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In this paper, the three-dimensional Casson �ow of a ternary hybrid nano�uid over a porous
linearly stretching/shrinking surface in the presence of an external magnetic �eld is considered. The
surface deformation process is described by introducing two parameters of stretching/shrinking in
the lateral directions. Using similarity transformations, the basic set of nonlinear partial di�erential
equations is converted into ordinary di�erential equations. An exact analytical solution to this
boundary value problem is obtained. The in�uence of the Casson parameter, magnetic �eld, porosity
medium, and stretching/shrinking parameter, taking into account mass transpiration, on the velocity
pro�les and the skin friction coe�cients is considered in detail. It has been established that the results
obtained in some limited cases are in excellent agreement with the available data. Tables show the
new results for the skin friction coe�cients in the lateral directions (x and y) for di�erent variants
of surface deformation.
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I. INTRODUCTION

Recently, the problem of the boundary �ow of non-
Newtonian �uids has attracted more and more attenti-
on. Most industrial �uids, such as polymer solutions and
melts, paints and varnishes, fuels and lubricants, drilling
�uids, liquid petroleum products, and so on, are non-
Newtonian. The Casson �uid, which he introduced in
1995 to describe the �ow of viscoelastic �uids, is the
most widely used model for non-Newtonian �uids. In
the Casson viscous �uid �ow model, the shear stresses
are greater than the yield strength. If the shear stresses
are less than the yield strength, then the Casson �uid
behaves like a solid. Examples of Casson �uid in the food
industry are jelly, tomato sauce, honey, concentrated
fruit juices, and, in medicine, human blood. The �ow of a
viscous �uid over a stretching/shrinking surface plays an
important role in processes such as the melting of high
molecular weight polymers and the production of glass,
�ber, plastic, and rubber materials.

Sakiadis [1] and Tsou et al. [2] pioneered studies of
boundary layer �ow on solid surfaces. Crane [3] found
an analytical solution for a two-dimensional stationary
�ow in a boundary layer caused by an expanding surface
whose velocity varies linearly with distance from a �-
xed point. Numerous researchers have been motivated
by these papers [1�3] to investigate various aspects of
this problem, whether by combining the problem with
heat and mass transfer, MHD, chemical processes, sucti-
on/injection, mass transpiration, non-Newtonian �uids,
or other di�erent scenarios. Studies on two-dimensional
boundary layer �ows caused by stretching surfaces are
extensively studied with various �uids under di�erent
conditions due to their numerous applications. There are
a huge amount of articles published about this issue for a

long time. Therefore, in the review part of this study, the
main focus is on the articles devoted to three-dimensional
MHD �ows of a non-Newtonian (Casson) �uid over a
stretching/shrinking surface.

Wang [4] obtained an exact similarity solution of
the Navier-Stokes equations for a three-dimensional
�ow of a boundary layer of a viscous �uid over a
�at surface that is stretched with a linear veloci-
ty in two lateral directions. The concepts presented
in this paper provided inspiration for the study of
three-dimensional �ows under more complex physical
circumstances. The problem of steady laminar three-
dimensional magnetohydrodynamic (MHD) boundary
layer �ow and heat transfer over a stretching surface in a
viscoelastic �uid was investigated by Ahmad and Nazar
[5]. They obtained coupled non-linear ordinary di�erenti-
al equations to describe the �ow, which they solved
numerically using the �nite di�erence scheme known
as the Kellerbox method. Ramzan et al. [6] investi-
gated the three-dimensional �ow of a viscoelastic �uid,
taking into account the Soret and Dufour e�ects. In
[6], solution expressions of velocity, temperature and
nanoparticle concentration are computed via homotopy
analysis method (HAM). Ashraf et al. [7] considered the
heat and mass transfer e�ects in the three-dimensional
�ow of a Maxwell �uid over a stretching surface wi-
th convective boundary conditions. Nadeem et al. [8]
investigated the Casson �uid �ow on a permeable sheet
caused by sheet stretching in the x and y directi-
ons in a transverse magnetic �eld. In a later study,
Nadeem et al. [9] extended the study to a Casson
nano�uid over a linearly stretching sheet, taking into
account surface convective conditions. Mahanta and
Shaw [10] investigated a three-dimensional Casson �uid
�ow past a porous linearly stretching sheet, introducing
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a convective boundary condition at the surface where the
�uid's thermal conductivity varies linearly concerning
temperature. They used the Spectral Relaxation Method
(SRM) to solve the governing equations, and computati-
ons were performed for the velocity and temperature �-
elds for di�erent parameters. Krishna Murthy [11] solved
MHD Casson �uid �ow past a porous, linearly stretching
surface with wall mass transfer analytically. In [11] the
�uid velocity and skin friction coe�cient were calculated,
and it was demonstrated that increasing the Casson and
porosity parameters suppressed the velocity �eld.

