Journal of Physical Studies 27(4), Article 4701 [6 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.4701

RADIOCHROMIC EFFECT IN THE POLYMER COMPOSITES BASED ON [NH2(C2H5)2]2CuCl4 MICROCRYSTALS

Yu. Chornii , A. Hrytsak, V. Kapustianyk 

Faculty of Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., Lviv, 79005, Ukraine,
e-mail: ychornii@gmail.com

Received 03 August 2023; in final form 08 October 2023; accepted 10 October 2023; published online 17 November 2023

The radiochromic effect was detected in the thermochromic [NH$_2$(C$_2$H$_5$)$_2$]$_2$CuCl$_4$ (DEA-CuCl$_4$) microcrystals incorporated into a polystyrene matrix. It has been found that this composite possesses thermochromic properties very similar to those of a bulk crystal, although its thermochromic phase transition was shifted toward higher temperatures due to tensions arising within the interface between the polystyrene matrix and the microcrystal. The similar doses of ionizing radiation cause much more pronounced changes in the thermochromic properties of the microcomposite in comparison with a bulk crystal. The main impact consists in the considerable shift of the phases transition temperature derived from the $D(T)$ hysteresis loops toward lower values. The observed changes should be considered a radiochromic effect, which is explained by breaking the chemical bonds between the polystyrene matrix and the microcrystals with a following relaxation of the surface strains. The transformation of the first order phase transition into the second order one under the influence of irradiation is also discussed.

Key words: microcomposites, ionizing radiation, phase transitions, absorption spectra, thermochromic effect.

Full text


References
  1. D. R. Bloomquist, M. R. Pressprich, R. D. Willett, J. Am. Chem. Soc. 110, 7391 (1988);
    Crossref
  2. V. B. Kapustianik et al., in Proc. of 1994 IEEE International Symposium on Applications of Ferroelectrics 4, 801 (1994);
    Crossref
  3. D. R. Bloomquist, R. D. Willett, H. W. Dodgen, J. Am. Chem. Soc. 103, 2610 (1981);
    Crossref
  4. V. B. Kapustyanyk, Yu. M. Korchak, J. Appl. Spectrosc. 67, 1045 (2000);
    Crossref
  5. V. B. Kapustyanyk, V. P. Rudyk, Yu. M. Korchak, M. V. Partyka, Phase Transit. 80, 101 (2007);
    Crossref
  6. V. Kapustianyk, S. Semak, P. Demchenko, I. Girnyk, Yu. Eliyashevskyy, Phase Transit. 91, 715 (2018);
    Crossref
  7. V. Kapustianyk, S. Semak, M. Panasyuk, M. Rudko, V. Rudyk, Phase Transit. 92, 396 (2019);
    Crossref
  8. V. B. Kapustianyk et al., J. Appl. Spectrosc. 86, 590 (2019);
    Crossref
  9. V. Kapustianyk, Yu. Chornii, S. Semak, J. Phys. Stud. 24, 4707 (2020);
    Crossref
  10. V. Kapustianyk et. al., J. Alloys Compd. 493, 26 (2010);
    Crossref
  11. I. V. Kityk et al., Mater. Lett. 27, 233 (1996);
    Crossref
  12. F. Ramtolli, G. Saccinni, Cryst. Res. Technol. 37, 1325 (2002);
    Crossref
  13. I. Oral, H. Guzel, G. Ahmetli, Polym. Bull. 67, 1893 (2011);
    Crossref
  14. W. Simchareona, T. Amnuaikita, P. Boonmea, W. Taweepredab, W. Pichayakorna, Procedia Chem. 4, 308 (2012);
    Crossref
  15. G. A. Smolensky et al., Ferroelectrics and Related Materials (Gordon and Breach Science Pub., Philadelphia, PA, 1984).
  16. D. F. Baisa, E. D. Chesnokov, A. I. Ovcharenko, I. G. Vertegel, Func. Mater. 15, 19 (2008).