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The chaotic behavior of thermal convection in a nonuniformly rotating electrically conductive
fluid under the action of a constant vertical magnetic field By is studied. In the presence of verti-
cal temperature gradients VTp and the thermo-electromotive force coefficient Vo, thermomagnetic
(TM) instability arises, leading to the generation of magnetic fields. The magnetic field B; excited by
the effect of the Biermann battery is directed perpendicular to the plane of the vectors V7y, Vo, and
the gradient of temperature disturbances V7. This magnetic field changes the heat transfer regime,
and due to the effects of convective heat transfer and Righi-Leduc, a positive feedback is established,
which leads to an increase in magnetic field disturbances. Using the truncated Galerkin method, a
nonlinear dynamic system of equations is obtained, which describes the processes of generation and
regeneration of the magnetic field. Numerical analysis of these equations showed the existence of
a regular, quasi-periodic, and chaotic behavior of magnetic field disturbances, accompanied by its
inversions. Applying the method of perturbation theory to the nonlinear dynamic system of equati-
ons, we obtained the Ginzburg-Landau equation for the weakly nonlinear stage of nonuniformly
rotating magnetic convection, taking into account TM effects. The solution of this equation showed
that the stationary level of the generated magnetic fields increases with allowance for the influence
of the TM instability.
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I. INTRODUCTION

Recently, issues related to the physical nature
of reversals and variations of the geomagnetic fi-
eld have been actively studied. Reversals or polarity
reversals of the Earth’s magnetic field are confirmed by
paleomagnetic and archeomagnetic data [1-3]. Braginsky
[4] noted that the average geomagnetic field fluctuates
over a period of the order of 10® years. Higher frequenci-
es in the spectra of the geomagnetic field have periods
of the order of 10% and shorter. Braginsky associated the
main reason for the manifestation of a discrete spectrum
of magnetic field variations with the excitation of MAC
waves due to the action of magnetic, Archimedean, and
Coriolis forces.

At present, the problem of the random nature of
inversions is covered from two points of view. The first is
the presence of an internal mechanism of chaotic inversi-
on that does not require the involvement of external
factors. One of such models is the convective dynamo
theory, in which the magnetic field is generated due
to the convective currents of the conducting medium
[5]. Numerical calculations carried out in [6] perfectly
reflected the dipole morphology of the Earth’s magnetic
field and its chaotic inversions. The electromechanical
model of terrestrial magnetism proposed by Rikitake [7]
can be attributed to the same category. The study of Ri-
kitake’s dynamic system of equations was also used to
explain the chaotic inversion of the geomagnetic field [8-
11]. In the papers [12, 13], a modified system of Rikitake
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equations was studied, taking friction into account, and
the possibility of magnetic field reversals was shown. At
the same time, [12] states that after chaotic behavior, the
system goes into a stable mode. According to theauthors
of [12] , such a regime can describe superchrons in the
geomagnetic field reversal.

The second point of view is related to the introducti-
on of a random factor, for example, by adding random
noise to the a-effect. As shown by numerical calculati-
ons (see [14] and references therein), such a model is
also capable of reproducing a chaotic reversal of the
polarity of the geomagnetic field. In our opinion, the
introduction of external random factors for modeling
the chaotic reversal of the magnetic field gives the
description a phenomenological character. Therefore, in
our work, we will adhere to the first concept. The
object of our research is a nonlinear system of di-
fferential equations that describes non-uniformly rotat-
ing magnetic convection in an electrically conductive li-
quid, taking into account thermomagnetic phenomena.

Interest in thermomagnetic phenomena in electrically
conductive media arose in connection with the problem
of the origin of “seed” (or initial) magnetic fields [15].
In this case, it is not always right to assume that
only weak seed fields arise, which are necessary to turn
on the dynamo. However, as noted in [16], magnetic
fields of the Earth and planets can be created by
thermoelectric currents that flow in a highly conductive
region inside the planet. In this case, by analogy with
the Biermann—Schliiter battery effect [17], due to the
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non-parallelism of the temperature gradients VT and the
thermo-electromotive force coefficient Vo, a magnetic
field 0B1/0t ~ [VT x Va]. On the other hand, as
shown in [18], and under the condition [VIj x Va] =
0, it is also possible to generate a magnetic field due
to the development of thermomagnetic (TM) instabi-
lity. Initially, TM instability was proposed to explain
the spontaneous generation of strong magnetic fields (~
10°G) in an inhomogeneous laser plasma [19-21] in negli-
gibly short times ~ 107 %sec. A necessary condition for
the development of TM instability is the inhomogenei-
ty and nonisothermality of the plasma. The physical
mechanism of this instability is as follows. Temperature
perturbations 77, acting in a direction different from the
initial plasma inhomogeneity, lead to the excitation of
a magnetic field due to the “battery” effect 0B;/0t =~
[VT; x Vng]. The magnetic field, in turn, affects the
electronic thermal conductivity and changes the heat
transfer mode. The emerging heat flux supplies energy to
the region with elevated temperatures, thus contributing
to the growth of initial perturbations.

Z+G,|B,

gl

x/

Fig. 1. a) Scheme of shear flow in rotating flows; b) Cartesi-

an approximation of the problem for nonuniformly rotat-

ing magnetoconvection. The nonuniform rotation in a local

Cartesian coordinate system consists of a rotation with a

constant angular velocity 2o and a shear velocity Uy =
—¢QXey (¢g=—-dInQ/dIn R)

Astrophysical applications of the TM instability are
covered in detail in the works of Dolginov [22], Urpin
et al. [23], Urpin [24, 25], where an explanation is gi-
ven for the occurrence of strong magnetic fields in the
nuclei of white dwarfs, binary systems, and neutron stars.
Thermomagnetic instabilities in a magnetized rotating
plasma were studied by Montani et al. [26], where it
was shown that thermomagnetic and magnetorotational
phenomena in accretion discs contribute to the transfer
of angular momentum.
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The purpose of this work is to study the chaotic
behavior of magnetic fields generated by TM instabili-
ty in an inhomogeneously rotating layer of an electri-
cally conductive fluid (plasma) in the presence of an
external constant magnetic field By ||OZ, collinear gradi-
ents of temperature VI = —e,(dTp/dz), and a thermo-
electromotive force coefficient Va = e,(da/dz). The
chaotic behavior of convection has been intensively
studied in rotating fluid layers [27]-[28], and also in
conducting media rotating with a magnetic field [29].
However, these papers did not consider the dynami-
cs of the magnetic field itself, which corresponds to
the non-inductive approximation. Such problems are
more important for technological applications such as
crystal growth, solidification chemical processes, centri-
fugal casting of metals, etc. than for astrophysical and
geophysical problems.