With the development of nanotechnology, a new type
of liquid has arisen, the so-called �nano�uids� [12]. A
nano�uid is a colloidal suspension of a nanoscale parti-
cle in a base �uid. Metals, oxides, carbides, and carbon
nanotubes are commonly used as nanoparticles, while
water and ethylene glycol are used as the base �uid.
Nano�uids have a greater thermal conductivity than
regular �uids, which is needed for the e�cient transfer of
thermal energy. Nano�uids can take the place of current
refrigerants in a number of sectors, including energy,
electronics, transportation, and manufacturing. In this
regard, researchers have been particularly interested in
the applications of nano�uids since the discovery of this
original concept. The suspension of many nanoparti-
cles in the base �uid results in the creation of a novel
type of nano�uid known as a hybrid nano�uid. A new
class of nano�uids has emerged, consisting of three solid
nanoparticles distributed in an ordinary liquid. The term
�ternary hybrid nano�uid� is commonly used to descri-
be these �uids [13]. Recent studies [14�16] by numerous
researchers looked at the thermal properties of ternary
�uid.

Madhusudan et al. [17] numerically studied the
convective, three-dimensional, electrically conducting
Casson nano�uid �ow over an exponentially stretchi-
ng sheet embedded in a saturated porous medium and
subjected to thermal as well as solute slip in the
presence of an externally applied transverse magnetic
�eld. Ibrahim and Anbessa [18] investigated the three-
dimensional MHD mixed convection �ow of Casson
nano�uid over an exponentially stretching sheet usi-
ng the impacts of Hall and ion slip currents, taking
into account thermal radiation and the heat source. Vi-
shalakshi et al. [19] obtained exact analytical soluti-
ons for the three-dimensional �ow of a non-Newtonian
�uid due to a porous stretching/shrinking sheet. The
importance of paper [19] is to examine the problem
analytically and �nd the domain in terms of mass
transpiration that is used in the heat transfer equati-
on to analyze the heat equation. Mahabaleshwar et al.

[20] conducted an investigation of the exact analyti-
cal solution for velocity and concentration �eld for 3D
MHD �ow viscoelastic HNF due to a porous sheet that
stretched/shrunk along both x and y axes with linear
velocity and Navier slip. Exact analytical solutions in
exponential and hypergeometric form for velocity and
concentration �elds were obtained in [20]. The �ow of
Marangoni convection MHD Casson �uid with carbon
nanotubes under the e�ects of transpiration and radi-

ation was analyzed by Vishalakshi et al. [21]. The ordi-
nary di�erential equations (ODEs) obtained in [21] are
solved analytically, �rst using the momentum equation to
obtain the solution domain, and then using this domain,
the energy equation is solved to obtain the temperature
pro�le in terms of the Laguerre polynomial. Recently,
Khan et al. [22] found an exact solution of a Casson
�uid �ow induced by dust particles with hybrid nano�uid
over a stretching sheet under a Lorentz force. They
obtained the analytical solutions of momentum equati-
ons for the �uid and dust phases velocities of the normal
nano�uid (Fe3O4/H2O) and hybrid nano�uid (Fe3O4-
MWCNT/H2O).

Most of the above investigations are based on numeri-
cal solutions. Therefore, inspired by the above-mentioned
articles, the present work is devoted to an analytical
study of the three-dimensional MHD Casson �ow of a
ternary hybrid nano�uid due to stretching/shrinking of
a porous surface. In contrast to previous works [19�21],
the novelty of this work is an analytical consideration
of the problem that takes into account various options
for the deformation caused by stretching/shrinking of
a porous surface in the lateral directions x and y. Usi-
ng various physical parameters, the problem is checked
precisely, and velocity pro�les and skin friction coe�ci-
ents in directions x and y are examined. In this work, we
will study in detail the e�ect of the volume concentration
of nanoparticles of lower density on the �ow of a ternary
hybrid nano�uid over a stretching/shrinking sheet under
conditions of mass transpiration. Unlike work [19], we
will examine the area of exact solutions for velocity
pro�les depending on the mass transpiration parameter.
Furthermore, in contrast to [19], we will compare the new
�ndings for the skin friction coe�cients in both lateral
directions with those of other studies that are well-known
in the literature. All newly discovered results will be di-
splayed graphically and in tables.

