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The Closed Cluster method (CC method) is applied to �nd solutions for various calculation
problems of the energy band structure of graphene. The essence of the CC method consists in the
addition of closing bonds between edge atoms to the usual cluster method in order to eliminate the
�dangling� bonds on the edges of the cluster. We study the cases of an �in�nite� layer of graphene
as well as nanoribbons, nanotubes and bilayer graphene. Results for these cases are in agreement
with what was obtained using other methods (tight binding approximation and others). Using the
CC method, we also study the problem of point defects in graphene and obtain the distortion of
the energy spectrum. The energy spectrum of the layer C1−xSix (0 ≤ x ≤ 1) is found as well as
the dependence of the energy gap on the concentration of silicon. We show that the energy band
structure of C1−xSix looks like a tunnel transition. Wave functions of graphene in the symmetry
points of Brillouin zone are also obtained.
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I. INTRODUCTION

Studies of various properties of graphene and its appli-
cations have attracted much attention in the last years,
as is well-known [1]. In this paper, we propose an
approach based on the use of closed clusters (CC) to
calculate the energy band structure of graphene. We
developed this approach earlier in application to the
one-dimensional and three-dimensional crystals with di-
amond structures [2]. The essence of the CC approach is
to bring together all bonds of atoms which are located on
the edge of a cluster in order to eliminate the �dangling�
bonds. This approach is found to be especially useful
for calculation of the energy spectrum of crystals with
point defects, such as vacancies or impurity atoms. The
simplest and most widespread approach to calculate such
impurity states is known to be the e�ective mass method.
This approximation works su�ciently well in cases of
impurity levels being located along the borders of the
energy zones. However, it is inapplicable to the descri-
ption of the so-called �deep levels�, which lie far from the
zone borders [3]. One of the methods used for those levels
is the cluster approach, in which a group of atoms � the
cluster � is mentally picked from a crystal lattice.
This cluster is considered a separate �molecule� and

for its calculation the usual quantum chemistry methods
are applied. The advantage of the clusters approach is
its applicability for modelling real situations of impurity
atoms and � if necessary � taking into consideration a
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possible distortion of the crystal lattice.

However, the usual cluster approach has a de�ciency. If
the �in�nity� crystal is substituted with a group of atoms,
a problem with atoms lying on the edge of the cluster ari-
ses. The presence of such atoms with torn bonds distorts
the energy spectrum of the crystal. This distortion can
be diminished by increasing the size of the cluster, but
the approximation to the exact value is very slow.

This de�ciency can instead be removed by connecting
the torn bonds with each other and hereby closing them.
A similar procedure, the so-called �periodical boundary
conditions�, is applied in studying the energy spectrum
of the in�nite ideal crystals. The special feature of our
approach is the application of the closing procedure of
these bonds to small clusters to study crystals with di-
storted regularity properties (such as impurity, edges and
other). In this paper, the CC approach is applied to
graphene, a relatively new material with numerous uni-
que properties [4]. In Section II, the fundamental idea of
the CC approach is presented as well as the rules for the
construction of diagrams corresponding to the various
clusters. In Section III, examples of building Hamiltoni-
an matrices and solutions for the secular equations in the
case of periodical structures without edges and defects
are given. The aim of this section is to test our approach
by comparising the results with those obtained using
other methods. In Section IV, the CC approach is applied
to bilayer graphene. In SectionV, we present wave functi-
ons at symmetry points of the Brillouin zone. In Secti-
onVI we study nanoribbons and nanotubes by means of
closed clusters. SectionVII, contains the calculations of
the graphene energy spectrum in the presence of impuri-
ty. Finally, in SectionVIII we study the energy band
structure of the hypothetic monoatomic layer C1−xSix
(0 ≤ x ≤ 1). Section IX concludes with a discussion of
the obtained results and, describes a possibility for maki-
ng the approach more precise as well as the application
of the CC approach to other problems.
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II. THE ESSENCE OF THE CC APPROACH
AND A RULE FOR CONSTRUCTING THE

DIAGRAMS

By the term a �closed cluster� we mean a group of
N atoms which re�ects the structure of the crystal and
furthermore the atom bonds which are present within the
group; at the same time, the torn bonds are absent. A
similar procedure of closing the bonds known as �periodi-
cal boundary conditions� is often used in one-dimensional
atom chains when atom N+1 is identical to the �rst one.
Such a procedure is also possible for 3D-systems, but is
rarely applied here, since closing a 3D cluster is much
more di�cult. In 2D cases, however, closing can be reali-
zed very easily � therefore, the application of the CC
approach to graphene and other 2D structures seems to
be very e�ective.
While constructing clusters corresponding to

graphene, one must start out from its crystal structure.
The latter is well-known, a hexagonal layer which
is formed by two sublattices, here A and B [5]. The
simplest unclosed cluster corresponding to such a
structure is shown in Fig. 1(a).
The main idea of the closed cluster approach is the

necessity of closing the torn bonds shown in Fig. 1(a)
in the way shown in Fig. 1(b). In the case of an endless
graphene layer, the structure of the lattice requires the
following rules regarding the construction of a closed
cluster with approximation of the nearest neighbors.

(a) (b)

(c)

Fig. 1. The most simple clusters of the graphene lattice
(a) unclosed cluster N = 6
(b) closed cluster N = 6

(c) cluster surrounded by neighbor atoms
dashed line: closing bonds

continuous line: real bonds in graphene lattice

� Rule 1. Each atom of sublattice A is bonded with
three atoms of sublattice B and vice versa.

� Rule 2. All real and closing bonds have the same
energy levels.

� Rule 3. The number of atoms in a cluster N must
be divisible by six.