II. BASIC EQUATIONS AND STATEMENT OF
THE PROBLEM

Let us consider the physical mechanism of the
generation of magnetic fields by TM-instability involv-
ing the effects associated with the inhomogeneity of the
specific thermoelectric power and “magnetization” of the
heat flux. The geometry of the problem is shown in Fig. 1.
A higher temperature, Ty, is maintained on the lower
plane of the layer than on the upper plane, Ty: Ty > Ty,
— heating from below. The thermo-electromotive force
coefficient on the lower (“hot”) ag plane is less than on
the upper (“cold”) ay: ag < ay. Such a situation is
quite possible if we take into account the temperature
dependence of the thermo-electromotive force coefficient
a ~ /Ty (v — chemical potential) [30]. The spatially
inhomogeneous distribution of Ty(2) and «(z) inside the
layer can be represented as a linear dependence on z:

To(2) :Td—gmz,

W AT =Ty — T,

A
a(z):ad+—a~z, Ao = ay — ag.

h
Let the temperature difference at the layer boundaries
in the gravity field g lead to a violation of mechanical
equilibrium in the system, in which convective instabili-
ty develops and convective cells are formed. Temperature
perturbations acting in the transverse direction on the
initial inhomogeneity lead to the appearance of an eddy
thermal current due to the difference in the values of
the thermo-electromotive force coefficient Aa(z) at the
layer boundaries. This current creates perturbations in
the Y-direction of magnetic field By, which will affect
the heat transfer mode. The excited magnetic field B,
creates heat fluxes directed perpendicular to the fi-
eld itself and the temperature gradient. Thus, positive
feedback is established: the newly emerging heat fluxes
create a vortex of thermoelectric power, which enhances
the perturbations of the magnetic field B;. The direction
of the external magnetic field By coincides with the axis
of rotation of the fluid Q||OZ (see Fig. 1).



CHAOTIC DYNAMICS OF MAGNETIC FIELDS GENERATED BY THERMOMAGNETIC INSTABILITY...

In our earlier research [18], the evolution equations for
perturbations in the local Cartesian coordinate system
J

were discovered. These equations are expressed in di-
mensionless variables and read as follows:

9 2 2 v 149 o2 2 -1 2 -1 2
(m—v)vw+\/ﬁaz—Per Q$V¢ Ra— = PrPm Q- J(p,V3p) —Pr=t - J(1h, V3),
(8 - v2) v—VTa(l+ Ro)ai/’ - Per*Qj =PrPm'Q- J(¢,0) — J(,v)
ot 0z 0z ’ B
d )
Q%—Pm*vﬂ¢—PrQ$:>4¥4ﬂw¢x 1)
) .0 d I _
(615 ~Pm 1v2> 0 18—2 Jrf{ox/ﬁa—i5 m™ Ro o = P (J(6,0) = J(0.7)),
(Pa—V2>9—8w+qa% J(¥,0) — q6- +q 11(6,79),

where
da 0b  Jda Ob
T = 9% 0z~ 9z0%
are the Jacobian or Poisson brackets J(a,b) = {a, b}, ¥
is the hydrodynamic stream function, ¢ is the magnetic
stream function, 0 is a temperature perturbation, v and

v are velocity and magnetic field perturbations for the Y-
component. Pr = v/x is the Prandtl number, Pm = v/g

2;4
4o b s the

is the Hartman number,

is the Prandtl magnetic number, Ta =
Boh

N

is the Rayleigh number, R, = A;]"BAT

is the thermoelectrornotlve force number. The dimensi-

onless parameters

oTy By {(u[, ) AT Aa}
Go=—— T [ 41) T+ —
pocpix(AT)

Taylor number, Ha =
Ra — gﬁT(AT)h

(1) _ AO{BO

B L
¢ =220 (N + 1)
POCpIX \ @

are related to the influence of the thermopower effect
and the Righi-Leduc effect on the heat transfer process.
The system of equations (1) is supplemented with the
following boundary conditions:

dv
= V2 v =0
¥ 2=0,h ¥ 2=0,h ~ dzl.= 0,h = 2=0,h ’
do
- — =0. 2
dz lz=0,h 2=0,h 2)

Without taking TM effects into account, the system of
equations (1) was used to study weakly nonlinear and
chaotic convection regimes in an inhomogeneously rotat-
ing plasma in an axial (vertical) magnetic field [31-33].

oz

III. A NONLINEAR SYSTEM OF
DIFFERENTIAL EQUATIONS FOR A
CONVECTIVE TM DYNAMO

One of the most effective methods for studying
hydrodynamic instability is the Galerkin method (see,
for example, [34]). The application of this method to
the equations of hydrodynamics makes it possible to
obtain a wide variety of different nonlinear dynamical
systems of varying degrees of complexity [35]. Using the
truncated expansion of Galerkin, Lorenz [36] obtained
a dynamical system of equations with a small number
of internal parameters for modeling free convection in
the atmosphere (these are known as the Lorenz equati-
ons). Following [36], we apply the truncated expansion of
Galerkin to the study of the weakly nonlinear stage of the
development of convective instability described by the
equations (1). Then we can represent all perturbations
in the equations (1) in the form of a Fourier expansion
of the following form:

(@, 2,t) = Ay (t) sin(ka) sin(rz),
v(z, 2,) = Vi (t) sin(kz) cos(r2),
$(x, 2,t) = By (t) sin(ka) cos(z), (3)
3z, 2, t) = Wi (t) sin(ka) sin(r2),

0(x,y, t) = Cy(t) cos(ka) sin(rz) + Ca(t) sin(2r2),

where k is a dimensionless wave number; Ay, V1, By, W1,
C4, and Cy are the disturbance amplitudes. Substitut-
ing the expansions (3) into the equations (1), after
orthogonalization, we obtain the evolution equations for
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the disturbance amplitudes:

0A; Ta TQPr kRa
it RN TV — .B :
at 1 — a4 ‘/1 a2Pm 1 + G,4 017
ovy v Ta TQPr
—_— = — (1 A
8t ‘/1 a ( + R ) 1 + P W17
831 mPm
Pm— o7 —B1 + ——=— 2Pr <Ay, (4)
oWy 7Pm 7PmRovTa
Py = Wi, Mt B
kR,
- Cy,
Pr% =-C1 + a% <Ay k - A1Cy — kqa - Wi
kq!
+7r aq W1C2a
0Cy  4nm? Tk Tkq?
Prﬁ:_?'cg—ﬁ‘Alcl_ 2 5.2 WlCl,

where a = vk2 + 72 is the total wavenumber and ¢ = a2t
is the reduced time. The system of ordinary differential
equations (4) is a low-order Fourier expansion model, but
it can reproduce convective processes qualitatively in a
nonlinear system of equations (1). For convenience, we
introduce the following notation:

R:k2Ra’ T:wz Ta’ H:ﬁQPr,G: sza’
ab al a* Pm m2Pm

= 7T2q(()l2) A2
q; = 77 Jqa = Cl4 ) b= a2 ) (5)

and rescale the amplitudes Ay, Vi, By, Wi, Cq, Cs in the
form

o BAG)
X® = 7=, VD = S5,
~  kBi(t) _ ~  a%k
U@ = 52 W = S,
v = "0 26 = —rou(d).

