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The chaotic behavior of thermal convection in a nonuniformly rotating electrically conductive
�uid under the action of a constant vertical magnetic �eld B0 is studied. In the presence of verti-
cal temperature gradients ∇T0 and the thermo-electromotive force coe�cient ∇α, thermomagnetic
(TM) instability arises, leading to the generation of magnetic �elds. The magnetic �eldB1 excited by
the e�ect of the Biermann battery is directed perpendicular to the plane of the vectors ∇T0, ∇α, and
the gradient of temperature disturbances ∇T1. This magnetic �eld changes the heat transfer regime,
and due to the e�ects of convective heat transfer and Righi�Leduc, a positive feedback is established,
which leads to an increase in magnetic �eld disturbances. Using the truncated Galerkin method, a
nonlinear dynamic system of equations is obtained, which describes the processes of generation and
regeneration of the magnetic �eld. Numerical analysis of these equations showed the existence of
a regular, quasi-periodic, and chaotic behavior of magnetic �eld disturbances, accompanied by its
inversions. Applying the method of perturbation theory to the nonlinear dynamic system of equati-
ons, we obtained the Ginzburg�Landau equation for the weakly nonlinear stage of nonuniformly
rotating magnetic convection, taking into account TM e�ects. The solution of this equation showed
that the stationary level of the generated magnetic �elds increases with allowance for the in�uence
of the TM instability.
Key words: generation of magnetic �elds, thermomagnetic instability, chaotic behavior,

Ginzburg�Landau equation.
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I. INTRODUCTION

Recently, issues related to the physical nature
of reversals and variations of the geomagnetic �-
eld have been actively studied. Reversals or polarity
reversals of the Earth's magnetic �eld are con�rmed by
paleomagnetic and archeomagnetic data [1�3]. Braginsky
[4] noted that the average geomagnetic �eld �uctuates
over a period of the order of 103 years. Higher frequenci-
es in the spectra of the geomagnetic �eld have periods
of the order of 102 and shorter. Braginsky associated the
main reason for the manifestation of a discrete spectrum
of magnetic �eld variations with the excitation of MAC
waves due to the action of magnetic, Archimedean, and
Coriolis forces.
At present, the problem of the random nature of

inversions is covered from two points of view. The �rst is
the presence of an internal mechanism of chaotic inversi-
on that does not require the involvement of external
factors. One of such models is the convective dynamo
theory, in which the magnetic �eld is generated due
to the convective currents of the conducting medium
[5]. Numerical calculations carried out in [6] perfectly
re�ected the dipole morphology of the Earth's magnetic
�eld and its chaotic inversions. The electromechanical
model of terrestrial magnetism proposed by Rikitake [7]
can be attributed to the same category. The study of Ri-
kitake's dynamic system of equations was also used to
explain the chaotic inversion of the geomagnetic �eld [8�
11]. In the papers [12, 13], a modi�ed system of Rikitake

equations was studied, taking friction into account, and
the possibility of magnetic �eld reversals was shown. At
the same time, [12] states that after chaotic behavior, the
system goes into a stable mode. According to theauthors
of [12] , such a regime can describe superchrons in the
geomagnetic �eld reversal.
The second point of view is related to the introducti-

on of a random factor, for example, by adding random
noise to the α-e�ect. As shown by numerical calculati-
ons (see [14] and references therein), such a model is
also capable of reproducing a chaotic reversal of the
polarity of the geomagnetic �eld. In our opinion, the
introduction of external random factors for modeling
the chaotic reversal of the magnetic �eld gives the
description a phenomenological character. Therefore, in
our work, we will adhere to the �rst concept. The
object of our research is a nonlinear system of di-
�erential equations that describes non-uniformly rotat-
ing magnetic convection in an electrically conductive li-
quid, taking into account thermomagnetic phenomena.
Interest in thermomagnetic phenomena in electrically

conductive media arose in connection with the problem
of the origin of �seed� (or initial) magnetic �elds [15].
In this case, it is not always right to assume that
only weak seed �elds arise, which are necessary to turn
on the dynamo. However, as noted in [16], magnetic
�elds of the Earth and planets can be created by
thermoelectric currents that �ow in a highly conductive
region inside the planet. In this case, by analogy with
the Biermann�Schl�uter battery e�ect [17], due to the
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non-parallelism of the temperature gradients∇T and the
thermo-electromotive force coe�cient ∇α, a magnetic
�eld ∂B1/∂t ≈ [∇T × ∇α]. On the other hand, as
shown in [18], and under the condition [∇T0 × ∇α] =
0, it is also possible to generate a magnetic �eld due
to the development of thermomagnetic (TM) instabi-
lity. Initially, TM instability was proposed to explain
the spontaneous generation of strong magnetic �elds (∼
106G) in an inhomogeneous laser plasma [19�21] in negli-
gibly short times ∼ 10−9sec. A necessary condition for
the development of TM instability is the inhomogenei-
ty and nonisothermality of the plasma. The physical
mechanism of this instability is as follows. Temperature
perturbations T1, acting in a direction di�erent from the
initial plasma inhomogeneity, lead to the excitation of
a magnetic �eld due to the �battery� e�ect ∂B1/∂t ≈
[∇T1 × ∇n0]. The magnetic �eld, in turn, a�ects the
electronic thermal conductivity and changes the heat
transfer mode. The emerging heat �ux supplies energy to
the region with elevated temperatures, thus contributing
to the growth of initial perturbations.

Fig. 1. a) Scheme of shear �ow in rotating �ows; b) Cartesi-
an approximation of the problem for nonuniformly rotat-
ing magnetoconvection. The nonuniform rotation in a local
Cartesian coordinate system consists of a rotation with a
constant angular velocity Ω0 and a shear velocity U0 =

−qΩ0Xey (q = −d lnΩ/d lnR)

Astrophysical applications of the TM instability are
covered in detail in the works of Dolginov [22], Urpin
et al. [23], Urpin [24, 25], where an explanation is gi-
ven for the occurrence of strong magnetic �elds in the
nuclei of white dwarfs, binary systems, and neutron stars.
Thermomagnetic instabilities in a magnetized rotating
plasma were studied by Montani et al. [26], where it
was shown that thermomagnetic and magnetorotational
phenomena in accretion discs contribute to the transfer
of angular momentum.

The purpose of this work is to study the chaotic
behavior of magnetic �elds generated by TM instabili-
ty in an inhomogeneously rotating layer of an electri-
cally conductive �uid (plasma) in the presence of an
external constant magnetic �eld B0∥OZ, collinear gradi-
ents of temperature ∇T0 = −ez(dT0/dz), and a thermo-
electromotive force coe�cient ∇α = ez(dα/dz). The
chaotic behavior of convection has been intensively
studied in rotating �uid layers [27]-[28], and also in
conducting media rotating with a magnetic �eld [29].
However, these papers did not consider the dynami-
cs of the magnetic �eld itself, which corresponds to
the non-inductive approximation. Such problems are
more important for technological applications such as
crystal growth, solidi�cation chemical processes, centri-
fugal casting of metals, etc. than for astrophysical and
geophysical problems.