The last rule is explained in detail in SectionV.
All three rules in fact are satis�ed within the

construction in Fig. 1(b), although the second rule seems
to be broken at �rst sight: for example, the closing bond
between atoms 1 and 4 looks di�erent from that between
1�2 or 1�6, since atom 4 is further away from 1. However,
it must be kept in mind that the bond 1�4 is not a real
bond. In contrast to Fig. 1(c), the closed cluster 1(b)
must be understood as a diagram or graph, which makes
it easier to obtain the Hamiltonian matrix. Furthermore,
if these Hamiltonian matrix elements corresponding to
the closing bonds are chosen to be the same as for exi-
sting bonds, then the �interaction� between atoms like 1
and 4 in 1(b) in fact describes the interaction between 1
and 1′ in 1(c), the latter of which is absent from cluster
N = 6.
It must be noted that the numbers of atoms in sublatti-

ces A and B have to be equal, as closing bonds are
only possible between atoms of di�erent sublattices. For
example, in cluster 1(b) it is only possible to close the
bonds of atom 1 with atom 4, but not with 3 or 5. This
restriction is necessary to satisfy Rule 1.
We also note that energy values obtained from the

solution of secular equations are independent from the
choice of the cluster in the case of an �in�nite� ideal
lattice, but are only dependent on the number N . They
are also independent of the numeration of the atoms,
since changes in numeration only cause determinant
permutations.
Fig. 2 shows some of the possible clusters with N = 12

with dissimilar ways of closing.

(a) (b)

(c)

Fig. 2. Examples of closed clusters for N = 12

To conclude this section, we note, that the name
�closed cluster�, which we use, is di�erent from the term
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�closed walk� used in graph theory [6]. For example, the
cluster shown in Fig. 1(a) is a �closed walk�, but not a
closed cluster � the latter is shown in Fig. 1(b).
One de�nition of a closed cluster can be given as a

cluster where each atom is linked to the same number of
neighboring atoms as in the corresponding crystal.

III. BUILDING A HAMILTONIAN MATRIX
AND SOLUTION OF SECULAR EQUATIONS

The basic idea underlying the CC approach is the same
as in the usual molecular orbital approach (MO) [7]. In
particular, this is the representation of the wave function
of the cluster Ψ(r) as a linear combination of the wave
functions of the atoms

Ψ(r) =

N∑
n=1

cnφ(r− an). (1)

Functions φ in graphene are |pz⟩ � orbitals of carbon
atoms, with axis z being perpendicular to the layer. We
designate wave functions along and opposed to this axis
as �+� and �−�.
The standard procedure of obtaining secular equations

leads to a system of linear equations which help to �nd
the coe�cients cn in

N∑
n=1

Mmncn = 0, m = 1, 2, . . . , N, (2)

where

Mmn = εδmn + (1− δmn)ηmn, (3)

δmn =

{
1,m = n

0,m ̸= n,

ηmn =

{
1, if atom m is bound with atom n

0, if atom m is not bound with atom n,

ε =
E − E0

γ0

with
E � energy of an electron
E0 � energy of an electron in the |2pz⟩ state in an

isolated carbon atom. We use E0 = 0
and −γ0 � the transfer integral between neighboring

atoms with wave functions with the same sign, γ0 > 0.
The problem of calculating the corresponding values

of energy ε (in γ0 units) is then reduced to solving the
secular equation

detMmn = 0. (4)

Now we consider some examples of applications of
the approach. We begin with the simplest closed cluster
N = 6, which is shown in Fig. 1(b). The secular equation
(4) has the form (empty matrix cells standing here and

further for zeroes):

D6 =

∣∣∣∣∣∣∣∣∣∣∣

ε 1 1 1
1 ε 1 1

1 ε 1 1
1 1 ε 1

1 1 ε 1
1 1 1 ε

∣∣∣∣∣∣∣∣∣∣∣
= 0. (5)

Calculating the determinant (5) leads to the following
equation for �nding ε:

ε4(ε2 − 9) = 0. (6)

The solutions of (6) ±3,0,0,0,0 are exactly those
energy values at bottom, top and Dirac points of two
energy bands, which are obtained from a tight binding
and nearest neighbor approximations [5].
The fact, that the CC approach provides exact values

of energy band boundaries already at a minimal cluster
size is very important in the calculation of the energy
of impurity states, as the energy of such states counted
from the bands' boundaries.
Let us consider the next example with N = 12. If we

proceed from the clusters from Fig. 2, then the secular
equation has the form:

D12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 1 1 1
1 ε 1 1

1 ε 1 1
1 ε 1 1

1 ε 1 1
1 1 ε 1

1 ε 1 1
1 1 ε 1

1 1 ε 1
1 1 ε 1

1 1 ε 1
1 1 1 ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (7)

The solution of equation (7) is given by the following
values of energy ε: ±3,±2,±2,±1, 0, 0, 0, 0.
The determinant of cluster N = 24 has a form which is

analogous to (7) D12. The obtained energy values are shown
in Table 1.
The main conclusion which may be drawn from the

comparison of cases N = 6, 12 and 24 is the fact that the
energy values of the bottoms and tops of the lower (−3, 0)
and upper band (0, 3) are equal in each case; therefore, they
are independent of the cluster size. With the growth of the
cluster size, new energy levels arise; however, previous levels
remain the same.
Each energy value in Table 1 corresponds to some point of

the Brillouin zone. More in-detail discussion on that issue is
presented in Sec.V. At this point we just brie�y discuss the
fourfold degeneration of level ε = 0 at all N .
At �rst glance it does not seem to be in accordance with

ε being 0 at six corners of the Brillouin zone (points K1, K2,
. . . , K6 in Fig. 3).
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Table 1. Electron energy values with varying numbers of atoms in the cluster

N Energy
6 ± 3 0 0 0 0

12 ± 3 ± 2 ± 2 ± 1 0 0 0 0

24 ± 3 ±(
√
3+1) ±(

√
3+1) ± 2 ± 2 ± 1 ± 1 ± 1 ±(

√
3-1) ±(

√
3-1) 0 0 0 0

Fig. 3. Brillouin zone of graphene [5]

However, it must be kept in mind that only two of these
six points, K1 and K2 for example, belong to the �rst Bri-
llouin zone, others belonging to the next zones. The twofold
degeneration at points K1 and K2 is what leads to fourfold
degeneration of the level ε = 0.
To conclude this section, it should be noted that the rules

for diagram construction formulated in sec. III do not requi-
re these diagrams to be plane. Therefore, they also can be
applied to nanotubes as well as spherical surfaces (fullerene).
A strati�ed cluster can also be used. For example, the di-
agram in Fig. 2(a) can be rearranged to a hexahedron wi-
thout breaking the bonds. The application for the space di-
agram is useful for studying many-layer graphene. In the next
section, we use a three-dimensional diagram to study bilayer
graphene.

