIPAITis, aHAJIITH-
qHe pIIlleHHs.
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