II. PROBLEM STATEMENT

Let us consider a laminar �ow of an incompressi-
ble three-dimensional (3D) �ow of a ternary hybrid
nano�uid (for example, TiO2�SiO2�Al2O3�H2O [14])
�owing around a stretching/shrinking porous layer. It
is assumed that the surface is stretched/shrunk along
the x and y axes, and the �uid is sucked (Vc < 0) or
injected (Vc > 0) along the z axis (mass transpiration).
In the case where (Vc = 0), we have an impermeable
surface. An external constant magnetic �eldB0 is applied
to the �uid �ow, and the induced magnetic �eld is consi-
dered negligible. Fig. 1 illustrates the physical model's
�ow. It is assumed that the sheet has linear velocities
along the xy plane: u = d1ax and v = d2by, respectively;
(d1, d2) are constant stretch and shrink parameters, wi-
th (d1, d2) > 0 indicating a stretched sheet, (d1, d2) < 0
indicating a shrinking sheet, and (d1, d2) = 0 indicating
a static sheet.
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Fig. 1. The physical model for stretching/shrinking of a porous surface: a) stretching-stretching (d1 > 0, d2 > 0); b) shrinking-
shrinking (d1 < 0, d2 < 0); c) stretching-shrinking (d1 > 0, d2 < 0); d) shrinking-stretching (d1 < 0, d2 > 0)

Based on these assumptions, the three-dimensional
incompressible Casson ternary hybrid nano�uid
boundary layer equations are as follows:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(2)

=
µthf

ρthf

(
1 +

1

Λ

)
∂2u

∂z2
− µthf

Kρthf
u− σthf

ρthf
B2

0u,

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(3)

=
µthf

ρthf

(
1 +

1

Λ

)
∂2v

∂z2
− µthf

Kρthf
v − σthf

ρthf
B2

0v.

The following are the boundary conditions for the investi-
gated model:

u = Uw(x) = d1ax, v = Vw(y) = d2by, w = w0 (4)

at z = 0

u → 0, v → 0 at z → ∞ (5)

Here µthf is the dynamic viscosity of the ternary
hybrid nano�uids, ρthf is the density of the ternary
hybrid nano�uids, σthf the electrical conductivity, Λ is
the Casson (non-Newtonian) �uid parameter, K is the
permeability of a porous medium, B0 is the magnetic
induction, a and b are stretching rates along x and y
axes.
In equations (2)�(3), the subscript �thf� denotes the

physical quantities for the ternary hybrid nano�uid, whi-
ch are de�ned below as

1. Density

ρthf = (1− ϕ3)
{
(1− ϕ2)[(1− ϕ1)ρf + ϕ1ρs1] + ϕ2ρs2

}
+ϕ3ρs3. (6)

2. Dynamic viscosity

µthf

µf
=

1

(1− ϕ1)2.5(1− ϕ2)2.5(1− ϕ3)2.5
. (7)
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3. Electrical conductivity

σthf

σhf
=

(1 + 2ϕ3)σs3 + (1− 2ϕ3)σhnf

(1− ϕ3)σs3 + (1 + ϕ3)σhnf
, where

σhnf

σnf
=

(1 + 2ϕ2)σs2 + (1− 2ϕ2)σnf

(1− ϕ2)σs2 + (1 + ϕ2)σnf
,

and
σnf

σf
=

(1 + 2ϕ1)σs1 + (1− 2ϕ1)σf

(1− ϕ1)σs1 + (1 + ϕ1)σf
. (8)

Here ρf is the density of the base �uid, σf is the
electrical conductivity of the base �uid. The subscripts
(1, s1), (2, s2), and (3, s3) denote the characteristics of
nanoparticles TiO2, SiO2, and Al2O3, respectively. Table
1 shows the physical constants for nanoparticles and base
�uid.
The partial di�erential equations (1)�(3) are

transformed into ordinary di�erential equations through
similarity transformation (see, for example, [19]):

u = axf ′(η), v = ayg′(η),

(9)

w = −
√
aνf(f(η) + g(η)), η = z

√
a

νf
,

where f, g are the dimensionless functions, η is the simi-
larity variable, νf is the kinematic viscosity of the base
�uid. Primes denote di�erentiation with regard to η in
this context. Using the similarity transformations (9),
the system PDEs (1)�(3) will transform into

