Journal of Physical Studies 27(4), Article 4702 [8 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.4702

OPTICAL AND ELECTRONIC PARAMETERS OF POTASSIUM SULPHATE CRYSTALS DOPED WITH MANGANESE IMPURITY

V. Yo. Stadnyk1 , P. A. Shchepanskyi1 , R. S. Brezvin1 , A. O. Shapravskyi1, V. M. Salapak2

1Ivan Franko National University of Lviv, 19, Drahomanov St., Lviv, UA-79005, Ukraine,
2Ukrainian National Forestry University,
103, General Chuprynka St., Lviv, UA-79057, Ukraine

Received 05 October 2023; in final form 21 October 2023; accepted 23 October 2023; published online 28 November 2023

The simplest method for changing and improving the dielectric properties of crystals involves introducing various substitutional impurities or subjecting the crystals to external influences. This allows us to uncover the potential for expanding the practical applications of crystals as optical filters, acousto-optic modulators, temperature and pressure sensors, piezo transducers, scintillators, etc. Currently, the effect of manganese admixture on the dielectric parameters of K$_2$SO$_4$ crystals remains unstudied. Therefore, the objective of this work is to investigate the effect of introducing a manganese admixture into potassium sulfate crystals on their band-energy and refractive properties.

In this study, a potassium sulfate crystal with a manganese admixture was synthesized, and its crystal structure was determined. The dispersion of refractive indices was investigated, and the band-energy structure was calculated. It was established that the crystal structure of K$_2$SO$_4$ impurity crystals can be considered a result of multiple heterovalent replacement of two K$^+$ atoms by one Mn$^{2+}$ atom in the framework of stacking of SO$_4^{2-}$ tetrahedra. The study reveals that the conduction band's bottom is formed by $s$- and $p$-states of sulfur and potassium atoms, while the valence band's top is formed by $p$-states of oxygen and $s$-states of oxygen. The manganese impurity in the density of states of the potassium sulfate crystal is represented by a narrow intense $d$-electron peak, which corresponds to impurity levels in the band gap near the top of the valence band. The calculated band gap for the impurity crystal is $E_g = 5.92$ eV.

It was found that the introduction of the admixture results in a reduction in the volume of the unit cell and a decrease in the refractive indices for three crystal physical directions, with an average decrease of $1.9\times 10^{-3}$. Additionally, it causes a shift in the position of the centers of ultraviolet oscillators in the long-wavelength spectrum region, leading to a decrease in the strength of the corresponding oscillators and electronic polarizability compared to pure crystals.

Key words: crystal, crystal structure, band-energy structure, density of states, refractive index, dispersion.

Full text


References
  1. A. John, M. McGinnety, Acta Crystallogr. B 28, 2845 (1972);
    Crossref
  2. A. J. Berg, F. Tuinstra, Acta Crystallogr. B 34, 3177 (1978);
    Crossref
  3. M. Miyake, S. Iwai, Phys. Chem. Minerals 7, 211 (1981);
    Crossref
  4. H. Arnold, W. Kurtz, Ferroelectrics 25, 557 (1980);
    Crossref
  5. M. O. Romanyuk et al., J. Phys. Stud. 18, 4701 (2014);
    Crossref
  6. B. V. Andrievskii, M. Jaskolski, V. Yo. Stadnyk, M. O. Romanyuk, O. Z. Kashuba, Mater. Sci. 79, 442 (2013);
    Crossref
  7. B. Andriyevsky, M. Romanyuk, V. Y. Stadnyk, J. Phys. Chem. Solids 70, 1109 (2009);
    Crossref
  8. V. Y. Stadnyk et al., J. Appl. Spectroscopy 87, 143 (2020);
    Crossref
  9. R. Matviiv et al., J. Phys. Stud. 25, 2703 (2021);
    Crossref
  10. R. B. Matviiv et al., Current Appl. Phys. 21, 80 (2021);
    Crossref
  11. B. V. R. Chowdari and P. Venkateswarlu, J. Chem. Phys. 48, 318 (1968);
    Crossref
  12. M. Natarajan, E. A. Secco, Can. J. Chem. 53, 6 (1975).
  13. S. B. Anooza, R. Bertramb, D. Klimb, Solid State Commun. 141, 497 (2007);
    Crossref
  14. S. J. Clark et al., Z. Kristallogr. 220, 567 (2005);
    Crossref
  15. W. Kohn, L. J. Sham, Phys. Rev. A 140, 1133 (1965);
    Crossref
  16. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
    Crossref
  17. T. Babuka, K. Glukhov, Y. Vysochanskii, M. Makowska-Janusik, RSC Adv. 7, 27770 (2017);
    Crossref
  18. M. G. Brik, M. Piasecki, I. V. Kityk, Inorg. Chem. 53, 2645 (2014);
    Crossref
  19. M. Chrunik et al., Current Appl. Phys. 17, 1100 (2017);
    Crossref
  20. M. Ya. Rudysh et al., Infrared Phys. Technol. 111, 103476 (2020);
    Crossref
  21. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990);
    Crossref
  22. М. О. Романюк, Кристалооптика (ЛНУ імені Івана Франка, Львів, 2017).
  23. P. A. Shchepanskyi, O. S. Kushnir, V. Yo. Stadnyk, R. S. Brezvin, A. O. Fedorchuk, Ukr. J. Phys. Opt. 19, 141 (2018);
    Crossref
  24. M. Y. Rudysh et al., RSC Adv. 7, 6889 (2017);
    Crossref
  25. M. Ya. Rudysh et al., Physica B Condens. Matter 528, 37 (2018);
    Crossref
  26. P. A. Shchepanskyi, V. Yo. Stadnyk, M. Ya. Rudysh, R. S. Brezvin, B. V. Andrievskii, Opt. Spectrosc. 125, 353 (2018);
    Crossref
  27. M. Y. Rudysh et al., Current Appl. Phys. 45, 76 (2023);
    Crossref