II. BASIC EQUATIONS AND STATEMENT OF
THE PROBLEM

Let us consider the physical mechanism of the
generation of magnetic �elds by TM-instability involv-
ing the e�ects associated with the inhomogeneity of the
speci�c thermoelectric power and �magnetization� of the
heat �ux. The geometry of the problem is shown in Fig. 1.
A higher temperature, Td, is maintained on the lower
plane of the layer than on the upper plane, Tu: Td > Tu
� heating from below. The thermo-electromotive force
coe�cient on the lower (�hot�) αd plane is less than on
the upper (�cold�) αu: αd < αu. Such a situation is
quite possible if we take into account the temperature
dependence of the thermo-electromotive force coe�cient
α ∼ ψ/T0 (ψ � chemical potential) [30]. The spatially
inhomogeneous distribution of T0(z) and α(z) inside the
layer can be represented as a linear dependence on z:

T0(z) = Td − ∆T

h
· z, ∆T = Td − Tu,

α(z) = αd +
∆α

h
· z, ∆α = αu − αd.

Let the temperature di�erence at the layer boundaries
in the gravity �eld g lead to a violation of mechanical
equilibrium in the system, in which convective instabili-
ty develops and convective cells are formed. Temperature
perturbations acting in the transverse direction on the
initial inhomogeneity lead to the appearance of an eddy
thermal current due to the di�erence in the values of
the thermo-electromotive force coe�cient ∆α(z) at the
layer boundaries. This current creates perturbations in
the Y -direction of magnetic �eld B1, which will a�ect
the heat transfer mode. The excited magnetic �eld B1

creates heat �uxes directed perpendicular to the �-
eld itself and the temperature gradient. Thus, positive
feedback is established: the newly emerging heat �uxes
create a vortex of thermoelectric power, which enhances
the perturbations of the magnetic �eld B1. The direction
of the external magnetic �eld B0 coincides with the axis
of rotation of the �uid Ω∥OZ (see Fig. 1).
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In our earlier research [18], the evolution equations for
perturbations in the local Cartesian coordinate system

were discovered. These equations are expressed in di-
mensionless variables and read as follows:

(
∂

∂t
−∇2

)
∇2ψ +

√
Ta
∂v

∂z
− PrPm−1 Q

∂

∂z
∇2ϕ− Ra

∂θ

∂x
= PrPm−1Q · J(ϕ,∇2ϕ)− Pr−1 · J(ψ,∇2ψ),

(
∂

∂t
−∇2

)
v −

√
Ta(1 + Ro)

∂ψ

∂z
− PrPm−1Q

∂ṽ

∂z
= PrPm−1Q · J(ϕ, ṽ)− Pr−1 · J(ψ, v),

(
∂

∂t
− Pm−1∇2

)
ϕ− Pr−1 ∂ψ

∂z
= −Pr−1J(ψ, ϕ), (1)

(
∂

∂t
− Pm−1∇2

)
ṽ − Pr−1 ∂v

∂z
+ Ro

√
Ta
∂ϕ

∂z
− Pm−1Rα

∂θ

∂x
= Pr−1(J(ϕ, v)− J(ψ, ṽ)),

(
Pr

∂

∂t
−∇2

)
θ − ∂ψ

∂x
+ qα

∂ṽ

∂x
= −J(ψ, θ)− q(1)α θ · ∂ṽ

∂x
+ q(2)α J(θ, ṽ),

where

J(a, b) =
∂a

∂X

∂b

∂Z
− ∂a

∂Z

∂b

∂X

are the Jacobian or Poisson brackets J(a, b) ≡ {a, b}, ψ
is the hydrodynamic stream function, ϕ is the magnetic
stream function, θ is a temperature perturbation, v and
ṽ are velocity and magnetic �eld perturbations for the Y -
component. Pr = ν/χ is the Prandtl number, Pm = ν/η

is the Prandtl magnetic number, Ta = 4Ω0
2h4

ν2 is the
Taylor number, Ha = B0h√

ρ0µνη
is the Hartman number,

Ra = gβT (∆T )h3

νχ is the Rayleigh number, Rα = ∆α∆T
ηB0

is the thermoelectromotive force number. The dimensi-
onless parameters

qα =
αT0B0

ρ0cpµχ(∆T )

[(
µL
α

+ 1

)
∆T

T0
+

∆α

α

]
,

q(1)α =
∆αB0

ρ0cpµχ
,

q(2)α =
αB0

ρ0cpµχ

(
µL
α

+ 1

)
are related to the in�uence of the thermopower e�ect
and the Righi�Leduc e�ect on the heat transfer process.
The system of equations (1) is supplemented with the
following boundary conditions:

ψ
∣∣∣
z=0,h

= ∇2ψ
∣∣∣
z=0,h

=
dv

dz

∣∣∣
z=0,h

= ṽ
∣∣∣
z=0,h

= 0,

dϕ

dz

∣∣∣
z=0,h

= θ
∣∣∣
z=0,h

= 0. (2)

Without taking TM e�ects into account, the system of
equations (1) was used to study weakly nonlinear and
chaotic convection regimes in an inhomogeneously rotat-
ing plasma in an axial (vertical) magnetic �eld [31�33].

III. A NONLINEAR SYSTEM OF
DIFFERENTIAL EQUATIONS FOR A

CONVECTIVE TM DYNAMO

One of the most e�ective methods for studying
hydrodynamic instability is the Galerkin method (see,
for example, [34]). The application of this method to
the equations of hydrodynamics makes it possible to
obtain a wide variety of di�erent nonlinear dynamical
systems of varying degrees of complexity [35]. Using the
truncated expansion of Galerkin, Lorenz [36] obtained
a dynamical system of equations with a small number
of internal parameters for modeling free convection in
the atmosphere (these are known as the Lorenz equati-
ons). Following [36], we apply the truncated expansion of
Galerkin to the study of the weakly nonlinear stage of the
development of convective instability described by the
equations (1). Then we can represent all perturbations
in the equations (1) in the form of a Fourier expansion
of the following form:

ψ(x, z, t) = A1(t) sin(kx) sin(πz),

v(x, z, t) = V1(t) sin(kx) cos(πz),

ϕ(x, z, t) = B1(t) sin(kx) cos(πz), (3)

ṽ(x, z, t) =W1(t) sin(kx) sin(πz),

θ(x, y, t) = C1(t) cos(kx) sin(πz) + C2(t) sin(2πz),

where k is a dimensionless wave number; A1, V1, B1,W1,
C1, and C2 are the disturbance amplitudes. Substitut-
ing the expansions (3) into the equations (1), after
orthogonalization, we obtain the evolution equations for
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the disturbance amplitudes:

∂A1

∂t̃
= −A1 −

π
√
Ta
a4

· V1 −
πQPr
a2Pm

·B1 +
kRa
a4

· C1,

∂V1

∂t̃
= −V1 +

π
√
Ta
a2

(1 + Ro) ·A1 +
πQPr
a2Pm

·W1,

Pm
∂B1

∂t̃
= −B1 +

πPm
a2Pr

·A1, (4)