(
1 +

1

Λ

)
ϵ1
ϵ2
f ′′′ + (f + g)f ′′ (10)

− f ′2 −
(
ϵ3
ϵ2
M +

ϵ1
ϵ2
K̃

)
f ′ = 0

(
1 +

1

Λ

)
ϵ1
ϵ2
g′′′ + (f + g)g′′ (11)

− g′
2 −

(
ϵ3
ϵ2
M +

ϵ1
ϵ2
K̃

)
g′ = 0

and the related boundary conditions (4)�(5) are
transformed as follows:

f ′(0) = d1, f(0) = Vc = − w0√
aνf

, g(0) = 0,

(12)

g′(0) =
d2b

a
at η = 0

f ′(η) → 0, g′(η) → 0 at η → ∞ (13)

In equations (10)�(11), the quantities ϵ1, ϵ2, ϵ3 are de�-
ned as

ϵ1 =
µthf

µf
, ϵ2 =

ρthf
ρf

, ϵ3 =
σthf

σf
, (14)

Property H2O TiO2 SiO2 Al2O3

ρ [kg ·m−3] 997.1 4250 2270 6310

σ [S ·m−1] 5.5 · 10−6 2.4 · 106 3.5 · 106 5.96 · 107

ϕ [%] No ϕ1 = 1% ϕ2 = 1% ϕ3 = 1%

Table 1. Physical properties of the nanoparticles and the base
�uid [14]

and M =
B2

0σf

aρf
is the magnetic parameter, K̃ = νf

aK

is the porosity parameter, Vc is the transpiration mass
parameter.

III. ANALYTICAL SOLUTION

In this section, we will obtain the exact analytical
solutions of equations (10)�(11) taking into account the
boundary conditions (12)�(13). Based on Crane's [3]
solution, we suggest that the general solution of equati-
ons (10)�(11) can be found in the exponential form:

f(η) = A1 +A2e
−βη,

(15)

g(η) = A3 +A4e
−βη,

where A1, A2, A3, A4 are the arbitrary constants. Applyi-
ng boundary conditions (12)�(13) to solutions (15), we
obtain expressions for the coe�cients:

A1 = Vc +
d1
β
, A2 = −d1

β
,

(16)

A3 =
d2b

a
, A4 = −d2b

a
.

Substituting the values of the coe�cients (16) into (15),
we get the �nal form of the exact solution of equations
(10)�(11):

f(η) = Vc +
d1
β

(
1− e−βη

)
,

(17)

g(η) =
d2b

aβ

(
1− e−βη

)
.

The value of the coe�cient β can be easily determi-
ned using solutions (17). In order to do this, we substi-
tute (17) into equations (10)�(11), as a result, we obtain,
respectively, two equations of the following form:

q
ϵ1
ϵ2
β2 − βVc − d1 −

d2b

a
(18)

−
(
ϵ3
ϵ1
M +

ϵ1
ϵ2
K̃

)
+

d2b

a
e−βη = 0,
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q
ϵ1
ϵ2
β2 − βVc − d1 −

d2b

a
(19)

−
(
ϵ3
ϵ1
M +

ϵ1
ϵ2
K̃

)
+ d1e

−βη = 0.

Then we multiply equation (18) by d1, and equation
(19) by d2b/a, and subtracting these equations from each
other we get(

q
ϵ1
ϵ2
β2 − βVc − d1 −

d2b

a
−
(
ϵ3
ϵ1
M +

ϵ1
ϵ2
K̃

))

×
(
d1 −

d2b

a

)
= 0. (20)

From (20), we �nd the quadratic equation for β:

β2− ϵ2
qϵ1

Vcβ−
(
d1 +

d2b

a
+

ϵ3
ϵ1
M +

ϵ1
ϵ2
K̃

)
ϵ2
qϵ1

= 0, (21)

where β is determined by solving the quadratic equation
(21) and given in the form

β =
Vcϵ2
2qϵ1

±

√
V 2
c ϵ

2
2

4q2ϵ21
+

ϵ2
qϵ1

(d1 + d2c) +
ϵ3
qϵ1

M +
K̃

q
,

c =
b

a
, q = 1 +

1

Λ
. (22)

Obviously, we need only positive values of β > 0.
By di�erentiating expression (17) with respect to η,

we can determine the velocity pro�les in the x and y
directions:

f ′(η) = d1e
−βη, g′(η) =

d2b

a
e−βη (23)

The skin friction coe�cient Cf on the surface along the
x and y axes is expressed as follows (see, for example,
[8]):

Cfx

√
Rex =

µthf

µf

(
1 +

1

Λ

)
f ′′(0),

(24)

Cfy

√
Rex =

µthf

µf

(
1 +

1

Λ

)(y
x

)
g′′(0),

where Rex = Uwx/νf is the local Reynolds number,
f ′′(0) = −d1β, g

′′(0) = −d2cβ.