IV. BILAYER GRAPHENE

For N = 12, the 3D closed cluster corresponding to bilayer
graphene is shown in Fig. 4. In addition to the closing bonds
within the layers (energy γ0), also the bonds describing the
interactions between those layers (energy γ1 in γ0-units) are
present in the cluster.
Note, that Fig. 4 does not show the displacement of the

upper layer towards the lower, since this Figure doesn't
reproduce a real atomic structure, but is solely a diagram
which is used for building a Hamiltonian matrix.

Fig. 4. Cluster N = 12 for bilayer graphene

The secular equation corresponding to Fig. 4 has the form

D
(2)
12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 1 1 1 γ1
1 ε 1 1 γ1

1 ε 1 1 γ1
1 1 ε 1 γ1

1 1 ε 1 γ1
1 1 1 ε γ1

γ1 ε 1 1 1
γ1 1 ε 1 1

γ1 1 ε 1 1
γ1 1 1 ε 1

γ1 1 1 ε 1
γ1 1 1 1 ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(8)
Solving equation (8) leads to following energy levels:

ε = ±(3 + γ1),±(3− γ1),±γ1,±γ1,±γ1,±γ1. (9)

The main result that ensues from (9) is that there is an
energy gap εg = 2γ. The presence of this gap in bilayer
graphene is a fact discussed in many papers [8, 9]. In the
model which we are using, the energy gap is caused by the
interaction between the layers and disappears if we set γ1=0.

V. WAVE FUNCTIONS

Within our considered model, the cluster wave functions
are determined by the totality of coe�cients cn, according
to (1). To obtain the latter, one must solve the system of
equations (2) under de�ned energy values ε. For ε = 3 and
ε = −3 the result is obvious and shown in Table 2. Let us
now consider the cases ε = ±1 and ε = 0 in more detail. The
latter is most interesting, since at this point the valence band
meets the conduction band.
As an example, let us consider the cluster N = 12, which

is shown in Fig. 2(b), but with a di�erent atoms numbering
(Fig. 5).

Fig. 5. Cluster N = 12 for the calculation of graphene wave
functions

To determine the coe�cients c1, c2, . . . , c12 in (2), we must
solve a system of twelve linear equations. For the cluster in
Fig. 5, it has the form
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(1) εc1 + c2 + c6 + c7 = 0

(2) c1 + εc2 + c3 + c8 = 0

(3) c2 + εc3 + c4 + c9 = 0

(4) c3 + εc4 + c5 + c10 = 0

(5) c4 + εc5 + c6 + c11 = 0

(6) c1 + c5 + εc6 + c12 = 0

(7) c1 + εc7 + c8 + c12 = 0

(8) c2 + c7 + εc8 + c9 = 0

(9) c3 + c8 + εc9 + c10 = 0

(10) c4 + c9 + εc10 + c11 = 0

(11) c5 + c10 + εc11 + c12 = 0

(12) c6 + c7 + c11 + εc12 = 0

. (10)

As we can see from Fig. 5, our cluster is re�ection-
symmetric in the axes y and x, due to the closing bonds 1�6
and 7�12. Hence, wave functions must be symmetric (Sx, Sy)
or antisymmetric (AxAy) to the re�ection in the x and y
axis. Altogether there are four possible symmetries of wave
functions: SxSy, SxAy, AxSy and AxAy.
First we consider the SxSy case. The following relations

among the coe�cients must be satis�ed:

SxSy :


c1 = c7

c2 = c6 = c8 = c12

c3 = c5 = c9 = c11

c4 = c10

. (11)

Then the task is to solve just four equations instead of
twelve.
If we take (11), the equations have the form

SxSy :


1.(ε+ 1)c1 + 2c2 = 0

2. c1 + (ε+ 1)c2 + c3 = 0

3. c2 + (ε+ 1)c3 + c4 = 0

4. 2c3 + (ε+ 1)c4 = 0

. (12)

The determinant of (12) has to be zero and therefore we
obtain

SxSy : ε = −3,−2, 0, 1. (13)

In other symmetry cases we have

SxAy :


c1 = −c7,

c2 = c6 = −c8 = −c12,

c3 = c5 = −c9 = −c11,

c4 = −c10

. (14)

AxSy :


c1 = c7 = 0,

c2 = −c6 = c8 = −c12,

c3 = −c5 = c9 = −c11,

c4 = c10 = 0

. (15)

AxAy :


c1 = c7 = 0,

c2 = −c6 = −c8 = c12,

c3 = −c5 = −c9 = c11,

c4 = c10 = 0

. (16)

In the latter two cases, there is c1 = c4 = c7 = c10 = 0
due to the antisymmetry to axis x (Ax). Therefore, only two
equations remain in each case, namely those of the coe�cients
c2 and c3, and consequently, only two values of energy for each
AxSy and AxAy.

The energy levels for various symmetries are shown
in Table 2; Table 3 shows the values of the coe�cients
c1, c2, . . . , c12. These coe�cient values are obtained by solvi-
ng the system of equations like (12) and analogous systems
for other symmetries for the energies ε = 0,±1,±3. The set
of these coe�cients determines the wave functions for various
symmetries within our considered model. Tables 2 and 3 also
show the Brillouin zone symmetry points, which can also be
seen in Fig. 3.

For the purpose of illustration, one can represent these
functions graphically by extending the cluster over the whole
graphene layer. In the case ε = ±1, the functions coincide wi-
th those in [5]. For the case ε = 0, wave functions for various
symmetries are shown in Fig. 6.