V2

Then the equations (4) take the form of a nonlinear
dynamic system of equations:

X=—-X+RY -TV -HU

V = -V +HW + VTa(l + Ro)X
U=-Pm 'U+PrlX

W =—Pm™'W — Pr™'V + RovTaU — GY
Y =Pr ' (-Y+X - XZ—qW —q,WZ)

(6)

Z =Pr H(—Z + XY + q;,WY),
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where the dot () on the symbol indicates the differenti-
ation with respect to time ¢. In the limiting case, when
there are no TM effects (q; = q; = G = 0), the
equations (6) go over to the Lorenz equations for the
six-dimensional (6D) phase space, which were studied
numerically in [31]. The system of nonlinear equations
obtained by us (6) depends on a large number of di-
mensionless parameters (11 parameters). For this reason,
it must have a huge variety of behavior modes, and all
possible transitions to chaos can be realized in it, depend-
ing on the range of change of various dimensionless
parameters. In contrast to [31], the last three equations
in the system (6) describe the generation and regenerati-
on of a W-component (or toroidal component) magnetic
field. A similar process of self-excitation of the magnetic
field is observed in Rikitake’s well-known electromechani-
cal model [7], which is used to explain the chaotic inversi-
on of the Earth’s magnetic field [8]. Therefore, the system
of equations (6) can be attributed to the dynamic model
of a nonlinear convective TM dynamo.

Note that, in contrast to the Lorenz equations and the
classical Rikitake dynamo system, we have obtained non-
linear dynamic equations of a 6D dimension (6) with four
quadratic nonlinearities.

IV. STABILITY ANALYSIS

Qualitative and numerical analyses of the dynamic
system of equations (6) make it possible to determine
the type of stationary points and the conditions for the
emergence of a chaotic regime.

A. Homogeneity and symmetry

The trivial solution (6), corresponding to the absence
of convection, leads to the appearance of a special fixed
point:

o(X,V,UW,Y, Z) = 0(0,0,0,0,0,0),

which does not depend on the values of the parameters

R, T, Ta,H,Pm, Pr, b. Given a coordinate transformation

T as follows
T(X,VUW)Y,Z) = (-X,-V,-U,-W,-Y, 7).

It is clear that each trajectory is symmetrical with
respect to the Z-axis. That means system (6) is invariant
for the given transformation T.

B. Dissipativity
The divergence of system (6) can be calculated as
ox ov ov oW ov oz
oX oV oU oW 9Y 0Z
—2(1+Pm™ ) —Prl(1+~) <0.

dived =
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As a result, it follows that the system (6) is dissipative, Consequently, in the phase space of dissipative systems,
since the divergence of the vector field is negative. Due  attracting sets can arise — attractors.
to dissipation, the phase volume shrinks:

C. Equilibrium points

Equating the left sides of equations (6) to zero, we get
®(t) = ®(0)exp [ (-2(1 +Pm™") = Pr (1 +7)) ¢]. three equilibrium states:

O (X1, Vi, Ui, Wi, Y1, Z1), Oa(X2,Va,Us, Wa,Ys,Z5), O3(X3,Vs,Us, Ws,Y3, Z3). (7)

After computation, we obtain the following equilibrium points:

(le‘/la U17W17Y1a Zl) = (07()’0707070)’

R+r R+r
(X2, X3) ==+ ~1'\/7( ; 1'(1+Q17“2)+q17“3—1>7

T
R+7r
\/’Y (741'(1+Q17’2)+(117’31),

VTa (1+Ro + HRoPm®Pr~') (R + ) — rHGPm

Va, V) = +
(2, V3) r7(1 + HPmPr 1)

VTaPmPr~! (RoPm — Ro — 1) (R 4 ;) — rGPm R+7r
Wy, W3) =+ (1 -1
( 2, 3) ’I"F(]. +HPmPr_1) Y ( r ( +q1742) +Q17"3 )7
Pm(R + ) R+m
(U2,U3)11W' v ; (I+are) tagrs — 1),
1 R+r
(Y27Y3)=i?\/’7( " 1'(1+q17“2)+q1r3—1>7
1 /R+r
(22723) = ? (1 ' (1 + qlr2) + qi73 — 1) 3
[
where If the Rayleigh parameter
1—
—loar) g,
p 14 Ro (1+ 522 H) Lt
Pr
r=1+ P—mH +TvTa- - , there is only one fixed point O; in a system. For Rayleigh
r I+ % H parameters R > R, that are two more fixed points Os
and Os, which are symmetric to each other. For Raylei-
THGPm gh parameters R < R, the coordinates Oy and O3 are
=7  HPmPr imaginary.
VTaPmPr—! (1+Ro(1—Pm)) D. Stability of the equilibrium points
o = — )
14+ HPmPr™ We proceed to the study of stability, found the equili-
brium states (7). To do this, we linearize the system of
B GPm ~ R+4+mn 1 equations (6) in a small area of fixed points. Representing
"3 =7 + HPmPr V' [ (1= dar2) = qu7s. all variables in the form
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(X, V,U,W,Y, 2)" = (Xo, Vi, Uo, Wo, Yo, Z0)" + (X", V', U W', Y Z)T .M

we obtain a linear algebraic system:

(A+1)X' =RY' - TV' — HU'

(A+ 1)V’ =HW' + VTa(1 + Ro) X’

A+Pm HU' =Pr X’

A+Pm YW’ = —Pr 'V’ + RoVTal’ — GY’
(

(

A+Pr Y =Pr N (X' — XoZ' — X' Zy — W' — @uWoZ' — qu ZoW')
A+APr HZ = Pr (XY + XYy 4+ quWo Y + g, Yo W)