IV. RESULTS AND DISCUSSION

In this section, analytical solutions for velocity pro�-
les f ′(η), g′(η) and solution domain of β are discussed
as a function of changes in various physical parameters

Λ,M, K̃. The results obtained are presented graphi-
cally as shown in Figs. 2-5 for four variants of surface

deformation (see Fig. 1). The range of the following
parameters is taken into account for the calculations:

Λ = (1, 3,∞), M = (0.5, 1, 1.5),

K̃ = (0.5, 1, 1.5, 2, 2.5),

Vc = [−10 . . . 10], ϕ1 = ϕ3 = 0.01, ϕ2 = (0.01, 0.5).

Figure 2 shows dependences of the solution domain of
β on mass transpiration (suction/injection) Vc for four
variants of surface deformation (see Fig. 1) at ϕ1 = ϕ2 =

ϕ3 = 0.01, c = 0.5 and di�erent values of Λ,M, K̃. We
notice that for c = 0, we get the case of a one-dimensional
linear stretching/shrinking sheet. If c = 1, the sheet will
stretch/shrink with the same ratio in both directions.
We take the ratio parameter c other than 0 or 1, i.e.
c = 0.5, then the �ow behavior along both directions
will be di�erent.
As can be seen from Fig. 2,a�b, an increase in the

Casson parameter Λ leads to an increase in β. The case
Λ = ∞ corresponds to a Newtonian �uid. For the mass
suction parameter (Vc < 0), the values β are low and
are in the range about (0.1 . . . 1.2), and for a case of
the mass injection parameter (Vc > 0), a growth of Λ
leads to β reaching higher positive values. Furthermore,
we can see from Fig. 2,a�b that di�erent variants of
surface deformation have a di�erent e�ect on the soluti-
on domain of β. The value of the parameter β is greater
for a stretching/stretching surface than for other variants
of surface deformation. Figs. 2,c�d and 2,e�f show that

with the growth of the parameters M and K̃, the value
of β increases signi�cantly in the case of mass injecti-
on (Vc > 0). In this case, the value of the β parameter
for the stretching/stretching surface is also greater than
that for other variants of surface deformation.
The e�ects of the non-Newtonian parameter Λ on

the velocity pro�les f ′(η), g′(η) for various variants of
surface deformation are shown in Fig. 3. Fig. 3,a, it can
be seen that with an increase in the parameter Λ, the
resistance to the �uid �ow on the stretching/stretching
surface increases. This leads to a decrease in the thi-
ckness of the boundary layer. Furthermore, Fig. 3,a depi-
cts the e�ect of increasing the �uid �ow velocity with an
increase in the volume fraction of less dense nanoparti-
cles (ϕSiO2

= 0.01 → ϕSiO2
= 0.5). Because the less

dense nanoparticles pull the �uid along with them in
their direction of motion, the velocity of the �uid �ow
increases. An increase in the parameter Λ in the case of
a shrinking/shrinking surface leads to a decrease in the
absolute values of f ′(η) and g′(η), as shown in Fig. 3,b.
However, while a surface is shrinking in two lateral di-
rections, the increase in the volume fraction of less dense
nanoparticles (ϕSiO2

= 0.01 → ϕSiO2
= 0.5) resists the

�uid's �ow, which causes the absolute values of f ′(η)
and g′(η) to decrease. Figs. 3,c and 3,e show the e�ect
of the Casson parameter Λ on velocity pro�les f ′(η) and
g′(η) for the cases of stretching/shrinking and shrinki-
ng/stretching surfaces, respectively. In these �gures, we
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also observe a decrease in the absolute values of f ′(η)
and g′(η) with an increase in parameter Λ.
A similar behavior of velocity pro�les f ′(η) and g′(η)

can be seen in Fig. 4, which shows that the Lorentz
force increases in accordance with the increase in the
values of the magnetic parameter M . As a result, there
is some resistance to the �uid �ow, which leads to a
decrease in the �ow velocity pro�les. On the stretch-
ing/stretching surface, we also see the e�ect of increasing
the �uid �ow velocity (see Fig. 4,a) with an increase in

the volume fraction of less dense nanoparticles (ϕSiO2
=

0.01 → ϕSiO2
= 0.5). On the other hand, on the shrink-

ing/shrinking surface, we also see the e�ect of a decrease
in the absolute value of the �uid �ow velocity (see Fig.
4,b) with an increase in the volume fraction of less dense
nanoparticles (ϕSiO2

= 0.01 → ϕSiO2
= 0.5). In the cases

of stretching-shrinking and shrinking-stretching surfaces,
Figs. 4,c and 4,d show a decrease in the absolute values
of f ′(η) and g′(η) with increasing magnetic parameter
M .