(a) SxSy ; K1 (b) AxSy ; K1

(c) SxAy ; K2 (d) AxAy ; K2

Fig. 6. Wave functions of graphene various symmetries at the
points K. The data is taken from Table 3

From Fig. 6 it is easy to see that in cases 6(a) and 6(b)
the wave functions are plane waves with λ = 3

2
a, where a is

the length of the vector connecting the nearest neighbors of
atoms A and B. The fronts of these waves are parallel to axis
x, which means that the wave vector k is directed along axis
y.

The length of the wave vector of these waves k = 2π
λ

= 4π
3a

coincides with the length of k of Brillouin zone point K1

(Fig. 3) � thus, Figures 6(a) and 6(b) show the wave functions
at point K1. In cases 6(c) and 6(d) one can easily see that
the fronts of the wave of each sublattice are at an 120◦ angle
to the axis x. Therefore, the waves, vectors are directed at
a 30◦ angle to axis x, that is the point K2 in Fig. 3. The
length of these waves is also 3

2
a. As a consequence, Fig 6(c)

and Fig. 6(d) show the wave functions at point K2.

The fact that all four wave functions shown in Fig. 6
correspond to the energy ε = 0 can be directly deduced from
the form of these functions. Namely, the total energy of the
interactions of the atoms with their respective nearest nei-
ghbors is equal to zero, taking into consideration the values
and signs of cn from Fig. 6.

In Fig. 6 it is also evident, that those structure elements
which are periodically repeated within the wave functions at
ε = 0 are triplets of atoms: 1,−1, 0 (Fig. 6(b)), 1,− 1

