Journal of Physical Studies 27(3), Article 3001 [6 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.3001

THE EFFECT OF UV LIGHT IRRADIATION ON THE GAS-SENSING PROPERTIES OF THE QUARTZ CRYSTAL MICROBALANCE SENSOR COMBINED WITH ZnO FILM

B. Turko1 , V. Vasil'yev1, V. Kapustianyk1 , O. Zakrevskyi1, L. Hrytsak1 , A. Kostruba2 

1Ivan Franko National University of Lviv, 50, Drahomanov St., Lviv, 79005, Ukraine,
2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 50, Pekarska St., Lviv, 79010, Ukraine,
e-mail: tyrko_borys@ukr.net

Received 07 February 2023; in final form 24 April 2023; accepted 01 June 2023; published online 25 September 2023

Zinc oxide thin films were deposited on the both electrodes of the commercial quartz resonator HC49U using the standard radio-frequency magnetron sputtering method in order to provide NH$_{3}$, H$_{2}$O$_{2}$ and C$_{2}$H$_{5}$OH vapor sensors application at room temperature. For the first time, the impact of the ultraviolet light-emitting diode illumination ($λ_{\rm max} = 395$ nm, light irradiance of about 2 \text{mW/cm$^2$}) on the main characteristics of the ZnO coated quartz crystal microbalance sensor, such as response/recovery time and sensitivity, was studied. The obtained experimental data and calculated characteristics prove that ultraviolet illumination of the quartz crystal microbalance sensor covered with a ZnO film leads to a significant reduction in the recovery time at detection of ethanol, ammonia or hydrogen peroxide vapors. Under the influence of ultraviolet irradiation, the fabricated quartz crystal microbalance sensor coated with ZnO film showed promising potential in detecting explosive components.

Key words: UV LED irradiation, zinc oxide, gas sensor, thin film, quartz crystal microbalance.