Fig. 2. The solution domain for β at various values of Casson parameter Λ (a-b), magnetic parameter M (c-d) and porosity
parameter K̃ (e-f) as a function of the mass transpiration Vc for a stretching/stretching (d1 = 1, d2 = 1) surface, shrinking-
shrinking (d1 = −1, d2 = −1) surface, stretching-shrinking (d1 = 1, d2 = −1) surface, shrinking-stretching (d1 = −1, d2 = 1)

surface
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Fig. 3. In�uence of Λ on velocity pro�les f ′(η) and g′(η) at �xed parameters M = K̃ = c = 0.5 and Vc = 1 for a)
stretching/stretching (d1 = 1, d2 = 1) surface; b) shrinking-shrinking (d1 = −1, d2 = −1) surface; c) stretching-shrinking

(d1 = 1, d2 = −1) surface; d) shrinking-stretching (d1 = −1, d2 = 1) surface

Fig. 4. E�ect of M on velocity pro�les f ′(η) and g′(η) at �xed parameters Λ = 1, K̃ = c = 0.5 and Vc = 1 for a)
stretching/stretching (d1 = 1, d2 = 1) surface; b) shrinking-shrinking (d1 = −1, d2 = −1) surface; c) stretching-shrinking

(d1 = 1, d2 = −1) surface; d) shrinking-stretching (d1 = −1, d2 = 1) surface
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Fig. 5. E�ect of K̃ on velocity pro�les f ′(η) and g′(η) at �xed parameters Λ = 1,M = c = 0.5 and Vc = 1 for a)
stretching/stretching (d1 = 1, d2 = 1) surface; b) shrinking-shrinking (d1 = −1, d2 = −1) surface; c) stretching-shrinking

(d1 = 1, d2 = −1) surface; d) shrinking-stretching (d1 = −1, d2 = 1) surface

The conclusions made above when analyzing the
in�uence of the Casson parameters Λ and the magnetic
�eld M on the velocity pro�les in the lateral directions
of the surface remain valid for the porosity parameter
as well. From Fig. 5, it can be seen that with an

increase in the values of the porosity parameter K̃ in
the boundary layer, the velocities decrease in both di-
rections. Therefore, the thickness of the boundary layer

also decreases at higher values of K̃.

Table 2 compares the analytical results obtained
from expressions (24) for local skin friction coe�cients
−f ′′(0),−g′′(0) under the following conditions

Vc = 0, K̃ = 0, ϕ1 = ϕ2 = ϕ3 = 0, d1 = d2 = 1

to the known numerical results of Ahmad and Nazar [5],
Nadeem et al. [8], and Vajravelu et al. [23]. Table 2 shows
that a good agreement is established between the exact
solution (24) and the available numerical results [5, 8,
23].

Λ M c −f ′′(0) numerical results −g′′(0) numerical results −f ′′(0) exact solutions −g′′(0) exact solutions

∞ 0 0 1.0000 [23] 1.0042 [5],[8] 0 1.0000 0

1 0 0 0.7071 [23] 0 0.7071 0

2 0 0 0.8164 [23] 0 0.8164 0

3 0 0 0.8660 [23] 0 0.8660 0

4 0 0 0.8944 [23] 0 0.8944 0

∞ 0 0.5 1.0932 [5],[8] 0.4653 [5],[8] 1.2247 0.6123

∞ 10 0.5 3.3420 [5],[8] 1.6459 [5],[8] 3.3911 1.6955

∞ 100 0.5 10.058 [5],[8] 5.0208 [5],[8] 10.074 5.0373

Table 2. A comparison of exact solutions for skin friction coe�cients −f ′′(0) and −g′′(0) with numerical results [5, 8, 23]
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Λ M K̃ −f ′′(0)
ϕSiO2 = 0.01