Pm
∂W1

∂t̃
= −W1 −

πPm
a2Pr

· V1 +
πPmRo

√
Ta

a2
·B1

−kRα

a2
· C1,

Pr
∂C1

∂t̃
= −C1 +

k

a2
·A1 +

πk

a2
·A1C2 −

kqα
a2

·W1

+
πkq

(2)
α

a2
·W1C2,

Pr
∂C2

∂t̃
= −4π2

a2
· C2 −

πk

2a2
·A1C1 −

πkq
(2)
α

2a2
·W1C1,

where a =
√
k2 + π2 is the total wavenumber and t̃ = a2t

is the reduced time. The system of ordinary di�erential
equations (4) is a low-order Fourier expansion model, but
it can reproduce convective processes qualitatively in a
nonlinear system of equations (1). For convenience, we
introduce the following notation:

R =
k2Ra
a6

, T =
π2

√
Ta

a6
, H =

π2

a4
QPr
Pm

, G =
k2Rα

π2Pm
,

q1 =
π2qα
a4

, q2 =
π2q

(2)
α

a4
, b =

4π2

a2
, (5)

and rescale the amplitudes A1, V1, B1,W1, C1, C2 in the
form

X(t̃) =
kπ

a2
√
2
A1(t̃), V (t̃) =

kV1(t̃)√
2

,

U(t̃) =
kB1(t̃)√

2
, W (t̃) =

a2k

π
√
2
W1(t̃),

Y (t̃) =
πC1(t̃)√

2
, Z(t̃) = −πC2(t̃).

Then the equations (4) take the form of a nonlinear
dynamic system of equations:

Ẋ = −X + RY − TV −HU

V̇ = −V +HW +
√
Ta(1 + Ro)X

U̇ = −Pm−1U + Pr−1X

Ẇ = −Pm−1W − Pr−1V + Ro
√
TaU −GY

Ẏ = Pr−1(−Y +X −XZ − q1W − q2WZ)

Ż = Pr−1(−γZ +XY + q2WY ),

(6)

where the dot (·) on the symbol indicates the di�erenti-
ation with respect to time t̃. In the limiting case, when
there are no TM e�ects (q1 = q2 = G = 0), the
equations (6) go over to the Lorenz equations for the
six-dimensional (6D) phase space, which were studied
numerically in [31]. The system of nonlinear equations
obtained by us (6) depends on a large number of di-
mensionless parameters (11 parameters). For this reason,
it must have a huge variety of behavior modes, and all
possible transitions to chaos can be realized in it, depend-
ing on the range of change of various dimensionless
parameters. In contrast to [31], the last three equations
in the system (6) describe the generation and regenerati-
on of a W -component (or toroidal component) magnetic
�eld. A similar process of self-excitation of the magnetic
�eld is observed in Rikitake's well-known electromechani-
cal model [7], which is used to explain the chaotic inversi-
on of the Earth's magnetic �eld [8]. Therefore, the system
of equations (6) can be attributed to the dynamic model
of a nonlinear convective TM dynamo.
Note that, in contrast to the Lorenz equations and the

classical Rikitake dynamo system, we have obtained non-
linear dynamic equations of a 6D dimension (6) with four
quadratic nonlinearities.

IV. STABILITY ANALYSIS

Qualitative and numerical analyses of the dynamic
system of equations (6) make it possible to determine
the type of stationary points and the conditions for the
emergence of a chaotic regime.

A. Homogeneity and symmetry

The trivial solution (6), corresponding to the absence
of convection, leads to the appearance of a special �xed
point:

O(X,V, U,W, Y, Z) = O(0, 0, 0, 0, 0, 0),

which does not depend on the values of the parameters
R,T,Ta,H,Pm,Pr, b. Given a coordinate transformation
T as follows

T(X,V, U,W, Y, Z) → (−X,−V,−U,−W,−Y, Z).

It is clear that each trajectory is symmetrical with
respect to the Z-axis. That means system (6) is invariant
for the given transformation T.

B. Dissipativity

The divergence of system (6) can be calculated as

divΦ =
∂Ẋ

∂X
+
∂V̇

∂V
+
∂U̇

∂U
+
∂Ẇ

∂W
+
∂Ẏ

∂Y
+
∂Ż

∂Z

= −2(1 + Pm−1)− Pr−1(1 + γ) < 0.
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As a result, it follows that the system (6) is dissipative,
since the divergence of the vector �eld is negative. Due
to dissipation, the phase volume shrinks:

Φ(t) = Φ(0) exp
[ (

−2(1 + Pm−1)− Pr−1(1 + γ)
)
t
]
.

Consequently, in the phase space of dissipative systems,
attracting sets can arise � attractors.

C. Equilibrium points

Equating the left sides of equations (6) to zero, we get
three equilibrium states:

O1(X1, V1, U1,W1, Y1, Z1), O2(X2, V2, U2,W2, Y2, Z2), O3(X3, V3, U3,W3, Y3, Z3). (7)

After computation, we obtain the following equilibrium points:

(X1, V1, U1,W1, Y1, Z1) = (0, 0, 0, 0, 0, 0),

(X2, X3) = ±R+ r1
rr̃

·

√
γ

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

(V2, V3) = ±

[√
Ta

(
1 + Ro+HRoPm2Pr−1

)
(R+ r1)− rHGPm

r r̃(1 +HPmPr−1)

]√
γ

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

(W2,W3) = ±

[√
TaPmPr−1 (RoPm− Ro− 1) (R+ r1)− rGPm

r r̃(1 +HPmPr−1)

]√
γ

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

(U2, U3) = ±Pm(R+ r1)

rr̃Pr
·

√
γ

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

(Y2, Y3) = ±1

r̃

√
γ

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

(Z2, Z3) =
1

r̃

(
R+ r1
r

· (1 + q1r2) + q1r3 − 1

)
,

where

r = 1 +
Pm
Pr

H+ T
√
Ta ·

1 + Ro
(
1 + Pm2

Pr H
)

1 + Pm
Pr H

,

r1 =
THGPm

1 +HPmPr−1 ,

r2 =

√
TaPmPr−1 (1 + Ro(1− Pm))

1 +HPmPr−1 ,

r3 =
GPm

1 +HPmPr−1 , r̃ =
R+ r1
r

· (1− q2r2)− q2r3.

If the Rayleigh parameter

R =
r(1− q1r3)
1 + q1r2

− r1 = Rcr,

there is only one �xed point O1 in a system. For Rayleigh
parameters R > Rcr that are two more �xed points O2

and O3, which are symmetric to each other. For Raylei-
gh parameters R < Rcr the coordinates O2 and O3 are
imaginary.