R A1 A2 A3 A4 As A6
1 —1.013776 —0.029541 —0.266666 —0.487147 —1.555757 —1.013776
+11.213922 —11.213922
8 0.334085 —1.098758 —0.266666 —0.601432 —1.635135 —1.098758
+¢1.094230 —11.094230
34.004|1.205252 —1.204008 —0.266666 —0.744572 —2.152663 —1.204008
+1¢0.765665 —10.765665
34.005(1.205279 —1.204007 —0.266666 —0.744575 —2.152688 —1.204007
+¢0.765656 —10.765656
53.93 |1.683372 —1.172021 —0.266666 —0.794802 —2.644527 —1.172021
+10.648537 —10.648537
58 1.768589 —1.165177 —0.266666 —0.802489 —2.735746 —1.165177
+¢0.634200 —10.634200
290  |4.775845 —1.046055 —0.266666 —0.938911 —5.844824 —1.046055
+10.486160 —10.486160

77777

Here the index 0 denotes fixed points, the prime ' denotes small perturbations, and \ is the increase increment.

The modes of stability or instability are determined by the signs of the real parts of the eigenvalues of the
determinant of the system of equations (8). The eigenvalues of the system of equations (8) A are found from the
solution of the characteristic equation obtained by equating the determinant to zero, i.e.

My (Mo - My +RPr™"(A+Pm™") - M) + TVTa - M; - My

~GPr ' My —RPr 2. Ms + (A +Pm ™ ")GHTPr ' - M3 = 0, (9)
where the following notation is entered

My=A+1)(A+Pm™ ) +HPr~ !, M; = (1+Ro)(A+Pm™1)? + HRoPr?,
My = A +Pr (A +9Pr ™) + (X + quWo)?Pr2,
Mz = (Xo + quWo)YoPr™" — (A +9Pr")(1 - Zo),
My = [(A+1)2(A+Pm™Y) + TvTa(l + Ro)(A + Pm™) + HPr *(A 4 1)] - M,
Ms = [VTa(1 + Ro)(A+Pm™') — (A + 1)Ro] - M,

M = Pr_l(XO + aaWo)aa Yo + (a5 + a2 Z0)(A + yPr_l).

2403-6
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Here Wy = (W1, W2, Ws), Xo = (X1,X3,X3), Yy =
(Y1,Y2,Y3), Zy = (Z1,%Z2,7Z3) are the coordinates of
fixed points. If we substitute the values of the three
equilibrium states (7) into equation (9), we obtain the
characteristic equations for the eigenvalues A in each of
these states. Moreover, for the points Os and Os the
characteristic equations coincide due to the symmetry.

The characteristic equation (9) is reduced to the
algebraic equation of the sixth degree:

P(\) = ao)\® + a1\ 4 ag\? + az\3
+ CL4>\2 + a5)\ + ag = O7

where ag = 1 > 0. We do not give the explicit form
of the real coefficients a1, as, as, a4, as, ag due to a very
cumbersome form. There exist methods that enable the
assessment of the system stability without explicitly solv-
ing its characteristic equation. One of such methods
is the Routh-Hurwitz or Liénard-Schipar [37] criteri-
on, which provides the necessary and sufficient condi-
tions for the stability of the system. In the last criterion,
the number of determinant inequalities is approximately
half as large as in the Routh-Hurwitz conditions, so it
is reasonable to use it. The criterion makes it possible
to determine whether all the roots of the characteristic
equation have negative real parts, indicating the stabili-
ty of the system. According to the Liénard—Schipar cri-
terion, for the polynomial P(\) to have all roots with
negative real parts, it is necessary and sufficient that the
following conditions are satisfied:

1. The coefficients of the polynomial must all be real
numbers.

2. All coefficients of the polynomial P(\) are positive:
an, >0,n=1,2,...6. The Hurwitz determinant is
constructed from the coefficients of the polynomial

PO [37):
a; as as 0

apg ag Qg 0

0 a1 asg 0

Ap = 0 ap ao 0

© Ap

3. All the principal minors of the Hurwitz determi-
nant must be positive: A,,_1 >0, A,_3>0...

If all these conditions are met, then the polynomial has
all its roots with negative real parts, indicating the stabi-
lity of the system. Using the Liénard—Schipar algorithm,
we get the necessary and sufficient conditions for stabi-
lity:

anp >0, n=1,2,...6, A3>O, As > 0.

Obviously, when the Liénard—Schipar criterion is sati-
sfied, the fixed points are stable, and their equilibrium
positions are classified as stable nodes.

R )\1 )\2 )\3 )\4 AS )\6
1 0.048075 —1.020790 —0.326499 —0.487219 —1.559443 —1.020790
+141.207059 —31.207059
8 0.545952 —1.138779 —0.344958 —0.614024 —1.676077 —1.138779
+141.047646 —11.047646
34.004 |1.644357 —1.195875 —0.349129 —0.767817 —2.502325 —1.195875
+1:0.673213 —10.673213
34.005|1.644390 —1.195873 —0.349129 —0.767820 —2.502360 —1.195873
+1:0.673206 —10.673206
53.93 [2.226098 —1.149037 —0.349653 —0.818773 —3.126262 —1.149037
+140.585517 —10.585517
58 2.331271 —1.141455 —0.349600 —0.827007 —3.238417 —1.141455
+140.575978 —10.575978
290 5.966096 —1.036574 —0.350281 —0.951500 —6.957833 —1.036574
+10.473629 —10.473629

Table 2. Eigenvalues A1,2,3,4,5,6 for the fixed point Oz 3, calculated for different values of the parameter R.