−g′′(0)
ϕSiO2 = 0.01

−f ′′(0)
ϕSiO2 = 0.5

−g′′(0)
ϕSiO2 = 0.5

1 0.5 0.5 1.4086 0.7043 0.8765 0.4382

3 0.5 0.5 1.8124 0.9062 1.0951 0.5475

∞ 0.5 0.5 2.1804 1.0902 1.2859 0.6429

1 1.0 0.5 1.5137 0.7568 0.9806 0.4903

1 1.5 0.5 1.6106 0.8053 1.0739 0.5369

1 0.5 1.0 1.5123 0.7561 1.0191 0.5095

1 0.5 1.5 1.6080 0.8040 1.1429 0.5714

Table 3. −f ′′(0) and −g′′(0) values for a stretching-stretching surface (d1 = d2 = 1)

Λ M K̃ −f ′′(0)
ϕSiO2 = 0.01

−g′′(0)
ϕSiO2 = 0.01

−f ′′(0)
ϕSiO2 = 0.5

−g′′(0)
ϕSiO2 = 0.5

1 0.5 0.5 −0.2545 −0.1272 −0.5395 −0.2697

3 0.5 0.5 −0.3818 −0.1909 −0.6838 −0.3419

∞ 0.5 0.5 −0.5090 −0.2545 −0.8125 −0.4062

1 1.0 0.5 −0.4959 −0.2479 −0.7019 −0.3509

1 1.5 0.5 −0.8129 −0.4064 −0.8304 −0.4152

1 0.5 1.0 −0.4884 −0.2442 −0.7563 −0.3781

1 0.5 1.5 −0.8065 −0.4032 −0.9194 −0.4597

Table 4. −f ′′(0) and −g′′(0) values for a shrinking-shrinking surface (d1 = d2 = −1)

Λ M K̃ −f ′′(0)
ϕSiO2 = 0.01

−g′′(0)
ϕSiO2 = 0.01

−f ′′(0)
ϕSiO2 = 0.5

−g′′(0)
ϕSiO2 = 0.5

1 0.5 0.5 1.1616 −0.5808 0.7821 −0.3910

3 0.5 0.5 1.5144 −0.7572 0.9798 −0.4899

∞ 0.5 0.5 1.8415 −0.9207 1.1531 −0.5765

1 1.0 0.5 1.2920 −0.6460 0.8982 −0.4491

1 1.5 0.5 1.4078 −0.7039 0.9999 −0.4999

1 0.5 1.0 1.2903 −0.6451 0.9404 −0.4702

1 0.5 1.5 1.4047 −0.7023 1.0740 −0.5370

Table 5. −f ′′(0) and −g′′(0) values for a stretching-shrinking surface (d1 = 1, d2 = −1)

Λ M K̃ −f ′′(0)
ϕSiO2 = 0.01

−g′′(0)
ϕSiO2 = 0.01

−f ′′(0)
ϕSiO2 = 0.5

−g′′(0)
ϕSiO2 = 0.5

1 0.5 0.5 −0.8147 0.4073 −0.6732 0.3366

3 0.5 0.5 −1.1024 0.5512 −0.8468 0.4234

∞ 0.5 0.5 −1.3792 0.6896 −0.9999 0.4949

1 1.0 0.5 −1.0077 0.5038 −0.8067 0.4033

1 1.5 0.5 −1.1606 0.5803 −0.9194 0.4597

1 0.5 1.0 −1.0054 0.5027 −0.8538 0.4269

1 0.5 1.5 −1.1566 0.5783 −0.9999 0.4999

Table 6. −f ′′(0) and −g′′(0) values for a shrinking-stretching surface (d1 = −1, d2 = 1)
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Next, we study the in�uence of the non-Newtonian
(Casson) parameter Λ, the magnetic �eld M , the porosi-

ty K̃, and the expansion-shrinkage coe�cients (d1, d2)
on the local skin friction coe�cients −f ′′(0),−g′′(0)
for a ternary hybrid nano�uid TiO2-SiO2-Al2O3-H2O.
Numerical values of F and H for di�erent values of
Λ,M, K̃, ϕ2, d1, and d2 at c = 0.5, Vc = 1 were obtai-
ned from exact solutions (17) and presented in Tabs. 3-6.
From the results of Tables 3-6, it can be seen that at the
limit of the Newtonian �uid (Λ = ∞), the skin friction
coe�cients of the hybrid nano�uid in the x and y di-
rections are higher compared to the non-Newtonian �uid
for various types of surface deformation and in the case
of an increased volume fraction of less dense nanoparti-
cles ϕSiO2

= 0.5. Furthermore, increasing the magnetic

parameter M and the porosity parameter K̃ reduces the
�uid �ow rate, causing the absolute values of the skin
friction coe�cients in the x and y directions to increase.

