Journal of Physical Studies 27(3), Article 3702 [4 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.3702

ENERGY STRUCTURE OF CeCl2Br AND CeClBr2 CRYSTALS

Ya. M. Chornodolskyy{1} , V. O. Karnaushenko{1} , S. V. Syrotyuk{2} , L. D. Bolibrukh{2} , S. O. Ihnatsevych{1}, O. T. Antonyak{1} , A. S. Voloshinovskii{1} 

{1}Ivan Franko National University of Lviv,
8, Kyryla & Mefodiya St., Lviv, UA–79005, Ukraine
{2}Lviv Polytechnic National University,
12, S. Bandera St., Lviv, UA–79013, Ukraine

Received 01 August 2023; in final form 25 August 2023; accepted 28 August 2023; published online 19 September 2023

Band-energy structures of CeCl$_2$Br and CeClBr$_2$ crystals have been calculated using the projected augmented wave method (PAW) and the hybrid exchange-correlation functional PBE0. A valence band is formed by mixed 3$p$ Cl and 4$p$ Br states. There is an energy gap between the 5$d$ states of Ce at the bottom of the conduction band, where subbands 5$d1$ and 5$d2$ have different effective electron masses of $2.3m_0$ and $0.06m_0$. 4$f$ Ce states are located in the middle of the band gap. The calculated band gap values for CeCl$_2$Br and CeClBr$_2$ crystals are 4.5 eV and 4.0 eV, respectively.

Key words: scintillator, band structure, projected augmented wave method, band gap.

Full text


References
  1. B. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, J. Mater. Res. 23, 2561 (2008);
    Crossref
  2. C. Dujardin et al., IEEE Trans. Nucl. Sci. 65, 1977 (2018);
    Crossref
  3. O. Kochan et al., Materials 14, 4243 (2021);
    Crossref
  4. Ya. Chornodolskyy et al., J. Lumin. 237, 118147 (2021);
    Crossref
  5. V. O. Karnaushenko, Ya. M. Chornodolskyy, V. V. Vistovskyy, S. V. Syrotyuk, A. S. Voloshinovskii, J. Phys. Stud. 24, 4703 (2020);
    Crossref
  6. V. Karnaushenko, Ya. Chornodolskyy, V. Vistovskyy, S. Syrotyuk, A. Voloshinovskii, Visn. Lviv. Univ. Ser. Phys. 57, 122 (2020);
    Crossref
  7. Ya. Chornodolskyy et al., Materials 15, 7937 (2022);
    Crossref
  8. T.-S. Sun, F.-L. Wang, Y.-M. Xiao, Thermochim. Acta, 311, 21 (1998).
    Crossref
  9. H. Wei, V. Martin, A. Lindsey, M. Zhuravleva, Ch. L. Melcher, J. Lumin. 156, 175 (2014);
    Crossref
  10. M. Birowosuto, P. Dorenbos; K. W. Krämer, H. U. Güdel, J. Appl. Phys. 103, 103517 (2008);
    Crossref
  11. M. Loyd et al., J. Cryst. Growth. 531, 125365 (2020);
    Crossref
  12. K. Przystupa et al., Materials, 16, 5085 (2023);
    Crossref
  13. E. V. D. van Loef, P. Dorenbos; C. W. E. van Eijk; K. Krämer; H. U. Güdel, Appl. Phys. Lett. 77, 1467 (2000);
    Crossref
  14. G. Ren et al., Nucl. Instrum. Methods. Phys. Res. A 579, 11 (2007);
    Crossref
  15. J. Andriessen et al., Opt. Commun. 178, 355 (2000);
    Crossref
  16. K. S. Shah et al., IEEE Symp. Conf. Record Nucl. Sci. 7 (2004);
    Crossref
  17. F. G. A. Quarati et al., Nucl. Instrum. Methods. Phys. Res. A 729, 596 (2013);
    Crossref
  18. A. F. Iyudin et al., Instrum. Exp. Tech. 52, 774 (2009);
    Crossref
  19. P. Blochl, Phys. Rev. B 50, 17953 (1994);
    Crossref
  20. X. Gonze et al., Comp. Phy. Commun. 205, 106 (2016);
    Crossref
  21. V. Tognetti, P. Cortona, C. Adamo, J. Chem. Phys. 128, 034101 (2008);
    Crossref
  22. M. Birowosuto, P. Dorenbos, Phys. Status Solidi A 206, 9 (2009);
    Crossref