To perform a numerical analysis of the equation (9),
we choose the values of the parameter b and the Prandtl
number Pr as is customary in the Lorenz equations [38]:
b = 8/3, Pr = 10. The rotation parameter is assumed
to be equal to T = 0.1 as in [28], where the emergence
of a chaotic regime in a uniformly rotating fluid layer
was studied. The parameter value T = 0.1 gives us the
Taylor number Ta = 1080. We consider the magnetic
Prandtl number to be equal to Pm = 1. We set the
parameter for the external axial magnetic field equal to
H = 2, which corresponds to the Chandrasekhar number

Q =~ 4.45. This order of magnitude of the magnetic field
was used in [29] to study the effect of the magnetic field
on the chaotic behavior of convection. The generation
parameters G, q;,q, taking into account b = 8/3, and
Pm = 1 take the following form:

G =05R,, q ~0.045¢,, qy~0.045¢2  (10)
Considering the case of a low-temperature electrically
conductive medium, the Righi-Leduc effect in the

(2)

expressions for g, and ¢o’ can be neglected pL < a.
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As a result, ¢, and q((f) are respectively equal:
OZBQ

Aa/a aB
@ (1L === (2) o 220 2P0 g
o= o ( +AT/T0)’ el

For numerical estimates of the difference between the
thermo-electromotive force coefficient Ao = 1075V /K
(o =2 107%)V/K and the temperature AT =2 2000 To

(Th = 4000)K we can assume ¢, ~ ¢'?. The definition of
the G parameter (see (III)) shows that G depends on A«
and AT. Therefore, fixing the difference in the thermo-
electromotive force coefficient A«, we will analyze the
dispersion equation (9) and the system of equations (6)
for different heating conditions, i.e. for different values of
the Rayleigh parameter R. For a numerical estimate of
qc(f), we use the values of physical quantities for molten
iron [39], i.e. we take the thermal conductivity coefficient
k=39 W/m-K (x = x/(pocyp)), the coefficient permeabi-
lity 4 = 47 - 10~ V-s/A-m, thermo-electromotive force
coefficient o ~ 2.2 - 107V /K and the magnitude of
J

1+ HPmPr !

the external magnetic field By = 107'T. As a result of
substituting these quantities into the formula (11), we

find ¢¥ ~ 0.044 or ¢1 ~ o ~ 0.002. The generation
parameter is estimated to be G = 0.01R if

27774% CpX
8 a gfrn*h?

As a result, selecting the parameter values Pm = 1, Pr =
10, H =2, T = 0.1, and Ta = 1080, b = 8/3, q; =
q, = 0.002, G = 0.01R, we calculate the eigenvalues
A; for the fixed point O; in the case of the Keplerian
rotation profile Ro = —3/4 depending on the changes in
the Rayleigh parameter R. These results are shown in
Tab. 1, in the case of the Keplerian rotation profile Ro =
—3/4 in Tab. 2. This shows that for negative ReA < 0 the
trajectories enter the point Oq, i.e. correspond to stable
eigen directions, and for positive ReA > 0 the trajectories
leave the point O, and hence correspond to unstable
eigen directions. The steady state of convection (A = 0)
corresponds to the critical value of the parameter Ro.,,
which turns out to be equal to the first critical value:

~ 0—1

—q;GPm

lcr

We note that the Rayleigh number depends on the
temperature difference at the boundaries of the electri-
cally conductive fluid layer. By changing the heating
conditions at the boundaries of the fluid layer (the
Rayleigh number), it is possible to study various modes
of the generation of magnetic fields. Next, numeri-
cal solutions of the equations (6) are presented: phase
portraits and time diagrams for the Y-component of the
generated magnetic field for various values of R given in
Table. 1-2.

V. DISCUSSION OF NUMERICAL RESULTS

A. Analysis of phase trajectories of regular and
chaotic behavior

Let us write system (6) in a form more convenient for
modeling:

1 = —x1 + Rro — 224 — 0.125

iy =15 (—xa+1— x123— 0.00226— 0.0022673)
T3 = % (—%x;; + x170 + 0.002x6z2)

iy = —T4 + 1501

T5 = —x5 + 8.21x; + 2z¢

i = —x6 — 0.01R@o — 24.6524 — 755,

where new notation for variables was introduced: z; =
Xxo=Y,x3=2Z,x4 =U,x5 =V, = W. We used the

2403-8

1 + HPmPr~' 4 q;PmPr~'v/Ta(1 + Ro(1 — Pm))

r—=7rrr. (12)

[

values of fixed parameters

H=2 Ta=1080, T=01, Pm=1 Pr=10,

v=8/3, Ro=-3/4, q; =4q,=0.002, G=0.01R
in the equations (6). In this section, we analyze numerical
studies of the nonlinear system of equations (13) depend-
ing on the variations of the Rayleigh parameter R in the
Mathematica computer environment.

Figure 2,a shows the case for R = 1 < Ri¢ &~ 1.463.
We see that the initial perturbation of the magnetic fi-
eld decays (Fig. 2,b). As it is shown in Fig. 2,a-2,b the
initial system state reaches the origin (the point O,),
which is the local and global attractor simultaneously.
For number Ry, = 1.463 < R = 8, there is loss of stabi-
lity, and we observe the appearance of spiral trajectories
(Fig. 2,c-2,d) in the phase plane x1 24, which will wind up
around fixed point Oy while the parameter R is increas-
ing. It is noticeable already for the value R = 34.004 (see
Fig. 2,e). Thus, the perturbed magnetic field performs
oscillations with damped amplitude (see Fig. 2,f). In this
case, eigenvalues \; are complex-valued with a negative
real part, and we classify the stationary point as a stable
focus. The coordinates of the fixed point Oy in the x1x¢
plane can be calculated analytically using (7). For the
Rayleigh parameter R = 34.004, we get the focus coordi-
nates Oz(x1,z6) = (7.78,—21.39), which coincide with
the focus coordinates found numerically (see Fig. 2,e ).



CHAOTIC DYNAMICS OF MAGNETIC FIELDS GENERATED BY THERMOMAGNETIC INSTABILITY...
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Fig. 2. a), c),e), g), 1), k) projections of phase trajectories

b), d), f), h), j), 1) time dependences of magnetic component amplitude variations U (t)

An insignificant increase in the Rayleigh parameter
from R = 34.004 to R = 34.005 (Fig. 2,g) leads
to a change in the sign (or direction) of the oscillat-
ing perturbed magnetic field, which also fades out (see
Fig. 2h). Here the phase trajectories wind in a spi-

in the ziw¢ plane upon the variation of parameter R;

ral around the fixed point Os, which we also classi-
fy as a stable focus. The focus coordinates for the
Rayleigh parameter R = 34.005 obtained analytically
Os(z1,26) = (—7.78,21.39) coincide with the focus
coordinates found numerically (see Fig. 2,g).
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Fig. 3. Projections of the phase trajectory in the plane zi1z¢ and the time diagram of variations in the amplitude of the

magnetic component z¢(t) at R = 290

We can see the pre-chaotic state for the parameter
R = 53.98 in figures 2,i and 2,j. Here the solution seems
chaotic, but then it stabilizes to oscillatory and finally
tends to a stationary state. This behavior of the system
is called metastable chaos. As can be seen from Fig. 2j,
chaotic behavior lasts approximately up to ¢ = 660,
and then a transition to damped oscillations occurs. Fi-
gures 2.k and 2,1 show the case of irregular oscillations
with aperiodic changes in the amplitude and direction
(inversion) of the generated magnetic field at R = 58.
A further increase in parameter R facilitates the evoluti-
on of chaotic behavior since the positive characteristic
number A\; grows (see Tab. 1 and Tab. 2). As can be
seen in the phase portrait and time diagram in Fig. 3 wi-
th R = 290, the amplitude of the chaotic magnetic field
will also increase. The trajectories in Fig. 3 demonstrate
highly developed chaos compared to the chaotic behavior
at R = 58. Strange attractors for R = 58 and R = 290
belong to the class of self-excited attractors since the
equilibrium points O; and ()2 3 are unstable.