2
,− 1

2
(Fig. 6(a)) etc. Consequently, the energy value ε = 0 is only
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Table 2. Energy levels of cluster N = 12 corresponding to various symmetries of wave functions
``````````̀Symmety

Energy level
ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12

SxSy -3 -2 0 1

SxYy -1 0 2 3

AxSy -2 0

AxAy 0 2

Point of BZ Γ M − 0 K1 K2 K1 K2 M + 0 D

Table 3. Wave functions at the symmetry points of the Brillouin zone
PPPPPPPcn

Energy −3 −1 0 0 0 0 1 3

c1 1 1 1 1 0 0 1 1

c2 1 1 −1/2 −1/2 1 1 −1 −1

c3 1 1 −1/2 −1/2 −1 1 1 1

c4 1 1 1 −1 0 0 −1 −1

c5 1 1 −1/2 −1/2 1 −1 1 1

c6 1 1 −1/2 1/2 −1 −1 −1 −1

c7 1 −1 1 −1 0 0 1 −1

c8 1 −1 −1/2 1/2 1 −1 −1 1

c9 1 −1 −1/2 1/2 −1 −1 1 −1

c10 1 −1 1 1 0 0 −1 1

c11 1 −1 −1/2 1/2 1 1 1 −1

c12 1 −1 −1/2 1/2 −1 1 −1 1

Symmetry SxSy SxAy SxSy SxAy AxSy AxAy SxSy SxAy

Point of BZ Γ M − 0 K1 K2 K1 K2 M + 0 D

possible in those clusters in which the number of atoms N is
divisible by three. Since N also has to be even, due to the
equal number of atoms in sublattices A and B, the number
N �nally has to be divisible by six. This is the base for rule
3 of cluster building from Section II.
It is easy to see that in clusters N = 8, 10 and other N not

divisible by six, energy values ε = 0 are absent. Therefore,
only clusters with N divisible by 6 must be taken into consi-
deration in the case of endless layers.

VI. NANORIBBONS AND NANOTUBES

The CC approach is especially applicable to impurities, as
well as nanotubes and nanoribbons. In the latter two cases a
group of atoms lying across the tubes or ribbons is a natural
cluster, in which the number of atoms depends on the di-
ameter of the tube or the width of the ribbon (Fig. 7). Let
us now consider the armchair ribbon with N = 12. As zigzag
nanoribbons are not analogous to carbon nanotubes [12], the
former will not be discussed in this work. The above menti-
oned cluster is shown in (Fig. 7(b)). This cluster di�ers from
the cluster in Fig. 2(b) in a single, yet very signi�cant aspect:
the cluster in Fig. 7(b) has no closing bonds between atoms
1�6 and 7�12. This re�ects the fact that the latter atoms
are situated on the edge and therefore are connected to the

ribbon by two, not three bonds.

(a) (b) Related
closed cluster

N=12

Fig. 7. Armchair ribbon (a) and the corresponding closed
cluster N = 12 (b).

As one can see, the cluster in Fig. 7(b) belongs to a well
known ladder type. The determinant DN of this cluster may
be written in a block form for any even N

DN =

∣∣∣∣∣LN1(ε) IN1

IN1 LN1(ε)

∣∣∣∣∣ , (17)

where
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N1 =
N

2
,

LN1(ε) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 1
1 ε 1

1 ε 1
.

.
.
1 ε 1

1 ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


N1 (18)

and IN1 being the unity matrix of order N1.

The determinant (17) can be brought into a quasi-
triangular form. For this, we need to add row number
(N1 + 1) to the �rst row, row (N1 + 2) to the second, and so
on until row N1 is added to row 2N1. Then, the �rst column
is subtracted from column (N1 + 1), second from (N1 + 2)
and similarly column N1 from 2N1.

As a result, we obtain

DN = LN1(ε+ 1)LN1(ε− 1), (19)

where Ln(x) are well-known polynomials, expressions of whi-
ch are given in [10] (for gn(x) there) for n ≤ 20. It is also
known that the representation of Ln(x) via the trigonometric
functions is [11]

Ln(x) =
sin[(n+ 1)θ]

sin θ
, (20)

where x = 2 cos θ.
Then, for obtaining the energy valuesDN (ε) = 0 is reduced

to conditions which need to satisfy at least one of two of the
following equations:

LN1(ε+ 1) = 0 (21)

or
LN1(ε− 1) = 0. (22)

In view of (20), these equations lead to

sin[(N1 + 1)θ+] = 0 (23)

and
sin[(N1 + 1)θ−] = 0, (24)

where the θ± are determined from

2 cos θ± = ε± 1. (25)

The solutions of (23) and (24) are

θ± =
n±π

N1 + 1
, (26)

where n± = 1, 2, . . . , N1.
Then, from (25) we get the formula for the energy values of

a closed cluster with 2N1 atoms, which describes the nanori-
bbon

εn± = 2 cos
n±π

N1 + 1
± 1. (27)

Taking into account that n+ and n− both may possess N1

values and due to the ±1 part we see from (27) that εn±
possesses 2N1 = N values, as this has to be the case for a
cluster with N atoms.
If the ribbon is transformed into an in�nite layer (N1 →

∞), then we get the boundary energy spectrum values from

(27), which are εmax = 3 at n+ = 1 and εmin = −3 at n− =
N1. These values also coincide with the result in section III.
Using equation (27), one can easily �nd the values of N1,

under which the solutions εn± = 0 exist, that is the ribbon is
metallic. The condition for this is cos

n−π

N1+1
= 1

2
or cos

n+π

N1+1
=

− 1
2
, otherwise

n−π

N1+1
= π

3
,

n+π

N1+1
= 2π

3
; n+ = 2n. Denoting

n− = M , one can write both above equations as

N1 = 3M − 1, (28)

with M being an integer.
The formula (28) is the same as has been obtained using

the tight binding model in [13] and [14].
The wave functions of nanoribbons with metallic conducti-

vity can be found by using the symmetry, like it is done for
the in�nite layer in sectionV.
We consider as an example the case N1 = 5. The closed

clusters for the description of the ribbon are shown in �gures
8(a) and 8(b). According to the graph theory terminology [6],
these clusters are isomorphic to each other as well as to the
ladder graph shown in Fig. 8(c). The energy spectra of these
graphs are therefore the same.

(a) (b) (c) (d)

Fig. 8. Wave functions of clusters for description of ribbon
N1 = 5 (a,b), ladder cluster (c) and ribbon with symmetry

AxSy at ε = 0 (d)

Similar to the case of in�nite layer, one can also obtain
the energy values of the cluster, which corresponds to various
symmetries. Results for N1 = 5 are shown in Table 4.
If only the energy spectrum is required, it can be directly

obtained from equation (27).
The cases for other N1 can be considered likewise. Figure

9 shows the wave functions of the symmetry AxSy for the
N1 = 8 ribbon at ε = 0.

Fig. 9. Wave functions of symmetry AxSy for the ribbonN1 =
8 at ε = 0

