Journal of Physical Studies 27(4), Article 4601 [6 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.4601

MODELING THE ADSORPTION PROCESSES AND LUMINESCENCE PROPERTIES OF THE METAL OXIDE ZnO NANOPARTICLES

S. S. Savka , A. S. Serednytski , D. I. Popovych 

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NASU,
3b, Naukova St., Lviv, UIA–79060, Ukraine,
e-mails: savka.stepan.92@gmail.com, serandry@gmail.com, popovych@iapmm.lviv.ua

Received 13 September 2023; in final form 07 November 2023; accepted 08 November 2023; published online 07 December 2023

Modeling the adsorption processes and luminescence properties of Zinc Oxide (ZnO) can provide valuable insights into its applications. We used Molecular Dynamics (MD) method to investigate the adsorption processes on ZnO nanoclusters under different initial conditions. To ensure the nanoclusters were correctly structured, we applied Radial Distribution Functions (RDF) and Central Symmetry Parameter (CSP) methods. It was discovered that the number of defects in the samples had a major influence on the simulated photoluminescence (PL) spectra, which were created using a bi-Gaussian function. To assess the amount of vacancies on the surfaces of the sample, we used the relative luminescence intensity of the secondary peak in the PL spectra. To analyze the simulated PL spectra, we utilized a Gaussian fitting technique. The self-activated PL band peaking was divided by Gaussian deconvolution, which was utilized for a more in-depth analysis of the data. By researching the consequences of varying conditions on the PL spectra, we were able to obtain a better comprehension of the mechanisms behind adsorption processes on ZnO nanoclusters. Furthermore, this research enabled us to gain insight into the influences that different conditions can have on the adsorption of oxygen atoms on the nanoclusters and helped us in creating new generation gas sensors based on ZnO nanopowders and its compounds.

Key words: molecular dynamics, adsorption, photoluminescence, zinc oxide.

Full text


References
  1. R. V. Bovhyra, V. M. Zhyrovetsky, D. I. Popovych, S. S. Savka, A. S. Serednytsky, Sci. Innov. 12, 59 (2016);
    Crossref
  2. V. M. Zhyrovetsky, D. I. Popovych, S. S. Savka, A. S. Serednytski, Nanoscale Res. Lett. 12, 132 (2017);
    Crossref
  3. Ya. V. Bobitski et al., J. Nano- Electron. Phys. 9, 05008 (2017);
    Crossref
  4. I. V. Lazoryk et al., Appl. Nanosci. 10, 5003 (2020);
    Crossref
  5. Yu. I. Venhryn et al., Materials Today: Proceedings 35, 4 (2021);
    Crossref
  6. Yu. I. Venhryn, A. S. Serednytski, D. I. Popovych, Appl. Nanosci. 13, 4857 (2023);
    Crossref
  7. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996);
    Crossref
  8. V. V. Gafiychuk, B. K. Ostafiychuk, D. I. Popovych, I. D. Popovych, A. S. Serednytski, Appl. Surf. Sci. 257, 8396 (2011);
    Crossref
  9. V. Zhyrovetsky et al., Phys. Status Solidi 10, 1288 (2013);
    Crossref
  10. B. K. Ostafiychuk et al., Phys. Chem. Solid State 9, 728 (2008).
  11. S. S. Savka, Yu. I. Venhryn, A. S. Serednytski, D. I. Popovych, J. Nano- Electron. Phys. 10, 03008 (2018);
    Crossref
  12. Z. Fan, J. G. Lu, J. Nanosc. Nanotechnol. 5, 1561 (2005);
    Crossref
  13. A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. B 176, 1409 (2011);
    Crossref
  14. R. Bovhyra, D. Popovych, O. Bovgyra, A. Serednytsky, Appl. Nanosci. 9 1067 (2019);
    Crossref
  15. R. Bovhyra, Yu. Venhryn, O. Bovgyra, D. Popovych, Appl. Nanosci. 12 983 (2022);
    Crossref
  16. S. S. Savka, D. I. Popovych, A. S. Serednytski, Springer Proc. Phys. 195, 145 (2017);
    Crossref
  17. Y. J. Xing et al., Appl. Phys. Lett. 83, 1689 (2003);
    Crossref
  18. W. Shan et al., Appl. Phys. Lett. 86, 191911 (2005);
    Crossref
  19. A. B. Djurišić, Yu Hand Leung, Small 2, 944 (2006);
    Crossref
  20. J. M. Haile, Molecular Dynamic Simulation Elementary Methods (John Wiley \& Sons., New York, 1997).
  21. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edition (Academic Press, San Diego, 2002);
    Crossref
  22. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004).
  23. D. Raymand, A. C. T. van Duin, M. Baudin, K. Hermansson, Surf. Sci. 602, 1020 (2008);
    Crossref
  24. D. Raymand, A. C. T. van Duin, D. Spångberg, W. A. Goddard III, K. Hermansson, Surf. Sci. 604, 741 (2010);
    Crossref
  25. S. S. Savka, Yu. I. Venhryn, A. S. Serednytski, D. I. Popovych, J. Phys. Stud. 23 2602 (2019);
    Crossref
  26. S. Savka, Yu. Venhryn, A. Serednytski, D. Popovych, Appl. Nanosci. 12, 673 (2022);
    Crossref
  27. S. S. Savka, I. A. Mohylyak, D. I. Popovych, J. Phys. Stud. 26, 1601 (2022);
    Crossref
  28. J. D. Honeycutt , H. C. Andersen, J. Phys. Chem. 91, 4950 (1987);
    Crossref
  29. C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, Phys. Rev. B 58, 11085 (1998);
    Crossref
  30. R. Zhang, P.-G. Yin, N. Wang, L. Guo, Solid State Sci. 11, 865 (2009);
    Crossref
  31. R. A. Street, Adv. Phys. 25, 397 (1976);
    Crossref
  32. V. Ischenko et al., Adv. Funct. Mater. 15, 1945 (2005);
    Crossref
  33. J. D. Ye et al., Appl. Phys. Lett. 88, 182112 (2006);
    Crossref
  34. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010);
    Crossref