B. Bifurcation diagrams, Lyapunov exponents and
Kaplan—Yorke dimension

Bifurcation diagrams for the x1,x2,x3,x4, 5,26
components of the system of equations (13) are shown
in Fig. 4, from which one can see the appearance of
a periodic, quasi-periodic, and chaotic regime depend-
ing on the values of the Rayleigh number R. One of
the important criteria characterizing the chaotic behavi-
or of a nonlinear dynamical system is the spectrum of
Lyapunov exponents. With the help of the Lyapunov
exponents, the rate of convergence or divergence of
trajectories in the phase space is determined. The
presence of at least one positive value in the spectrum
of Lyapunov exponents indicates the presence of chaotic
oscillations in the system. The number of Lyapunov
exponents corresponds to the dimension of the phase
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space of the nonlinear dynamical system. For our system
(13), the number of such indicators is six. We employ the
Benetinn algorithm for calculating Lyapunov exponents
[40, 41]. Following [42], we calculated the maximum
Lyapunov exponent for the system of equations (13) at
R = 290 and then used the Gram-Schmidt orthogonali-
zation to determine all Lyapunov exponents more preci-
sely:

L, = 0.359648, L, =0.11627, L3 = —0.678572,
L, = —0.835604, Ls=—1.45011, Lg= —1.87832.
(14)

If the spectrum of Lyapunov exponents has two posi-
tive Lyapunov exponents, then the system (13) exhi-
bits hyperchaotic behavior. The maximum Lyapunov
exponent of the new hyperchaotic dynamo system (13)
corresponds to the value Lipyax = 0.359648.Since L1 +
Ly + Ls + Ly + Ls + Lg = —4.366688 < 0, the
new hyperchaotic dynamo system (13) is dissipative.
In addition, the Kaplan—York dimension of the new
hyperchaotic dynamo system (13) is calculated using the
formula

| M
DKY:MﬁLizLi» (15)
i=1

|Laz+1

where M is the largest integer, for which

M+1

M
Y Li>0, Y Li<o.
=1 =1

The Lyapunov dimension of this hyperchaotic attractor
using (15) is Dy = 2.7013. Thus, we conclude that
the Lyapunov dimension of the new hyperchaotic system
(13) is fractional.
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Fig. 4. Bifurcation diagrams for the x1, 2, x3, T4, 5, £6 components of system (13) depending on the parameter R

C. Autocorrelation functions

An effective characteristic of a strongly chaotic behavi-
or is the autocorrelation function, which is defined as the
average over a certain time interval T (for T' — o) of

In Fig. 5, plots of autocorrelation functions (di-
agonal elements) for components z;,i = 1,2,3,4,5,6
are shown, where we see that autocorrelation functi-
ons tend exponentially to zero. This is one of the cri-
teria for dynamic chaos. On a logarithmic scale, the
exponential decay area for the autocorrelation functi-
ons K11, Koo, K33, K44, K55, Keg, is approximated by a
straight line (see Fig. 5,b,d,fh,j,1).

VI. EQUATION OF FINITE AMPLITUDE FOR

STATIONARY CONVECTION

We obtain the nonlinear Ginzburg-Landau equation
(see Appendix) for the amplitude A; by applying the

the products z; taken at times ¢ and t + 7:

Kij <T) - T—oo T

1 oo
lim —/ x;i(t)z; (t+7)dr, i = 1+6, j = 1+6.
0
asymptotic method of perturbation theory to the system

of equations (6) with respect to a small parameter ¢ =
(Ra — Ra.)/Ra, <« 1:

A
A1% — A5 A + ./43,14:13 =0. (16)

This equation describes a weakly nonlinear stage of stati-
onary magnetic convection in a nonuniformly rotating
electrically conductive fluid, taking into account TM
effects. In the limiting case, when there are no TM effects
(¢ga = 0, R, = 0), the equation (16) corresponds to the
known result [32]. The analytical solution of the equati-
on (16) with a known initial condition Ay = A;(0) has
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the form:
A

Ai(r) = .
\/ﬁzA% + (1 — A%%) exp (—%)

(17)

The amplitude A; can be used to calculate the value of
the generated Y-component (or toroidal) of the magnetic
field v & A, -1l,,. For numerical calculations v we use the
following values of magnetic convection: b = 8/3,Pm =
1,Pr 10,Q = 4.45,T = 0.1,Ta 1080, R,,
0.02R, g, = 0.044. The initial amplitude is assumed to
be Ap = 0.7, and Ras =~ Ra., which corresponds to
the supercriticality parameter ¢ smallness. Plots of the
magnetic field disturbance v versus time 7 in the absence

(dashed line) and presence (solid line) of TM effects are
shown in Fig. 6. Here, we can see that the growth of
magnetic field disturbances v continues until a certain
time 79, after which the magnetic field’s stationary level
Umax 1S established. The amplitude of the stationary
magnetic field with TM effects is greater in this case than
without TM effects. Figure 6a-6b shows that with an
increase in the Rayleigh parameter R = 260 — R = 320
for the Keplerian rotation profile Ro = —3/4 the level of
the stationary magnetic field increases. We observe a si-
milar situation for the Rayleigh rotation profile Ro = —1
(see Fig. 6,c,d).

Thus, with an increase in temperature at the lower
boundary of the layer, an increase in the stationary level
of the generated magnetic field occurs at a fixed di-
fference in the thermo-electromotive force coefficient.