If we compare the ribbons shown in Figures 8(d) and 9, we
can see the meaning of the metallic conductivity condition
(28): when increasing N1, in order to keep the energies of
each atom at zero, it is necessary to add two rows of atoms,
with positive and negative |pz⟩. The latter must, however, be
separated from the previous row by including a row of zeroes.
Altogether, we need to add three rows, which is where the
term 3M in (28) derives from. From Figures 8 and 9 one can
also see that the distance between the nodes λ

2
= 3

4
a and the
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Table 4. Energy spectrum of a closed cluster for description of a N1 = 5 ribbon

Symmetry Energy

SxSy −
√
3− 1 −1

√
3− 1

SxAy −
√
3+1 1

√
3 + 1

AxSy −2 0

AxAy 0 2

Table 5. The connection between the ribbon width L (scaled
by a), N1 and M in the case of metallic conductivity

M N1 Lmet

1 2 1/2

2 5 2

3 8 7/2

4 11 5

. . . . . . . . .

wave front is parallel to axis x. This corresponds to the wave
vector k at point K1 of the Brillouin zone. It is easy to see
that in the case of the symmetry AxAy the energy value ε = 0
corresponds to the point K2, similar to the in�nite layer.
Using N1 is not the only way to describe the criterion for

metallic conductivity. It also can be written using the width
of the ribbon L. Figures 8(d), 9 and equation (28) show that
it is possible to obtain the connection between M , N1 and L
as in Table 5.
The relation between L and M in Table 5 can be written

as

Lmet =
3M − 2

2
, M = 1, 2, 3 . . . . (29)

This formula di�ers from L = 3M + 1 in [15], which is
maybe due to the di�erent de�nition of the ribbon width in
[15].
Figure 10 shows the dependence between the energy gap εg

and the ribbon width. Here, ε = 2ε1, where ε1 is the nearest
level to zero and is found via (27).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  30  60

 2  7  12  17  22  27

ε g

N
1

L

Fig. 10. Dependence between the energy gap εg and the ri-
bbon width

The values of N1 and L, where εg = 0, are not marked,
they can be obtained from equations (28) and (29).

The described approach of the calculation of nanoribbons
using ladder clusters may also be applied to nanotubes, with
some modi�cations. The formal transition from the nanori-
bbon to the nanotube consists in closing a cluster of the type
shown in Fig. 7(b), so that the closing happens between atoms
1�6 and 7�12 � this way we get the cluster from Fig. 2(b). If
we wrap it up into a cylinder form, we obtain a cluster with
three hexagons. It can be easily veri�ed that in clusters of
this type the number of hexagons in the cylinder section is
always an integer.

However, a cluster of the type as in Fig. 8 cannot be
wrapped up in such a way, because the atoms of the upper and
lower edge are from the same sublattice, A or B, and nearest
neighbors always have to be from di�erent sublattices.

Therefore, in order to wrap up a cluster into a cylinder,
one must add a row of atoms. These atoms need to belong
to a di�erent sublattice than the atoms at the edges of the
initial cluster. In the N1 = 5 example, this means that the
number Nc of atoms situated along the circle cylinder section
must equal six.

It may also be easily veri�ed that for clusters of both types
Nc must be even (which is a consequence of the equal number
of A and B atoms) and the number of hexagons NS along the
circle has to be an integer. Here, beginning with the smallest
value Ns = 2 it is Nc = 2Ns.

In the case of metallic conductivity (εg = 0) as well as in
the in�nite layer (sectionV), it is necessary for Nc to contain
an integer number of atomic triplets +,−, 0, that is, Nc needs
to be not only even but also divisible by three. All in all, Nc

has to be divisible by six, and therefore, we can write the
criterion of metallic conductivity of nanotubes as

Nmet
c = 6M, M = 1, 2, 3 . . . . (30)

For all other values of Nc, there is ε ̸= 0. For example, in
the case of the least values Ns = 2, Nc = 4, one must consider
the closed cluster N = 8. It is possible to calculate a cluster
of type from Figure 2(b), but for N = 8.

Solving equation (4) for this case gives us the following
energy spectrum:

εc = ±1,±1,±1,±3. (31)

Hence, the value of the energy gap for Nc = 4 is εcg = 2,
which is the maximum value of εcg for nanotubes. With an
increasing Nc the value of ε

c
g decreases.

It should be noted that εc in (31) and εcg are scaled by γc
0:

εc = Ec
γc
0
, where γc

0 is the tube's transfer integral (hopping

energy). This latter value is di�erent from the value of γ0 for
the in�nite layer and is dependent on Nc, which should be
taken into the account when εcg in eV needs to be obtained.
However, this dependence does not exert any in�uence on the
criterion εg = 0.
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VII. IMPURITY IN GRAPHENE

The cluster approach is, as already mentioned, especi-
ally appropriate for studying impurities in crystals. This is
connected with the fact that the impurity in�uence on the
crystal depends mainly on the interaction with atoms whi-
ch are located in the nearest environment of this impurity.
Exactly those atoms together with the impurity are the ones
which can be considered as a cluster with N atoms. The study
of this cluster is the essence of the impurity problem in the
present approach.
In this paper, we restrict the consideration to the simplest

cluster N = 6. Let us assume that at the �rst lattice point
of this cluster atom C is substituted with another one. This
atom only di�ers from C in terms of the |pz⟩-electron energy
of an isolated atom, which is E0 +∆E0 instead of just E0. It
is also assumed that this impurity atom is silicon, although
is also might be germanium or any other atom with the same
outer electron shell structure as C. Furthermore, we assume
the transfer integral γ0 equal between all neighboring atoms.
In order to account for the di�erence in these parameters
within the cluster approach, one simply has to replace the
ones in the corresponding Hamiltonian matrix elements with
parameters, which characterize the transfer integral between
