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I have studied the dynamics of a neutral and a charged particle around the Reissner�Nordstr�om
black hole surrounded by quintessence in the presence of an external magnetic �eld. The collision
of a neutral particle moving around the black hole with another neutral particle has been discussed
�rst. Then the collision of a charged particle moving around the black hole with another charged
particle has been discussed. By numerical solution of the equations of motion it has been shown
that after collision, if the particle gets su�cient energy, then it can escape to in�nity. Dependence
of orbits on the quintessence and the magnetic �eld for the charged particle has been studied in
detail using the e�ective potential of the charged particle. Using the Lyapunov exponent e�ect of
magnetic �eld and dark energy on the stability of the particle has been discussed. I have derived
the expression for the center of mass energies of colliding charged particles moving around the black
hole. E�ective force on the charged particle due to dark energy and external magnetic �eld has been
also discussed.
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I. INTRODUCTION

In the history of the black hole astrophysics, it is very
important to study the problem of the dynamics of a
particle (massive or massless, charged or neutral) movi-
ng around a black hole. This type of problems helps us
to understand the geometric structure of the space-time
around a black hole [1,2]. High energy phenomena like
formation of jets occurring near a black hole could be
understood very nicely by the study of the dynamics of
a particle moving around the black hole.

Di�erent types of astrophysical observations, includi-
ng the study of Supernova type Ia [3], cosmic mi-
crowave background (CMB) [4] and large scale structure
(LSS) [5,6], indicate that the universe is �at and it has
su�ered two acceleration phases. The �rst one is the
early acceleration phase (in�ation) which occurred prior
to the radiation dominated era and then again another
accelerated expansion phase has started recently. These
results are very nicely accommodated by introducing
exotic matter which has large negative pressure, contrary
to the ordinary baryonic matter. This exotic matter
is called dark energy. In literature, the cosmological
constant Λ is considered the simplest DE probe, whi-
ch leads to the Λ CDM cosmology [7�9]. But it has not
been very popular because of its extreme �ne tuning and
coincidence problem [10]. As a result, di�erent types of
dynamic dark energy having a (negative) variable equati-
on of state are used widely to show recent accelerated
expansion. Among them most popular candidates are
quintessence, essence, tachyons, modi�cations of gravi-
ty, Chaplygin gas and others [11�16]. This dark energy
constitutes about 78 percent of the energy density of the
universe.

There exists a di�erent type of external sources, such
as a magnetic satellite (pulsar); plasma accreting onto
the black hole can produce a magnetic �eld in the
surrounding of the black hole [17�19]. The e�ect of a
magnetic �eld near the event horizon is strong but it is
not su�cient to disturb the geometry of the black hole.
The presence of this magnetic �eld can highly in�uence
the motion of the charged particle around the black hole
[20]. This magnetic �eld can transfer the energy to the
charged particle and due to this extra energy, there is
a possibility for the charge particle to escape to spatial
in�nity. So in the presence of a magnetic �eld, collision
among charged particles near a black hole can produce
higher energy than in the absence of a magnetic �eld.
Black holes with such type of magnetic �eld are known
as weakly magnetized.

In [21�23] the in�uence of a magnetic �eld on a charged
particle moving around a black hole has been investi-
gated. Photon trajectory has been investigated in a
modi�ed gravity black hole in the presence of an axi-
ally symmetric magnetic �eld [24]. In literature di�erent
aspects of particle motion around the RN-black hole
have been studied. In [25] critical escape velocity for a
charged particle has been investigated around a weakly
magnetized Schwarzschild black hole. In [26] the moti-
on of a charged particle has been studied around weakly
magnetized Reissner�Nordstr�om black hole.

It is believed that black hole surrounded by dark
energy plays important role in cosmology. Quintessence
is one type of dark energy which is de�ned as scalar �eld
coupled to gravity with the potential which decreases as
�eld increases. Kiselev derived the solution for a spheri-
cally symmetric black hole surrounded by quintessence
matter [27]. In [23] the dynamics of the charged parti-
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cles has been studied around a Schwarschild � like black
hole in the presence of Quintessence and magnetic �-
eld. In [28] the null geodesics has been investigated of
the Reissner�Nordstr�om black hole surrounded by qui-
ntessence.
In my paper, dynamics of a charged particle moving

around a weakly magnetized Reissner�Nordstr�om black
hole surrounded by quintessence has been studied. The
outline of the paper is as follows. In Section II, my model
is explained and the dynamics of a neutral particle is
studied. In this section, collision of a neutral particle
moving around the black hole with another particle is
also discussed. In Section III, I discuss the dynamics of
a charged particle. The dimensionless form of equati-
ons is derived in Section IV. In this section, collision
of a charged particle moving around the black hole wi-
th another charged particle is also discussed. Using the
e�ective potential trajectories of the charged particle is
discussed in Section V. After the collision, the trajectori-
es of the charged particles are shown in this section.
In Section VI, CME expressions for colliding particles
are derived. The Lyapunov exponent is derived in Secti-
on VII. In Section VIII, e�ective force on a charged parti-
cle is calculated. In Section IX, concluding remarks are
given.