X102 a) K i c) X102 e)
" 2 33
3 s 5
4
2 2 3
2
1 1
1
0 ] 0 0 ]
0 2000 4000 6000 8000 T 0 1000 2000 3000 4000 T 01000 2000 3000 4000 5000 6000 T
b) d) f
|nK11 T InK22 T T |nK33
4375 33.85 33.85
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. —
36.84 29.93 29.93
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Fig. 5. a), ¢), e), g), 1), k) are plots of autocorrelation functions K11, K22, K33, K14, K55, Kes from time 7 for R = 290; b), d),
f), h), j), 1) are a linear dependence of autocorrelation functions K11, K22, K33, Ka4, K55, Kee on logarithmic scales of the time
interval 7 for a strongly chaotic motion
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Fig. 6. Dependence of the amplitude 7(7) of the generated magnetic field on the time 7. With TM effects taken into account

(solid line), the steady-state amplitude v(7) is larger than in the case without TM effects (dashed line). Plots a)-b) correspond

to the Rayleigh parameters R = 260 and R = 320 at Ro = —3/4, and plots c¢)-d) correspond to Rayleigh parameters R = 260
and R = 320 for Ro = —1

VII. CONCLUSIONS

In this research, we have derived a novel 6D
hyperchaotic system of nonlinear dynamic equati-
ons. These equations characterize the generation of
a magnetic field through thermomagnetic effects in a
nonuniformly rotating layer of an electrically conducti-
ve fluid in the presence of a constant vertical magnetic
field Bg. The derivation of these equations follows an
approach similar to the Lorenz equations [36], employ-
ing a Fourier series expansion of minimum order to
represent the physical fields. However, unlike the Lorenz
equations and the classical Rikitake dynamo system [7],
our equations involve four quadratic nonlinear terms in
a 6D dimensional space. Furthermore, the application
of the electromechanical model to problems related to
terrestrial magnetism has raised concerns among experts
in dynamo theory, as Rikitake’s model is more similar
to an electric machine than a tool for describing the
MHD dynamo process [43]. The results obtained are
in good agreement with our previous works [31]-[33] on
the chaotic dynamics of nonuniformly rotating magnetic
convection, in which thermomagnetic instability was not
considered. In this work, for the first time, a theoreti-
cal model is constructed to describe the chaotic behavior
of the generated magnetic field based on the combined
action of the effects of convection, nonuniform rotation,
and inhomogeneity of the chemical composition of the
electrically conductive medium. The main results of this
work are as follows:

e A dynamic analysis of the stability of a new 6D
hyperchaotic system is carried out depending on
changes in the Rayleigh parameter R. For this
system, phase portraits are constructed, which
show the regimes of regular and chaotic behavior

of magnetic field disturbances for different values
of the parameter R.

e It was demonstrated that chaotic variations might
emerge in the magnitude and direction (inversi-
on) of magnetic field disturbances. Therefore, the
resulting new 6D hyperchaotic system can be used
as an alternative to the Rikitake equations in

describing the inversions of the generated magnetic
fields.

e An increase in the temperature difference
(parameter R) at the boundaries of a layer of a
nonuniformly rotating medium leads to an increase
in the amplitude of stationary perturbations of
the magnetic field.

e The stationary level of magnetic field disturbances
increases when TM phenomena are taken into
account for both Rayleigh (Ro = —1) and Kepleri-
an (Ro = —3/4) rotation profiles.

Thus, various modes of regular and chaotic behavi-

or of excited magnetic fields were discovered
under certain ratios of dimensionless parameters
b,R,Ro,Ta, T,H,Pm,Pr,G,q;,q5. Given the large

number of parameters, it can be assumed that most of
the currently known scenarios of the transition to chaos
are realized in this system of equations.

The results obtained in this work can be used not
only for the problem of terrestrial magnetism but also
for other astrophysical objects.
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APPENDIX
Derivation of the Ginzburg—Landau equation from the dynamic system of equations (6)

The Ginzburg-Landau equation is obtained from a nonlinear dynamic system of equations (6) in this section. All
perturbed quantities in the equations (6) can be represented as a series expansion in the small supercritical parameter
€:

X(t) =X + Xy + X3 +..., X(t) = [X,V,UW,Y,Z]"

R:R(]+€2R2+... (18)

The amplitudes of the perturbed quantities depend only on the slow time 7 = €2t. For the first order in e, after
substituting the expansion (VII) into (6), we obtain a linear system of equations:

LX,1 =0, X;=[X,V,U, Wy, Y1, 7,7, (19)
where matrix . has the form
! -7 ~H 0 Ro 0]
VTa(l+Ro) -1 0 H 0 0
P pPr! 0 —Pm*' 0 0 0
0 —~Pr ' RovTa —Pm™! -G 0
1 0 0 - -1 0
i 0 0 0 0 0 —b]

The solutions of the equations (19) with respect to the variable X; are respectively equal to

v _=.x. = YTa(l+Ro)(l—q,GPm)+HRo TaP2 — GHPm
o T 14+ HPmPr~' — q;GPm

)

Pm ~ PmPr~'VTa(1 + Ro(1 — Pm)) + GPm
1+ HPmPr—! — q; GPm

)

1+ HPmPr—* + q,PmPr~*v/Ta(1 4+ Ro(1 — Pm))

Yi=A-X;, A= — , Z1=0.
1+ HPmPr~" — q;GPm
For the second order in ¢, we have the following equation:
$X2 = [%213%223%237%247%257%26]1—7 X2 = [X27‘/23U27W27Y2322]Ta (20)

where there are non-linear terms
Ho1 =0, Koo =0, Foz =0, Kos =0, Hos = X121 + QoW1 Z1, Has = —X1Y1 — ;WY1

Solutions of equations (20) look like:

Vo =

[1]
e
5
I
a
3
|

\
=
a

Yo=Xo —qiWa, Zo=A(1l-qy-1I)—.
Next, we proceed to equations of the third order in e:

LXs = [Rs1, Bz, Bz, Bza, Bas, Kze)', Xz = [X3,Vs,Us, W3, Vs, Z3]7, (21)
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where

0x, v U, oW
K31 5 RoY1, %32 = ra K33 = o K34 = R
aY;
K35 = Pr 78771 + X125 + XoZ1 + quW1 23,
Z
K36 = 873 -P

5 r XYy + XoY) + oW1 Ys + quWaYh).