the impurity and the surrounding atoms. The issue of the
in�uence of these parameters on the energy spectrum in 3D
crystals has been investigated by us earlier using Green's
functions [16]. For the purpose of this paper, however, this
problem is not of a fundamental meaning, in so far as the
main parameter is ∆E0.
An example of a closed cluster with one impurity atom Si

is shown in Fig. 11.

Fig. 11. Closed cluster N = 6 with one impurity atom Si

The secular equation for this cluster has the form

D6 =

∣∣∣∣∣∣∣∣∣∣∣

(ε−∆) 1 1 1
1 ε 1 1

1 ε 1 1
1 1 ε 1

1 1 ε 1
1 1 1 ε

∣∣∣∣∣∣∣∣∣∣∣
= 0, (32)

where ∆ = ∆E0
γ0

.
This sixth degree equation is reduced to a cubic equati-

on, which can be solved analytically. As a result we get the
following solutions

ε1,2,3 = 0.

ε4,5,6 =
1

3

[
∆+ 2

√
∆2 + 27 cos

(
φ

3
+ n

2π

3

)]
,

n = 0, 1, 2 . . .

(33)

where

cosφ =
∆

(
∆2 − 34

2

)
(∆2 + 27)

3
2

. (34)

It is easy to see that under ∆ = 0 there is

ε04 = 3, ε05 = −3, ε06 = 0,

that is we obtain the result (6).

The numerical calculations of the dependence of ε on ∆,
which may be obtained from (33) and (34) or, simpler, di-
rectly from the calculation of the determinant (32), are shown
in Figure 12.

Fig. 12. Dependence of energy levels of cluster N = 6 on ∆.
The level ε = 0 is threefold degenerated

As one can see, we get a result which is typical of
the perturbation process: the fourfold degenerate level ε = 0
splits partially and the non-degenerate level moves. At the
same time, level ε = 0 still remains threefold degenerate.
That is why there is no arising gap between the valence and
conduction bands. The level which is split from the originally
fourfold degenerated level ε = 0 is the impurity level in the
conduction band, that is the resonance level.

VIII. THE ENERGY BANDS OF
MONOATOMIC LAYER C1−xSix (0 ≤ x ≤ 1)

Using the CC approach, one may as well calculate the
energy spectrum of a hypothetical object, a monoatomic layer
of the type C1−xSix. That such an object can be created
results from the following reasoning: when obtained by means
of epitaxi, graphene can be formed on the surface of SiC. The
monolayer of Si, which appears here as a bu�er layer, has
also a hexagonal structure [17]. That is why by means of epi-
taxi, perhaps not only graphene can be formed but also the
monoatomic layer of the type C1−xSix (0 ≤ x ≤ 1), with a
hexagonal structure similar to graphene.
In the study of this problem, we restrict ourselves to consi-

dering only the simplest structure N = 6. This is found to be
su�cient for outlining the energy band structure of C1−xSix.
We consider the cases separately when in a cluster of 6 C-

atoms one, two, three, four or �ve atoms are replaced with
Si-atoms. This corresponds to the values x = 1

6
; 1
3
; 1
2
; 2
3
; 5
6
,

respective. The case of x = 1
6
has been already considered in

the previous section. It should be noted that by �impurity� we
mean the atoms which are present in a lesser number. That
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is at x = 1
3
the impurity atoms are those of Si and at x = 2

3
those of C.

The clusters corresponding to these x-values can be of two
types. Namely, for x = 1

3
two impurity Si-atoms can interact

with each other (type II) or not interact (type I). The same
can be obtained for C-atoms for x = 2

3
. First, we study the

clusters of type I, which are shown in Fig. 13.

(a) x = 1/3 (b) x = 1/2 (c) x=2/3 (d) x = 5/6

Fig. 13. Clusters of type I with N = 6 for C1−xSix

The secular equations for clusters shown in Fig. 13 can easi-
ly be estimated. For example, for x = 1

3
we obtain

∣∣∣∣∣∣∣∣∣∣∣

(ε−∆) 1 1 1
1 ε 1 1

1 (ε−∆) 1 1
1 1 ε 1

1 1 ε 1
1 1 1 ε

∣∣∣∣∣∣∣∣∣∣∣
= 0. (35)

For other values of x, the equations have a similar form. In
all cases, the equations of the sixth degree are to be reduced
to equations of the third degree and are solved analytically.

The results of these calculations are:

x =
1

3
: ε1,2 = 0; ε3 = ∆,

ε4,5,6 are determined by formula (33), but with other φ,
namely

cosφ =
∆3

(∆2 + 27)
3
2

. (36)

x =
1

2
, (SiC) :

ε1,2 = 0;

ε3,4 = ∆;

ε5,6 =
∆±

√
∆2 + 36

2
.

(37)

x =
2

3
: ε1 = 0;

ε2,3 = ∆;

ε4,5,6 =
2

3

[
∆−

√
∆2 + 27 cos

(
φ

3
+ n

2π

3

)]
;

n = 0, 1, 2 . . .
(38)

where φ is the same as in (36)

x =
5

6
: ε1,2,3 = ∆;

ε4,5,6 =
2

3

[
∆+

√
∆2 + 27 cos

(
φ

3
+ n

2π

3

)]
;

where

cosφ =
∆(∆2 − 1

2
34)

(∆2 + 27)
3
2

;

n = 0, 1, 2 . . .
(39)

The dependence of the energy bands of C1−xSix on x is
shown in the form of a diagram in Fig. 14. This diagram is
obtained from formulas (33), (34), (36)�(39) for∆ = 3.5, whi-
ch corresponds roughly to the value of ∆ for Si in graphene.

Fig. 14. Energy spectrum of the mono-atomic layer C1−xSix.
checkered: valence band; striped: conduction band; plain:

forbidden band

The main feature of this band structure arises from a forbi-
dden band with the typical tunnel form. From this one can
suggest that in principle it is possible to create a tunnel diode
on the basis on a C1−xSix layer. In the ground of such a diode
can be a tunnelling between Si- and C-domains of the layer
in which the concentration of x changes with the coordinate
x. That is, if in Fig 14 x is not only the concentration, but
also the coordinate x.
Next we study the clusters of type II, in which impurity

atoms interact not only with basic atoms of the layer but also
with each other. The latter is possible, if the impurities are at
the lattice points of a di�erent sublattice: A and B, because
the atoms of the same sublattice do not interact with each
other in the nearest neighbors approximation.
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In the case of x = 1
3
, the cluster of type II can be obtained

from the cluster in Fig. 13(a), if we place the atoms Si at the
lattice points, for example 2 and 5 instead of 1 and 3. C-
atoms with x = 2

3
in the cluster in Fig. 13(c) can be treated

the same way. As a result, we obtain the following solutions
for clusters of type II:

x =
1

3
: ε1,2 = 0;

ε3,4 =
1

2

(
∆− 3±

√
∆2 + 2∆+ 9

)
;

ε5,6 =
1

2

(
∆+ 3±

√