Full text


References
  1. S. Dhall, B. R. Mehta, A. K. Tyagi, K. Sood, Sensors Int. 2, 100116 (2021);
    Crossref
  2. G. Heiland, Sens. Actuators 2, 343 (1982);
    Crossref
  3. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem. 34, 1502 (1962);
    Crossref
  4. V. B. Kapustianyk, M. R. Panasyuk, B. I. Turko, Yu. G. Dubov, R. Ya. Serkiz, Semiconductors 48, 1395 (2014);
    Crossref
  5. G. Eranna, B. C. Joshi, D. P. Runthala, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004);
    Crossref
  6. U. Yaqoob, M. I. Younis, Sensors 21, 2877 (2021);
    Crossref
  7. S. M. Majhi, A. Mirzaei, H. W. Kim, S. S. Kim, T.W. Kim, Nano Energy 79, 105369 (2021);
    Crossref
  8. S. I. Boyadjiev, V. Georgieva, R. Yordanov, Z. Raicheva, I. M. Szil'agyi, Appl. Surf. Sci. 387, 1230 (2016);
    Crossref
  9. M. Kumar, R. Kumar, S. Rajamani, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Nanotechnology 28, 365502 (2017);
    Crossref
  10. X. Su, L. Gao, F. Zhou, W. Cai, G. Duan, RSC Adv. 7, 21054–21060 (2017);
    Crossref
  11. C. B. Jacobs et al., Sci. Rep. 7, 6053 (2017);
    Crossref
  12. G. Bo et al., Sens. Actuators B Chem. 245, 821 (2017);
    Crossref
  13. Y.-T. Tsai et al., ACS Omega 3, 13798 (2018);
    Crossref
  14. H. Zhang, H. Qin, C. Gao, G. Zhou, Y. Chen, J. Hu, Sensors 18, 1990 (2018);
    Crossref
  15. J. Huang, Y. Du, Q. Wang, H. Zhang, Y. Geng, X. Li, X. Tian, Sensors 18, 50 (2018);
    Crossref
  16. G. Li, Z. Sun, D. Zhang, Q. Xu, L. Meng, Y. Qin, ACS Sens. 4, 1577 (2019);
    Crossref
  17. J. Li, D. Gu, Y. Yang, H. Du, X. Li, Front. Mater. 6, 158 (2019);
    Crossref
  18. Q. P. Zhang et al., Sci. China Tech. 62, 2226 (2019);
    Crossref
  19. L. H. Phuoc et al., Bull. Mater. Sci. 42, 72 (2021);
    Crossref
  20. L. Bonaccorsi, A. Malara, A. Donato, N. Donato, S. G. Leonardi, G. Neri, Micromachines 10, 338 (2019);
    Crossref
  21. T. Dilova, G. Atanasova, A. Og. Dikovska, N. N. Nedyalkov, Appl. Surf. Sci. 505, 144625 (2020);
    Crossref
  22. A. Chizhov, P. Kutukov, A. Gulin, A. Astafiev, M. Rumyantseva, Chemosensors 10, 147 (2022);
    Crossref
  23. H. Cheng; L. Qin, F. Li, K. Wang, in 2008 IEEE International Frequency Control Symposium, Honolulu, HI (2008), p. 535;
    Crossref
  24. N. Van Quy, V. A. Minh, N. Van Luan, V. N. Hung, N. Van Hieu, Sens. Actuators B 153, 188 (2011);
    Crossref
  25. S. K. Vashist, J. Sensors 2011, 71405 (2011);
    Crossref
  26. X. Wang, J. Zhang, Appl. Mech. Mater. 248, 199 (2013);
    Crossref
  27. M. Kinoshita, S. A. Kulinich, K. Noda, S. Iwamori, Sens. Mater. 30, 2773 (2018);
    Crossref
  28. Y. Bakha, H. Khales, Acta Phys. Pol. A 136, 490 (2019);
    Crossref
  29. X. S. Ma, H. D. Zhang, G. Y. Li, K. Guo, Y. Z. Long, Int. J. Mod. Phys. B 35, 2150042 (2021);
    Crossref
  30. G. Alexieva, K. Lovchinov, M. Petrov, R. Gergova, N. Tyutyundzhiev, Coatings 12, 81 (2022);
    Crossref
  31. M. L. Dayekh, S. A. Hussain, in Metal-Oxide Gas Sensors, edited by S. Dhara, G. Dutta (IntechOpen CY, Rijeka, 2023), Chap. 1;
    Crossref
  32. J. Xu, Q. Pan, Y. Shun, Z. Tian, Sens. Actuators B 66, 277 (2000);
    Crossref
  33. H. Nichev et al., Bulg. Chem. Commun. 48(B), 60 (2016).
  34. S. Boyadjiev et al., J. Phys. Conf. Ser. 1492, 012052 (2020);
    Crossref
  35. D. Dimova-Malinovska, H. Nichev, V. Georgieva, O. Angelov, J.-C. Pivin, Phys. Status Solidi (a) 205, 1993 (2008);
    Crossref
  36. B. Georgieva et al., J. Phys. Conf. Series. 559, 012014 (2014);
    Crossref
  37. X. Wang, Y. Yao, J. Zhang, Z. Zhu, J. Zhu, Sens. Mater. 20, 111 (2008);
    Crossref
  38. V. Kapustianyk et al., Opt. Commun. 269, 346 (2007);
    Crossref
  39. M. Karimi, M. Ezzati, S. Akbari, M. Behtaj Lejbini, Curr. Appl. Phys. 13, 1758 (2013);
    Crossref
  40. P. Nakarungsee, S. Srirattanapibul, C. Issro, I-M. Tang, S. Thongmee, Sens. Actuator A Phys. 314, 112230 (2020);
    Crossref
  41. L. Toporovska et al., J. Phys. Stud. 22, 1601 (2018);
    Crossref
  42. F. Quintero, P. Arias, H. Zea, Int. J. Chemtech. Res. 5, 1641 (2013).
  43. B. H. J. Bielski, J. M. Gebicki, J. Am. Chem. Soc. 104, 796 (1982);
    Crossref
  44. T. J. Hsueh, R. Y. Ding, Nanomaterials 12, 3287 (2022).
    Crossref
  45. W. R. Kuhn, S. K. Atreya, Icarus 37, 207 (1979);
    Crossref
  46. G. H. Shahkhatuni, V. M. Aroutiounian, V. M. Arakelyan, M. S. Aleksanyan, G. E. Shahnazaryan, J. Contemp. Phys. 54, 188 (2019);
    Crossref
  47. M. Aleksanyan, V. Aroutiounian, V. Arakelyan, G. Shahnazaryan, G. Shahkhatuni, Sens. Transducers 246, 23 (2020).
  48. M. Aleksanyan et al., Nanomaterials 13, 120 (2023);
    Crossref
  49. N. H. Al-Hardan et al., Sensors 16, 1004 (2016);
    Crossref
  50. J. Wang, M. Xu, R. Zhao, G. Chen, Analyst 135, 1992 (2010);
    Crossref
  51. F. Cataldo, New Front. Chem. 23, 99 (2014).
  52. H. Ikai et al., Antimicrob. Agents Chemother. 54, 5086 (2010);
    Crossref