The solvability condition (Fredholm’s alternative) for nonlinear equations in the third order in ¢ is as follows:

5
> %y, X] =0,
j=1

where
9{31 = MK;%ng, 9%32 = ’CR0<(<%35 — qle%34 — qleQRO\/ Ta%?,g)(l + HPmPr_l)
+ q,PmPr ™ (%sy + HPm%s3, + HPm*RovVTa%ss)),
Raz = Hz6, Ras = —MKHHZ36,
Rzs =

MT (%33 + HPmP34 + HPm?RovTaHss)(1 — q; GPm)

- GHPHI(%gg, - qle%34 - qlezRov T&%gg)),

M = (1 — q;Pm?Pr *RovTa)(1 + HPmPr ') + q,PmPr ™" - P,

2
P = VTa <1+R0+HR0P1:I)H ) ,
r

K = (1 - q,Pm?Pr'RovTa)GHPm — (1 — q;GPm) - P.
Elements of the matrix X] = [X], Y], Z], U], V[T are solutions of the linear self-adjoint problem .ZTX! = 0, where
the self-adjoint matrix .21 is defined as

-MKE RoMK 0

—-HMK —TMK
RoMK RoKN 0 0 0

—-HMK 0 0 —HPm 'Prkm 0

| -TMK 0 0 0 -TL
where

N =—(1+HPmPr ' —q,GPm), £=-N.

Finally, we derive the nonlinear Ginzburg-Landau equation for the amplitude A;(7) from the equation (22):

0A
Ala—; — Ay Ay + A3A3 =0 (23)
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Using the definition for R, T, H, q;, q,, G, the coefficients A; 2 3 take the following form:

a? k?Rac (1 + QQHa (1 + F;:*T) —Ga 7;241:1’31;123 Rov Ta) (a4 + 7T2Q) + qa ;-211331;12 -0

A= Pr a*
m2QPm B mvTa
a?Pr ab(a* + 712Q — k2qo Ro)Pr

a* + m2Q — go Ro k2

~ P 2Pm?
X [5- (a* — k2qoRa) — Tk2a*QPrR,, (1 + qo 11, <1 + m) — qameovTaﬂ ,

wa’v/Ta

5 p—
a* 4+ m2Q — k2¢a Ro,

2k2R,Q(1 +P 3Pm?
- TR0 P TP opoy T

a* + m2Q — go Ro k2

Ay =

Az =

o k?Rag
a? Pr

_ klRa (14 qalla)(1— qT0,)2(a + 7%Q)

8a* Pr a* 4+ m2Q — k2¢aRo

where

L8P

+Ro¢

Pr a‘Pr?

-[(1 + Ro)(a* - k2¢aRa) + 72QPm(PmRo — 1)]

Q = QPm ™ 'Pr,

(1+ qolly),

2kAQPm ™ 'WTa(l + ¢oT1, ) (1 — ¢211,)2
8at(a* + m2Q — k2qo Ry) ’

_ m?PmPr' VTa(l + Ro(1 — Pm)) + k2R,

a* + m2Q — k2go Ra

10

~. 0
When deriving the equation (23), we used the rescaled derivative with respect to slow time 7: — = — —.
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XAOTUYHA IUHAMIKA MATHITHUX IIOJIIB, 4KI TEHEPYIOTHCS TEPMOMATHITHOIO

HECTINKICTIO B EJIEKTPOIIPOBIIHIN PIJIVMHI, 1110 HEOHOPIJTHO OBEPTAETHCSH

M. 1. Komn', A. B. Typ?, B. B. Suoscbkmiil?
! Inemumym monoxpucmanis, Hayionarona axademia nayx Yxpairu,
npocn. Hayxu, 60, Xapxie, 61072, YKpaina
2 Xapwiscoruil nayionarvrutl ynieepcumem imeni B. H. Kapasina,
Mmatidan Ceobodu, 4, Xapwie, 61022, Yrpaina
3 Vuisepcumem Tyaysu, CNRS, Incmumym docridocens acmpodidury ma niamoro2ii

JocmipKeHo Xa0THYHY ITOBEIIHKY TEILJIOBOI KOHBEKII B €JIEKTPONPOBIAHIM pifguHi, 0 HEOIHOPIIHO
00epTAETHCS, T €0 TOCTIHHONO BEPTUKAJILHOIO MArHiTHOTO mossa Bg. 3a HasgBHOCTI BepTHKAILHUX
rpazientis remueparypu V71 i koedinienra repmo-EPC Vo Bunukae repmomaraitua (TM) mecTifikicTn,
10 MPUBOJUTH JI0 TeHepariil MaraiTaux mosis. Maruitae mose B, o 30ymkyerhes mieio 6atapei Bipma-
Ha, CIIPSAMOBAaHE MEPIEHIUKYIAPHO 0 MIOMNHN BeKTOpiB VT, Va i rpasienTa reMnepaTrypHnx 30ypeHb
VT;. lle maruiTHe 1OJI€ 3MIHIOE PEXKUM TEIJI000MiHY, a 33 PAXYHOK edeKTiBt KOHBEKTHBHOTO TEILIO-
obminy Ta Puri-Jlemoka BCTAHOBIIOETHCS MO3UTHUBHUI 3BOPOTHWI 3B’S30K, IO CHPUYWHSAE 301TbITEHHS
36ypeHb MArHITHOIO MOJIsA. 3a JOIOMOro0 ycidenoro meromy Lambopkina oTpuMano Hemimiiiny guHAMI-
YHY CUCTEMY DPiBHSHB, IO OMUCYE T€HEPAITI0 Ta PEreHepalio MarHiTHOTO Tojad. UuceabpHui aHasi3 mux
PIBHSIHBb TTOKA3aB HASBHICTH PEryJISPHOI, KBA3IMEPiOAWIHOI Ta XAOTUIHOI MOBEMAIHKYM 30ypPEHb MArHITHO-
ro TOJisl, IO CYTPOBOIKYIOThCs HOro iHBepcisiMu. 3aCTOCOBYIOYM METOJ Teopil 30ypeHb 10 HesiHifHOl
JMHAMIYHOI CHCTeME PiBHAHB, ME OTpEMaid piBHanHs I in36ypra-Jlammsay mis cirabomeniniitaoi crasil
MarHiTHOI KOHBEKIIiT, 1110 HEPIBHOMIpHO 0bepTaeThcsd 3 ypaxyBauusam edertis TM. Po3p’a30k mporo pie-
HSHHS TIOKA3aB: CTAIliOHAPHUI PIBEHh MATHITHUX MOJIIB, 10 T€HEPYIOTHCS, 30LIBITYETHCI 3 ypaxyBaHHIM
priuBy 1T M-HecrifikocTi.

KurrouoBi cjioBa: resepaiiiss MarHiTHUX I0JiB, TEPMOMAIrHITHA HECTIAKICTb, XAOTHYHA IIOBEIIHKA,
piBusamnsa I'im36ypra-Jlaniay.
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