D. Stability of the equilibrium points

We proceed to the study of stability, found the equili-
brium states (7). To do this, we linearize the system of
equations (6) in a small area of �xed points. Representing
all variables in the form
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(X,V, U,W, Y, Z)
T
= (X0, V0, U0,W0, Y0, Z0)

T
+ (X ′, V ′, U ′,W ′, Y ′, Z ′)

T · eλt̃

we obtain a linear algebraic system:

(λ+ 1)X ′ = RY ′ − TV ′ −HU ′

(λ+ 1)V ′ = HW ′ +
√
Ta(1 + Ro)X ′

(λ+ Pm−1)U ′ = Pr−1X ′

(λ+ Pm−1)W ′ = −Pr−1V ′ + Ro
√
TaU ′ −GY ′

(λ+ Pr−1)Y ′ = Pr−1(X ′ −X0Z
′ −X ′Z0 − q1W

′ − q2W0Z
′ − q2Z0W

′)

(λ+ γPr−1)Z ′ = Pr−1(X0Y
′ +X ′Y0 + q2W0Y

′ + q2Y0W
′)

(8)

R λ1 λ2 λ3 λ4 λ5 λ6

1 −1.013776
+i1.213922

−0.029541 −0.266666 −0.487147 −1.555757 −1.013776
−i1.213922

8 0.334085 −1.098758
+i1.094230

−0.266666 −0.601432 −1.635135 −1.098758
−i1.094230

34.004 1.205252 −1.204008
+i0.765665

−0.266666 −0.744572 −2.152663 −1.204008
−i0.765665

34.005 1.205279 −1.204007
+i0.765656

−0.266666 −0.744575 −2.152688 −1.204007
−i0.765656

53.93 1.683372 −1.172021
+i0.648537

−0.266666 −0.794802 −2.644527 −1.172021
−i0.648537

58 1.768589 −1.165177
+i0.634200

−0.266666 −0.802489 −2.735746 −1.165177
−i0.634200

290 4.775845 −1.046055
+i0.486160

−0.266666 −0.938911 −5.844824 −1.046055
−i0.486160

Table 1. Eigenvalues λ1,2,3,4,5,6 for the �xed point O1, calculated for di�erent values of the parameter R.

Here the index 0 denotes �xed points, the prime ′ denotes small perturbations, and λ is the increase increment.
The modes of stability or instability are determined by the signs of the real parts of the eigenvalues of the

determinant of the system of equations (8). The eigenvalues of the system of equations (8) λ are found from the
solution of the characteristic equation obtained by equating the determinant to zero, i.e.

M0 ·
(
M0 ·M2 + RPr−1(λ+ Pm−1) ·M3

)
+ T

√
Ta ·M1 ·M2

−GPr−1 ·M4 − RPr−2 ·M5 + (λ+ Pm−1)GHTPr−1 ·M3 = 0, (9)

where the following notation is entered

M0 = (λ+ 1)(λ+ Pm−1) +HPr−1, M1 = (1 + Ro)(λ+ Pm−1)2 +HRoPr−1,

M2 = (λ+ Pr−1)(λ+ γPr−1) + (X0 + q2W0)
2Pr−2,

M3 = (X0 + q2W0)Y0Pr
−1 − (λ+ γPr−1)(1− Z0),

M4 = [(λ+ 1)2(λ+ Pm−1) + T
√
Ta(1 + Ro)(λ+ Pm−1) +HPr−1(λ+ 1)] · M̃,

M5 = [
√
Ta(1 + Ro)(λ+ Pm−1)− (λ+ 1)Ro] · M̃,

M̃ = Pr−1(X0 + q2W0)q2Y0 + (q1 + q2Z0)(λ+ γPr−1).
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Here W0 = (W1,W2,W3), X0 = (X1, X2, X3), Y0 =
(Y1, Y2, Y3), Z0 = (Z1, Z2, Z3) are the coordinates of
�xed points. If we substitute the values of the three
equilibrium states (7) into equation (9), we obtain the
characteristic equations for the eigenvalues λ in each of
these states. Moreover, for the points O2 and O3 the
characteristic equations coincide due to the symmetry.
The characteristic equation (9) is reduced to the

algebraic equation of the sixth degree:

P (λ) ≡ a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3

+ a4λ
2 + a5λ+ a6 = 0,

where a0 = 1 > 0. We do not give the explicit form
of the real coe�cients a1, a2, a3, a4, a5, a6 due to a very
cumbersome form. There exist methods that enable the
assessment of the system stability without explicitly solv-
ing its characteristic equation. One of such methods
is the Routh�Hurwitz or Li�enard�Schipar [37] criteri-
on, which provides the necessary and su�cient condi-
tions for the stability of the system. In the last criterion,
the number of determinant inequalities is approximately
half as large as in the Routh�Hurwitz conditions, so it
is reasonable to use it. The criterion makes it possible
to determine whether all the roots of the characteristic
equation have negative real parts, indicating the stabili-
ty of the system. According to the Li�enard�Schipar cri-
terion, for the polynomial P (λ) to have all roots with
negative real parts, it is necessary and su�cient that the
following conditions are satis�ed:

1. The coe�cients of the polynomial must all be real
numbers.

2. All coe�cients of the polynomial P (λ) are positive:
an > 0, n = 1, 2, . . . 6. The Hurwitz determinant is
constructed from the coe�cients of the polynomial
P (λ) [37]:

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · 0

a0 a2 a4 · · · 0

0 a1 a3 · · · 0

0 a0 a2 · · · 0

...
...

...
...

...
· · · · · · · · · · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. All the principal minors of the Hurwitz determi-
nant must be positive: ∆n−1 > 0, ∆n−3 > 0 . . .

If all these conditions are met, then the polynomial has
all its roots with negative real parts, indicating the stabi-
lity of the system. Using the Li�enard�Schipar algorithm,
we get the necessary and su�cient conditions for stabi-
lity:

an > 0, n = 1, 2, . . . 6, ∆3 > 0, ∆5 > 0.

Obviously, when the Li�enard�Schipar criterion is sati-
s�ed, the �xed points are stable, and their equilibrium
positions are classi�ed as stable nodes.

R λ1 λ2 λ3 λ4 λ5 λ6

1 0.048075 −1.020790
+i1.207059

−0.326499 −0.487219 −1.559443 −1.020790
−i1.207059

8 0.545952 −1.138779
+i1.047646

−0.344958 −0.614024 −1.676077 −1.138779
−i1.047646

34.004 1.644357 −1.195875
+i0.673213

−0.349129 −0.767817 −2.502325 −1.195875
−i0.673213

34.005 1.644390 −1.195873
+i0.673206

−0.349129 −0.767820 −2.502360 −1.195873
−i0.673206

53.93 2.226098 −1.149037
+i0.585517

−0.349653 −0.818773 −3.126262 −1.149037
−i0.585517

58 2.331271 −1.141455
+i0.575978

−0.349600 −0.827007 −3.238417 −1.141455
−i0.575978

290 5.966096 −1.036574
+i0.473629

−0.350281 −0.951500 −6.957833 −1.036574
−i0.473629

Table 2. Eigenvalues λ1,2,3,4,5,6 for the �xed point O2,3, calculated for di�erent values of the parameter R.