∆2 − 2∆ + 9

)
.

(40)

x =
2

3
: ε1,2 = ∆;

ε3,4 =
1

2

(
∆− 3±

√
∆2 − 2∆ + 9

)
;

ε5,6 =
1

2

(
∆+ 3±

√
∆2 + 2∆+ 9

)
.

(41)

From formulas (40) and (41) one can obtain the energy of
impurity states, which at ∆ = 3.5 can be found mostly within
valance and conduction bands. The single level which can be
found in the forbidden band appears when x = 1

3
. This level

can take part in tunnelling, which we discussed above.

IX. CONCLUSIONS

In this paper, the CC approach has been applied to
some problems of the calculation of the grpahene energy
spectrum. This approach seems to be especially appropriate
both for problems of the breach of the graphene's periodical
structure (point defects, boundaries) and for problems besides
monolayer graphene (bilayer graphene, compound C1−xSix).
As for the precision of the approach, it may easily be

increased by considering clusters of larger sizes and their
interaction not only with the nearest neighbors. Besides,
it is not di�cult to study a cluster with a distortion of
the lattice near the point defect. One can also consider the
conglomerates of point defects in a graphene lattice.
Except various problems with the calculation of the

electron energy spectrum, the closed cluster approach may
as well be applied to calculate the vibration spectrum in
graphene, like as it is done for one-dimensional and three-
dimensional crystals in [18], [19].

X. ACKNOWLEDGMENTS

I would like to thank Olga Talianska and Raisa Kociu-
rzynski for the interest and informative support, Alexander
Talyanski for help with the numerical calculations and
Ludmila Swarytsch for the motivation for this work. Especi-
ally, I wish to thank Andr�e and Raisa Kociurzynski for help-
ing to prepare the publication.

[1] K. Wakabayashi, in Graphene Nanoelectronics: Metro-
logy, Synthesis, Properties and Applications, edited by
Hassan Raza (Springer, Berlin�Heidelberg, 2012), p. 277;
https://doi.org/10.1007/978-3-642-22984-8_9.

[2] I. I. Tal'yanskij, Fiz. Elektron. 28, 8 (1984).
[3] M. Lannoo, J. Bourgoin, Point Defects in Semi-

conductors. I. Theoretical Aspects (Springer, Berlin�
Heidelberg, 1981); https://doi.org/10.1007/978-3-
642-81574-4.

[4] A. K. Geim, K. S. Novoselov, Nat. Mat. 6, 183 (2007);
https://doi.org/10.1038/nmat1849.

[5] P. R. Wallace, Phys. Rev. 71, 622 (1947); https://doi.
org/10.1103/PhysRev.71.622.

[6] N. Trinajsti�c, Chemical Graph Theory (CRC Press, Boca
Raton, Florida, 1983), Vol. I.

[7] E. Heilbronner, H. Bock. The HMO Model and its Appli-
cation (Wiley & Sons Verlag Chemie, Weinheim, 1976).

[8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. No-
voselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009);
https://doi.org/10.1103/RevModPhys.81.109.

[9] T. Seyller, Phys. J. 9(8/9), 53 (2010); https://www.pr
o-physik.de/restricted-files/100121.

[10] T. Au-Chin, K. Yuan-Sun, Y. Guo-Sen, T. Shu-San,

Graph Theoretical Molecular Orbitals (Science Press,
Beijing, China, 1986).

[11] I. O. Vakarchuk, Quantum Mechanics, 3rd edition (Lviv
University Press, Lviv, 2007).

[12] K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki, Sci.
Technol. Adv. Mater. 11, 054504 (2010); https://doi.
org/10.1088/1468-6996/11/5/054504.

[13] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J.
Phys. Soc. Jap. 65, 1920 (1996); https://doi.org/10.1
143/JPSJ.65.1920.

[14] K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus,
Phys. Rev. B 54, 17954 (1996); https://doi.org/10.1
103/PhysRevB.54.17954.

[15] L. Brey, H. A. Fertig, Phys. Rev. B 73, 235411 (2006);
https://doi.org/10.1103/PhysRevB.73.235411.

[16] I. I. Tal'yanskij, B. L. Yudanin, Fiz. Tv. Tela 19, 3040
(1977).

[17] B. Trauzettel, Phys. J. 6(7), 39 (2007); https://www.pr
o-physik.de/restricted-files/110496.

[18] I. I. Talyansky, J. Phys. Stud 1, 106 (1996); https://do
i.org/10.30970/jps.01.106.

[19] I. I. Talyansky, A. T. Maksymov, J. Phys. Stud. 1, 564
(1997); https://doi.org/10.30970/jps.01.564.

3701-11

https://doi.org/10.1007/978-3-642-22984-8_9
https://doi.org/10.1007/978-3-642-81574-4
https://doi.org/10.1007/978-3-642-81574-4
https://doi.org/10.1038/nmat1849
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/RevModPhys.81.109
https://www.pro-physik.de/restricted-files/100121
https://www.pro-physik.de/restricted-files/100121
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1103/PhysRevB.73.235411
https://www.pro-physik.de/restricted-files/110496
https://www.pro-physik.de/restricted-files/110496
https://doi.org/10.30970/jps.01.106
https://doi.org/10.30970/jps.01.106
https://doi.org/10.30970/jps.01.564


I. I. TALJANSKIJ

ÇÀÑÒÎÑÓÂÀÍÍß ÏIÄÕÎÄÓ ÇÀÊÐÈÒÎÃÎ ÊËÀÑÒÅÐÀ ÄÎ �ÐÀÔÅÍÓ

Iëëÿ I. Òàëüÿíñüêèé
Êàôåäðà òåîðåòè÷íî¨ ôiçèêè, Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà;

ïîòî÷íà àäðåñà†: Rudolf-Breitscheid-Strasse 39, 23968, Wismar, Germany
†Ìè ïóáëiêó¹ìî öþ ñòàòòþ ç íàãîäè 95-ði÷÷ÿ ïîêiéíîãî ïðîôåñîðà Iëëi Òàëüÿíñüêîãî (1928�2018).

Îðè iíàëüíà âåðñiÿ ç'ÿâèëàñÿ 2015 ðîêó ÿê ïðåïðèíò https://arxiv.org/abs/1508.05385 i äîñi íå

îïóáëiêîâàíà. Êîðîòêó áiîãðàôi÷íó äîâiäêó ïðî ïðîô. Òàëüÿíñüêîãî ïîäàíî íèæ÷å.

Ìåòîä çàêðèòîãî êëàñòåðà (ìåòîä ÇÊ) âèêîðèñòîâóþòü äëÿ ïîøóêó ðîçâ'ÿçêiâ ðiçíîìàíiòíèõ çàäà÷ ðîç-
ðàõóíêó åíåð åòè÷íî¨ çîííî¨ ñòðóêòóðè  ðàôåíó. Ñóòü ìåòîäó ÇÊ ïîëÿãà¹ â äîäàâàííi äî çâè÷àéíîãî êëà-
ñòåðíîãî ìåòîäó çàìèêàííÿ çâ'ÿçêiâ ìiæ êðàéîâèìè àòîìàìè äëÿ óñóíåííÿ �îáâèñàþ÷èõ� çâ'ÿçêiâ íà êðàÿõ
êëàñòåðà. Ìè âèâ÷à¹ìî âèïàäêè �íåñêií÷åííîãî� øàðó  ðàôåíó, à òàêîæ íàíîñòði÷îê, íàíîòðóáîê i äâîøà-
ðîâîãî  ðàôåíó. Ðåçóëüòàòè äëÿ öèõ âèïàäêiâ óçãîäæóþòüñÿ ç òèìè, ùî áóëè îòðèìàíi çà äîïîìîãîþ iíøèõ
ìåòîäiâ (àïðîêñèìàöiÿ æîðñòêîãî çâ'ÿçêó òà iíøi). Çà äîïîìîãîþ ìåòîäó ÇÊ ìè òàêîæ äîñëiäæó¹ìî ïðîáëå-
ìó òî÷êîâèõ äåôåêòiâ ó  ðàôåíi òà îòðèìó¹ìî ñïîòâîðåííÿ åíåð åòè÷íîãî ñïåêòðà. Çíàéäåíî åíåð åòè÷íèé
ñïåêòð øàðó C1−xSix (0 ≤ x ≤ 1), à òàêîæ çàëåæíiñòü øèðèíè çàáîðîíåíî¨ çîíè âiä êîíöåíòðàöi¨ êðåìíiþ.
Ìè ïîêàçó¹ìî, ùî åíåð åòè÷íà çîííà ñòðóêòóðà C1−xSix âèãëÿäà¹ ÿê òóíåëüíèé ïåðåõiä. Òàêîæ îòðèìàíî
õâèëüîâi ôóíêöi¨  ðàôåíó â òî÷êàõ ñèìåòði¨ çîíè Áðiëëþåíà.
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