V. CONCLUSIONS

This study has investigated for the �rst time the
analytical solution of the three-dimensional MHD �ow
of the Casson ternary hybrid nano�uid over a linearly
deformable surface with the e�ect of mass transpirati-
on. Several linear stretching/shrinking sheet variants (see
Fig. 1) in the lateral directions x and y are considered.
Analytical expressions for the velocity and skin friction

coe�cients in the lateral directions are obtained using
the �ow arrangement of a ternary hybrid nano�uid consi-
dered. Under the condition of injection mass transpirati-
on (Vc = 1), we investigated the impact of the Casson

parameter Λ, magnetic �eld M , and medium porosity K̃
on velocity pro�les f ′(η) and g′(η). The main results of
this study are as follows:

1. The absolute values of skin friction coe�cients in
the lateral directions x and y increase in accordance

with the growth of the parameters Λ,M, and K̃ for
various variants of the stretching/shrinking sheet.

2. For the cases of a stretching/stretching, stretchi-
ng/shrinking, and shrinking/stretching sheet, the
absolute values of the skin friction coe�cients
−f ′′(0) and −g′′(0) decrease with an increase in
the volume fraction of less dense nanoparticles.

3. In the case of a shrinking/shrinking sheet, the
absolute values of skin friction coe�cients −f ′′(0)
and −g′′(0) increase with an increase in the volume
fraction of less dense nanoparticles.

The results of this work can be applied to numerous
technological processes.
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Ó öié ðîáîòi ðîçãëÿíóòî òðèâèìiðíó êåññîíiâñüêó òå÷iþ ïîòðiéíî¨ ãiáðèäíî¨ íàíîðiäèíè ïî ïî-
ðèñòié ïîâåðõíi, ùî ëiíiéíî ðîçòÿãó¹òüñÿ/ñòèñêà¹òüñÿ çà íàÿâíîñòi çîâíiøíüîãî ìàãíiòíîãî ïîëÿ.
Äåôîðìàöiþ ïîâåðõíi îïèñàíî ââåäåííÿì äâîõ ïàðàìåòðiâ ðîçòÿãóâàííÿ/ñòèñíåííÿ â ëàòåðàëüíèõ
íàïðÿìêàõ. Çà äîïîìîãîþ ïåðåòâîðåíü ïîäiáíîñòi áàçîâà ñèñòåìà íåëiíiéíèõ äèôåðåíöiéíèõ ðiâíÿíü
ó ÷àñòêîâèõ ïîõiäíèõ ïåðåòâîðþ¹òüñÿ íà ïðîñòi äèôåðåíöiéíi ðiâíÿííÿ. Îòðèìàíî òî÷íèé àíàëiòè-
÷íèé ðîçâ'ÿçîê öi¹¨ êðàéîâî¨ çàäà÷i. Äîêëàäíî ðîçãëÿíóòî âïëèâ ïàðàìåòðà Êåññîíà, ìàãíiòíîãî
ïîëÿ, ïîðèñòîñòi ñåðåäîâèùà òà ïàðàìåòðà ðîçòÿãóâàííÿ/ñòèñíåííÿ ç óðàõóâàííÿì òðàíñïiðàöi¨ ìà-
ñè íà ïðîôiëi øâèäêîñòi òà êîåôiöi¹íòè ïîâåðõíåâîãî òåðòÿ. Óñòàíîâëåíî, ùî ðåçóëüòàòè, îòðèìàíi â
äåÿêèõ îáìåæåíèõ âèïàäêàõ, ÷óäîâî óçãîäæóþòüñÿ ç íàÿâíèìè äàíèìè. Ó òàáëèöÿõ ïîäàíî íîâi ðå-
çóëüòàòè äëÿ êîåôiöi¹íòiâ ïîâåðõíåâîãî òåðòÿ â ëàòåðàëüíèõ íàïðÿìêàõ (x i y) äëÿ ðiçíèõ âàðiàíòiâ
äåôîðìàöi¨ ïîâåðõíi.

Êëþ÷îâi ñëîâà: ïîòiê Êåññîíà, ïîòðiéíèé ãiáðèäíèé íàíîôëþ¨ä, ìàñîâà òðàíñïiðàöiÿ, àíàëiòè-
÷íå ðiøåííÿ.
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