To perform a numerical analysis of the equation (9),
we choose the values of the parameter b and the Prandtl
number Pr as is customary in the Lorenz equations [38]:
b = 8/3, Pr = 10. The rotation parameter is assumed
to be equal to T = 0.1 as in [28], where the emergence
of a chaotic regime in a uniformly rotating �uid layer
was studied. The parameter value T = 0.1 gives us the
Taylor number Ta = 1080. We consider the magnetic
Prandtl number to be equal to Pm = 1. We set the
parameter for the external axial magnetic �eld equal to
H = 2, which corresponds to the Chandrasekhar number

Q ≈ 4.45. This order of magnitude of the magnetic �eld
was used in [29] to study the e�ect of the magnetic �eld
on the chaotic behavior of convection. The generation
parameters G, q1, q2 taking into account b = 8/3, and
Pm = 1 take the following form:

G = 0.5Rα, q1 ≈ 0.045qα, q2 ≈ 0.045q(2)α (10)

Considering the case of a low-temperature electrically
conductive medium, the Righi�Leduc e�ect in the
expressions for qα and q

(2)
α can be neglected µL ≪ α.
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As a result, qα and q(2)α are respectively equal:

qα = q(2)α

(
1 +

∆α/α

∆T/T0

)
, q(2)α ≈ αB0

ρ0cpµχ
=
αB0

µκ
. (11)

For numerical estimates of the di�erence between the
thermo-electromotive force coe�cient ∆α ∼= 10−6V/K
(α ∼= 10−4)V/K and the temperature ∆T ∼= 2000 To
(T0 ∼= 4000)K we can assume qα ≈ q

(2)
α . The de�nition of

the G parameter (see (III)) shows that G depends on ∆α
and ∆T . Therefore, �xing the di�erence in the thermo-
electromotive force coe�cient ∆α, we will analyze the
dispersion equation (9) and the system of equations (6)
for di�erent heating conditions, i.e. for di�erent values of
the Rayleigh parameter R. For a numerical estimate of
q
(2)
α , we use the values of physical quantities for molten
iron [39], i.e. we take the thermal conductivity coe�cient
κ = 39W/m·K (χ = κ/(ρ0cp)), the coe�cient permeabi-
lity µ = 4π · 10−7 V·s/A·m, thermo-electromotive force
coe�cient α ≈ 2.2 · 10−5V /K and the magnitude of

the external magnetic �eld B0 = 10−1T. As a result of
substituting these quantities into the formula (11), we
�nd q

(2)
α ≈ 0.044 or q1 ≈ q2 ≈ 0.002. The generation

parameter is estimated to be G ≈ 0.01R if

27π4

8

∆α

α

cpχ

gβT η2h2
∼= 10−1.

As a result, selecting the parameter values Pm = 1, Pr =
10, H = 2, T = 0.1, and Ta = 1080, b = 8/3, q1 =
q2 = 0.002, G ≈ 0.01R, we calculate the eigenvalues
λi for the �xed point O1 in the case of the Keplerian
rotation pro�le Ro = −3/4 depending on the changes in
the Rayleigh parameter R. These results are shown in
Tab. 1, in the case of the Keplerian rotation pro�le Ro =
−3/4 in Tab. 2. This shows that for negative Reλ < 0 the
trajectories enter the point O1, i.e. correspond to stable
eigen directions, and for positive Reλ > 0 the trajectories
leave the point O1, and hence correspond to unstable
eigen directions. The steady state of convection (λ = 0)
corresponds to the critical value of the parameter R2cr,
which turns out to be equal to the �rst critical value:

R1cr =
1 +HPmPr−1 − q1GPm

1 +HPmPr−1 + q1PmPr
−1

√
Ta(1 + Ro(1− Pm))

· r − r1. (12)

We note that the Rayleigh number depends on the
temperature di�erence at the boundaries of the electri-
cally conductive �uid layer. By changing the heating
conditions at the boundaries of the �uid layer (the
Rayleigh number), it is possible to study various modes
of the generation of magnetic �elds. Next, numeri-
cal solutions of the equations (6) are presented: phase
portraits and time diagrams for the Y -component of the
generated magnetic �eld for various values of R given in
Table. 1�2.

V. DISCUSSION OF NUMERICAL RESULTS

A. Analysis of phase trajectories of regular and
chaotic behavior

Let us write system (6) in a form more convenient for
modeling:

ẋ1 = −x1 + Rx2 − 2x4 − 0.1x5

ẋ2=
1
10 (−x2+x1− x1x3− 0.002x6− 0.002x6x3)

ẋ3 = 1
10

(
− 8

3x3 + x1x2 + 0.002x6x2
)

ẋ4 = −x4 + 1
10x1

ẋ5 = −x5 + 8.21x1 + 2x6

ẋ6 = −x6 − 0.01Rx2 − 24.65x4 − 1
10x5,

(13)

where new notation for variables was introduced: x1 =
X,x2 = Y, x3 = Z, x4 = U, x5 = V, x6 =W . We used the

values of �xed parameters

H = 2, Ta = 1080, T = 0.1, Pm = 1, Pr = 10,

γ = 8/3, Ro = −3/4, q1 = q2 = 0.002, G = 0.01R

in the equations (6). In this section, we analyze numerical
studies of the nonlinear system of equations (13) depend-
ing on the variations of the Rayleigh parameter R in the
Mathematica computer environment.
Figure 2,a shows the case for R = 1 < R1cr ≈ 1.463.

We see that the initial perturbation of the magnetic �-
eld decays (Fig. 2, b). As it is shown in Fig. 2,a�2,b the
initial system state reaches the origin (the point O1),
which is the local and global attractor simultaneously.
For number R1cr = 1.463 < R = 8, there is loss of stabi-
lity, and we observe the appearance of spiral trajectories
(Fig. 2,c�2,d) in the phase plane x1x6, which will wind up
around �xed point O2 while the parameter R is increas-
ing. It is noticeable already for the value R = 34.004 (see
Fig. 2,e). Thus, the perturbed magnetic �eld performs
oscillations with damped amplitude (see Fig. 2,f). In this
case, eigenvalues λi are complex-valued with a negative
real part, and we classify the stationary point as a stable
focus. The coordinates of the �xed point O2 in the x1x6
plane can be calculated analytically using (7). For the
Rayleigh parameter R = 34.004, we get the focus coordi-
nates O2(x1, x6) = (7.78,−21.39), which coincide with
the focus coordinates found numerically (see Fig. 2,e ).
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Fig. 2. a), c), e), g), i), k) projections of phase trajectories in the x1x6 plane upon the variation of parameter R;
b), d), f), h), j), l) time dependences of magnetic component amplitude variations U(t̃)

An insigni�cant increase in the Rayleigh parameter
from R = 34.004 to R = 34.005 (Fig. 2,g) leads
to a change in the sign (or direction) of the oscillat-
ing perturbed magnetic �eld, which also fades out (see
Fig. 2h). Here the phase trajectories wind in a spi-

ral around the �xed point O3, which we also classi-
fy as a stable focus. The focus coordinates for the
Rayleigh parameter R = 34.005 obtained analytically
O3(x1, x6) = (−7.78, 21.39) coincide with the focus
coordinates found numerically (see Fig. 2,g).
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Fig. 3. Projections of the phase trajectory in the plane x1x6 and the time diagram of variations in the amplitude of the
magnetic component x6(t̃) at R = 290

We can see the pre-chaotic state for the parameter
R = 53.98 in �gures 2,i and 2,j. Here the solution seems
chaotic, but then it stabilizes to oscillatory and �nally
tends to a stationary state. This behavior of the system
is called metastable chaos. As can be seen from Fig. 2j,
chaotic behavior lasts approximately up to t = 660,
and then a transition to damped oscillations occurs. Fi-
gures 2,k and 2,l show the case of irregular oscillations
with aperiodic changes in the amplitude and direction
(inversion) of the generated magnetic �eld at R = 58.
A further increase in parameter R facilitates the evoluti-
on of chaotic behavior since the positive characteristic
number λ1 grows (see Tab. 1 and Tab. 2). As can be
seen in the phase portrait and time diagram in Fig. 3 wi-
th R = 290, the amplitude of the chaotic magnetic �eld
will also increase. The trajectories in Fig. 3 demonstrate
highly developed chaos compared to the chaotic behavior
at R = 58. Strange attractors for R = 58 and R = 290
belong to the class of self-excited attractors since the
equilibrium points O1 and Q2,3 are unstable.

B. Bifurcation diagrams, Lyapunov exponents and
Kaplan�Yorke dimension

Bifurcation diagrams for the x1, x2, x3, x4, x5, x6
components of the system of equations (13) are shown
in Fig. 4, from which one can see the appearance of
a periodic, quasi-periodic, and chaotic regime depend-
ing on the values of the Rayleigh number R. One of
the important criteria characterizing the chaotic behavi-
or of a nonlinear dynamical system is the spectrum of
Lyapunov exponents. With the help of the Lyapunov
exponents, the rate of convergence or divergence of
trajectories in the phase space is determined. The
presence of at least one positive value in the spectrum
of Lyapunov exponents indicates the presence of chaotic
oscillations in the system. The number of Lyapunov
exponents corresponds to the dimension of the phase

space of the nonlinear dynamical system. For our system
(13), the number of such indicators is six. We employ the
Benetinn algorithm for calculating Lyapunov exponents
[40, 41]. Following [42], we calculated the maximum
Lyapunov exponent for the system of equations (13) at
R = 290 and then used the Gram-Schmidt orthogonali-
zation to determine all Lyapunov exponents more preci-
sely:

L1 = 0.359648, L2 = 0.11627, L3 = −0.678572,

L4 = −0.835604, L5 = −1.45011, L6 = −1.87832.
(14)

If the spectrum of Lyapunov exponents has two posi-
tive Lyapunov exponents, then the system (13) exhi-
bits hyperchaotic behavior. The maximum Lyapunov
exponent of the new hyperchaotic dynamo system (13)
corresponds to the value L1max = 0.359648.Since L1 +
L2 + L3 + L4 + L5 + L6 = −4.366688 < 0, the
new hyperchaotic dynamo system (13) is dissipative.
In addition, the Kaplan�York dimension of the new
hyperchaotic dynamo system (13) is calculated using the
formula

DKY =M +
1

|LM+1|

M∑
i=1

Li, (15)

where M is the largest integer, for which

M∑
i=1

Li > 0,

M+1∑
i=1

Li < 0.

The Lyapunov dimension of this hyperchaotic attractor
using (15) is DKY ≈ 2.7013. Thus, we conclude that
the Lyapunov dimension of the new hyperchaotic system
(13) is fractional.
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Fig. 4. Bifurcation diagrams for the x1, x2, x3, x4, x5, x6 components of system (13) depending on the parameter R

C. Autocorrelation functions

An e�ective characteristic of a strongly chaotic behavi-
or is the autocorrelation function, which is de�ned as the
average over a certain time interval T (for T → ∞) of

the products xi taken at times t and t+ τ :

Kij(τ) = lim
T→∞

1

T

∫ ∞

0

xi(t)xj(t+τ)dτ, i = 1÷6, j = 1÷6.

In Fig. 5, plots of autocorrelation functions (di-
agonal elements) for components xi, i = 1, 2, 3, 4, 5, 6
are shown, where we see that autocorrelation functi-
ons tend exponentially to zero. This is one of the cri-
teria for dynamic chaos. On a logarithmic scale, the
exponential decay area for the autocorrelation functi-
ons K11,K22,K33,K44,K55,K66, is approximated by a
straight line (see Fig. 5,b,d,f,h,j,l).

VI. EQUATION OF FINITE AMPLITUDE FOR
STATIONARY CONVECTION

We obtain the nonlinear Ginzburg-Landau equation
(see Appendix) for the amplitude A1 by applying the

asymptotic method of perturbation theory to the system
of equations (6) with respect to a small parameter ϵ2 =
(Ra− Rac)/Rac ≪ 1:

A1
∂A1

∂τ
−A2A1 +A3A

3
1 = 0. (16)

This equation describes a weakly nonlinear stage of stati-
onary magnetic convection in a nonuniformly rotating
electrically conductive �uid, taking into account TM
e�ects. In the limiting case, when there are no TM e�ects
(qα = 0, Rα = 0), the equation (16) corresponds to the
known result [32]. The analytical solution of the equati-
on (16) with a known initial condition A0 = A1(0) has
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the form:

A1(τ) =
A0√

A3

A2
A2

0 +
(
1−A2

0
A3

A2

)
exp

(
− 2τA2

A1

) . (17)

The amplitude A1 can be used to calculate the value of
the generated Y -component (or toroidal) of the magnetic
�eld ṽ ∼= A1 ·Πα. For numerical calculations ṽ we use the
following values of magnetic convection: b = 8/3,Pm =
1,Pr = 10,Q = 4.45,T = 0.1,Ta = 1080, Rα =
0.02R, qα = 0.044. The initial amplitude is assumed to
be A0 = 0.7, and Ra2 ≈ Rac, which corresponds to
the supercriticality parameter ϵ smallness. Plots of the
magnetic �eld disturbance ṽ versus time τ in the absence

(dashed line) and presence (solid line) of TM e�ects are
shown in Fig. 6. Here, we can see that the growth of
magnetic �eld disturbances ṽ continues until a certain
time τ0, after which the magnetic �eld's stationary level
ṽmax is established. The amplitude of the stationary
magnetic �eld with TM e�ects is greater in this case than
without TM e�ects. Figure 6a-6b shows that with an
increase in the Rayleigh parameter R = 260 → R = 320
for the Keplerian rotation pro�le Ro = −3/4 the level of
the stationary magnetic �eld increases. We observe a si-
milar situation for the Rayleigh rotation pro�le Ro = −1
(see Fig. 6,c,d).
Thus, with an increase in temperature at the lower

boundary of the layer, an increase in the stationary level
of the generated magnetic �eld occurs at a �xed di-
�erence in the thermo-electromotive force coe�cient.
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Fig. 5. a), c), e), g), i), k) are plots of autocorrelation functions K11,K22,K33,K44,K55,K66 from time τ for R = 290; b), d),
f), h), j), l) are a linear dependence of autocorrelation functions K11,K22,K33,K44,K55,K66 on logarithmic scales of the time

interval τ for a strongly chaotic motion
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Fig. 6. Dependence of the amplitude ṽ(τ) of the generated magnetic �eld on the time τ . With TM e�ects taken into account
(solid line), the steady-state amplitude ṽ(τ) is larger than in the case without TM e�ects (dashed line). Plots a)-b) correspond
to the Rayleigh parameters R = 260 and R = 320 at Ro = −3/4, and plots c)-d) correspond to Rayleigh parameters R = 260

and R = 320 for Ro = −1

VII. CONCLUSIONS

In this research, we have derived a novel 6D
hyperchaotic system of nonlinear dynamic equati-
ons. These equations characterize the generation of
a magnetic �eld through thermomagnetic e�ects in a
nonuniformly rotating layer of an electrically conducti-
ve �uid in the presence of a constant vertical magnetic
�eld B0. The derivation of these equations follows an
approach similar to the Lorenz equations [36], employ-
ing a Fourier series expansion of minimum order to
represent the physical �elds. However, unlike the Lorenz
equations and the classical Rikitake dynamo system [7],
our equations involve four quadratic nonlinear terms in
a 6D dimensional space. Furthermore, the application
of the electromechanical model to problems related to
terrestrial magnetism has raised concerns among experts
in dynamo theory, as Rikitake's model is more similar
to an electric machine than a tool for describing the
MHD dynamo process [43]. The results obtained are
in good agreement with our previous works [31]-[33] on
the chaotic dynamics of nonuniformly rotating magnetic
convection, in which thermomagnetic instability was not
considered. In this work, for the �rst time, a theoreti-
cal model is constructed to describe the chaotic behavior
of the generated magnetic �eld based on the combined
action of the e�ects of convection, nonuniform rotation,
and inhomogeneity of the chemical composition of the
electrically conductive medium. The main results of this
work are as follows:

� A dynamic analysis of the stability of a new 6D
hyperchaotic system is carried out depending on
changes in the Rayleigh parameter R. For this
system, phase portraits are constructed, which
show the regimes of regular and chaotic behavior

of magnetic �eld disturbances for di�erent values
of the parameter R.

� It was demonstrated that chaotic variations might
emerge in the magnitude and direction (inversi-
on) of magnetic �eld disturbances. Therefore, the
resulting new 6D hyperchaotic system can be used
as an alternative to the Rikitake equations in
describing the inversions of the generated magnetic
�elds.

� An increase in the temperature di�erence
(parameter R) at the boundaries of a layer of a
nonuniformly rotating medium leads to an increase
in the amplitude of stationary perturbations of
the magnetic �eld.

� The stationary level of magnetic �eld disturbances
increases when TM phenomena are taken into
account for both Rayleigh (Ro = −1) and Kepleri-
an (Ro = −3/4) rotation pro�les.

Thus, various modes of regular and chaotic behavi-
or of excited magnetic �elds were discovered
under certain ratios of dimensionless parameters
b,R,Ro,Ta,T,H,Pm,Pr,G, q1, q2. Given the large
number of parameters, it can be assumed that most of
the currently known scenarios of the transition to chaos
are realized in this system of equations.
The results obtained in this work can be used not

only for the problem of terrestrial magnetism but also
for other astrophysical objects.
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APPENDIX

Derivation of the Ginzburg�Landau equation from the dynamic system of equations (6)

The Ginzburg�Landau equation is obtained from a nonlinear dynamic system of equations (6) in this section. All
perturbed quantities in the equations (6) can be represented as a series expansion in the small supercritical parameter
ϵ:

X(t̃) = ϵX1 + ϵ2X2 + ϵ3X3 + . . . , X(t̃) = [X,V, U,W, Y, Z]T

R = R0 + ϵ2R2 + . . . (18)

The amplitudes of the perturbed quantities depend only on the slow time τ̃ = ϵ2t̃. For the �rst order in ϵ, after
substituting the expansion (VII) into (6), we obtain a linear system of equations:

LX1 = 0, X1 = [X1, V1, U1,W1, Y1, Z1]
T, (19)

where matrix L has the form

L =



−1 −T −H 0 R0 0
√
Ta(1 + Ro) −1 0 H 0 0

Pr−1 0 −Pm−1 0 0 0

0 −Pr−1 Ro
√
Ta −Pm−1 −G 0

1 0 0 −q1 −1 0

0 0 0 0 0 −b


.

The solutions of the equations (19) with respect to the variable X1 are respectively equal to

V1 = Ξ ·X1, Ξ =

√
Ta(1 + Ro)(1− q1GPm) +HRo

√
TaPm

2

Pr −GHPm

1 +HPmPr−1 − q1GPm
,

U1 =
Pm
Pr

·X1, W1 = −Π ·X1, Π =
PmPr−1

√
Ta(1 + Ro(1− Pm)) +GPm

1 +HPmPr−1 − q1GPm
,

Y1 = Λ ·X1, Λ =
1 +HPmPr−1 + q1PmPr

−1
√
Ta(1 + Ro(1− Pm))

1 +HPmPr−1 − q1GPm
, Z1 = 0.

For the second order in ϵ, we have the following equation:

LX2 = [R21,R22,R23,R24,R25,R26]
T, X2 = [X2, V2, U2,W2, Y2, Z2]

T, (20)

where there are non-linear terms

R21 = 0, R22 = 0, R23 = 0, R24 = 0, R25 = X1Z1 + q2W1Z1, R26 = −X1Y1 − q2W1Y1.

Solutions of equations (20) look like:

V2 = Ξ ·X2, U2 =
Pm
Pr

·X2, W2 = −Π ·X2,

Y2 = X2 − q1W2, Z2 = Λ(1− q2 ·Π)
X2

1

b
.

Next, we proceed to equations of the third order in ϵ:

LX3 = [R31,R32,R33,R34,R35,R36]
T, X3 = [X3, V3, U3,W3, Y3, Z3]

T, (21)
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where

R31 =
∂X1

∂τ̃
− R2Y1, R32 =

∂V1
∂τ̃

, R33 =
∂U1

∂τ̃
, R34 =

∂W1

∂τ̃
,

R35 = Pr
∂Y1
∂τ̃

+X1Z2 +X2Z1 + q2W1Z2,

R36 =
∂Z1

∂τ̃
− Pr−1(X1Y2 +X2Y1 + q2W1Y2 + q2W2Y1).

The solvability condition (Fredholm's alternative) for nonlinear equations in the third order in ϵ is as follows:

5∑
j=1

R3jX
†
1 = 0, (22)

where

R31 = MKR31, R32 = KR0((R35 − q1PmR34 − q1Pm
2Ro

√
TaR33)(1 +HPmPr−1)

+ q1PmPr
−1(R32 +HPmR34 +HPm2Ro

√
TaR33)),

R33 = R36, R34 = −MKHR36,

R35 = MT((R32 +HPmR34 +HPm2Ro
√
TaR33)(1− q1GPm)

− GHPm(R35 − q1PmR34 − q1Pm
2Ro

√
TaR33)),

M = (1− q1Pm
2Pr−1Ro

√
Ta)(1 +HPmPr−1) + q1PmPr

−1 · P,

P =
√
Ta

(
1 + Ro+HRo

Pm2

Pr

)
,

K = (1− q1Pm
2Pr−1Ro

√
Ta)GHPm− (1− q1GPm) · P.

Elements of the matrix X†
1 = [X†

1 , Y
†
1 , Z

†
1 , U

†
1 , V

†
1 ]

T are solutions of the linear self-adjoint problem L †X†
1 = 0, where

the self-adjoint matrix L † is de�ned as

L † =



−MK R0MK 0 −HMK −TMK

R0MK R0KN 0 0 0

0 0 −γ 0 0

−HMK 0 0 −HPm−1 PrKM 0

−TMK 0 0 0 −TL


where

N = −(1 +HPmPr−1 − q1GPm), L = −N .

Finally, we derive the nonlinear Ginzburg�Landau equation for the amplitude A1(τ) from the equation (22):

A1
∂A1

∂τ
−A2A1 +A3A

3
1 = 0 (23)
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Using the de�nition for R,T,H, q1, q2,G, the coe�cients A1,2,3 take the following form:

A1 =
a2

Pr
+
k2cRac
a4

·

(
1 + qαΠα

(
1 + Pm

Pr

)
− qα

π2Pm3

a4Pr2
Ro

√
Ta

) (
a4 + π2Q

)
+ qα

πPm
a2Pr2

· δ

a4 + π2Q− qαRαk2c

− π2QPm
a2 Pr

− π
√
Ta

a6(a4 + π2Q− k2cqαRα)Pr

×
[
δ · (a4 − k2cqαRα)− πk2ca

2Q̃PrRα

(
1 + qαΠα

(
1 +

Pm
Pr

)
− qα

π2Pm3

a4Pr2
Ro

√
Ta

)]
,

δ =
πa2

√
Ta

a4 + π2Q− k2cqαRα
·
[
(1 + Ro)(a4 − k2cqαRα) + π2QPm(PmRo− 1)

]
− πa2k2cRαQ̃(1 + Pm)

a4 + π2Q− qαRαk2c
+
π3Pm2

a2
QRo

√
Ta, Q̃ = QPm−1Pr,

A2 =
k2cRa2
a2 Pr

(1 + qαΠα),

A3 =
k4cRac
8a4 Pr

· (1 + qαΠα)(1− q
(2)
α Πα)

2(a4 + π2Q)

a4 + π2Q− k2cqαRα
+Rα · π

2k4cQPm
−1

√
Ta(1 + qαΠα)(1− q

(2)
α Πα)

2

8a4(a4 + π2Q− k2cqαRα)
,

where

Πα =
π2PmPr−1

√
Ta(1 + Ro(1− Pm)) + k2cRα

a4 + π2Q− k2cqαRα
.

When deriving the equation (23), we used the rescaled derivative with respect to slow time τ̃ :
∂

∂τ̃
=

1

a2
∂

∂τ
.
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2Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà,
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3Óíiâåðñèòåò Òóëóçè, CNRS, Iíñòèòóò äîñëiäæåíü àñòðîôiçèêè òà ïëàíîëîãi¨

Äîñëiäæåíî õàîòè÷íó ïîâåäiíêó òåïëîâî¨ êîíâåêöi¨ â åëåêòðîïðîâiäíié ðiäèíi, ùî íåîäíîðiäíî
îáåðòà¹òüñÿ, ïiä äi¹þ ïîñòiéíîãî âåðòèêàëüíîãî ìàãíiòíîãî ïîëÿ B0. Çà íàÿâíîñòi âåðòèêàëüíèõ
 ðàäi¹íòiâ òåìïåðàòóðè ∇T0 i êîåôiöi¹íòà òåðìî-ÅÐÑ ∇α âèíèêà¹ òåðìîìàãíiòíà (ÒÌ) íåñòiéêiñòü,
ùî ïðèâîäèòü äî  åíåðàöi¨ ìàãíiòíèõ ïîëiâ. Ìàãíiòíå ïîëå B1, ùî çáóäæó¹òüñÿ äi¹þ áàòàðå¨ Áiðìà-
íà, ñïðÿìîâàíå ïåðïåíäèêóëÿðíî äî ïëîùèíè âåêòîðiâ ∇T0, ∇α i  ðàäi¹íòà òåìïåðàòóðíèõ çáóðåíü
∇T1. Öå ìàãíiòíå ïîëå çìiíþ¹ ðåæèì òåïëîîáìiíó, à çà ðàõóíîê åôåêòiât êîíâåêòèâíîãî òåïëî-
îáìiíó òà Ðè i�Ëåäþêà âñòàíîâëþ¹òüñÿ ïîçèòèâíèé çâîðîòíèé çâ'ÿçîê, ùî ñïðè÷èíÿ¹ çáiëüøåííÿ
çáóðåíü ìàãíiòíîãî ïîëÿ. Çà äîïîìîãîþ óñi÷åíîãî ìåòîäó �àëüîðêiíà îòðèìàíî íåëiíiéíó äèíàìi-
÷íó ñèñòåìó ðiâíÿíü, ùî îïèñó¹  åíåðàöiþ òà ðå åíåðàöiþ ìàãíiòíîãî ïîëÿ. ×èñåëüíèé àíàëiç öèõ
ðiâíÿíü ïîêàçàâ íàÿâíiñòü ðå óëÿðíî¨, êâàçiïåðiîäè÷íî¨ òà õàîòè÷íî¨ ïîâåäiíêè çáóðåíü ìàãíiòíî-
ãî ïîëÿ, ùî ñóïðîâîäæóþòüñÿ éîãî iíâåðñiÿìè. Çàñòîñîâóþ÷è ìåòîä òåîði¨ çáóðåíü äî íåëiíiéíî¨
äèíàìi÷íî¨ ñèñòåìè ðiâíÿíü, ìè îòðèìàëè ðiâíÿííÿ �iíçáóð à�Ëàíäàó äëÿ ñëàáîíåëiíiéíî¨ ñòàäi¨
ìàãíiòíî¨ êîíâåêöi¨, ùî íåðiâíîìiðíî îáåðòà¹òüñÿ ç óðàõóâàííÿì åôåêòiâ ÒÌ. Ðîçâ'ÿçîê öüîãî ðiâ-
íÿííÿ ïîêàçàâ: ñòàöiîíàðíèé ðiâåíü ìàãíiòíèõ ïîëiâ, ùî  åíåðóþòüñÿ, çáiëüøó¹òüñÿ ç óðàõóâàííÿì
âïëèâó ÒÌ-íåñòiéêîñòi.

Êëþ÷îâi ñëîâà:  åíåðàöiÿ ìàãíiòíèõ ïîëiâ, òåðìîìàãíiòíà íåñòiéêiñòü, õàîòè÷íà ïîâåäiíêà,
ðiâíÿííÿ �iíçáóð à�Ëàíäàó.
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