II. DYNAMICS OF A NEUTRAL PARTICLE

Kiselev derived a static spherically symmetric exact
solution of Einstein equations for a black hole surrounded
by quintessence[27]. Kiselev expressed the metric of a
charged black hole surrounded by quintessence as

ds2 = −g(r)dt2+g(r)−1dr2+r2
(
dθ2 + sin2 θ dϕ2

)
, (1)

where

g(r) = 1− 2M

r
+

Q2

r2
− c

r3ωq+1
, (2)

where M and Q are the mass and charge of the black
hole, ωq is the quintessential state parameter of range
−1 < ωq < − 1

3 , c is the positive normalization factor

which is dependent on ρq = − 3cωq

2r3(1+ωq) , where ρq is the

density of quintessence which is positive.

Fernando [29] derived the geodesic structure of
a massless particle of the Schwarzschild black hole
surrounded by quintessence matter for ωq = − 2

3 .
Mubasher Jamil [23] discussed the dynamics of a
neutral and a charged particle around the Schwarzschi-
ld black hole in presence of quintessence and a
magnetic �eld. Bushra Majeed [26] discussed the
dynamics of a neutral and a charged particle around
a weakly magnetized Reissner�Nordstr�om black hole.
B. Malakolkalami [28] studied the dynamics of a
massless particle around the Reissner�Nordstr�om black
hole surrounded by quintessence for ωq = − 2

3 and

Q2 =

(
2
27 ×

(
−1+9Mc+

√
−(6Mc−1)3

)
c2

)
. For this parti-

cular choice of the black hole charge parameter, it has
been written in terms of the black hole mass parameter
and the quintessence parameter.

In this paper, I am going to discuss the dynami-
cs of a neutral and a charged particle around the
Reissner�Nordstr�om black hole in the presence of qui-
ntessence and magnetic �eld for ωq = − 2

3 and

Q2 =

(
2
27 ×

(
−1+9Mc+

√
−(6Mc−1)3

)
c2

)
. Solving the

equation g(r) = 0 for ωq = − 2
3 and Q2 =(

2
27 ×

(
−1+9Mc+

√
−(6Mc−1)3

)
c2

)
I get 3 roots as

r1 =

{
1

3c
+

(
−(−1 + 6cM)3

)1/6
3c

− −729c4 + 4374c5M

2187c5 (−(−1 + 6cM)3)
1/6

}
, (3)

r2 =

{
1

3c
−
(
1 + i

√
3
) (

−(−1 + 6cM)3
)1/6

6c
+

(
1− i

√
3
) (

−729c4 + 4374c5M
)

4374c5 (−(−1 + 6cM)3)
1/6

}
, (4)

r3 =

{
1

3c
−
(
1− i

√
3
) (

−(−1 + 6cM)3
)1/6

6c
+

(
1 + i

√
3
) (

−729c4 + 4374c5M
)

4374c5 (−(−1 + 6cM)3)
1/6

}
. (5)

Under the condition 0 < 6Mc < 1, there exist two real roots. The reduced form of these two real roots are

rin =
1

3c
− 1

3

√
1− 6cM

c2
and rout =

1

3c
+

2

3

√
−−1 + 6cM

c2
,

where rout is the event horizon. From the above two equations for M = 1 and c = 0.1 we get numerical values of
rin and rout as rin = 1.22515 and rout = 7.5497. For M = 1 and c = 0.1, g(r) verses r has been plotted in Fig. 1.
For M = 1 and c = 0.1 solving g(r) = 0 we get 3 roots as r1 = 1.22515, r2 = 1.22515 and r3 = 7.5497. So we can
consider r1 = r2 = rin and r3 = rout.
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Fig. 1. g(r) versus r for M = 1 and c = 0.1

First, I discuss the dynamics of a neutral particle in
the absence of a magnetic �eld. In terms of Lagrangi-
an mechanics, for the metric de�ned in (1) t and ϕ
coordinates are cyclic, which leads to two conserved
quantities, namely energy and angular momentum with
the corresponding Noether symmetry generators ξ(t) =

ξµ(t)∂µ = ∂
∂t and ξ(ϕ) = ξµ(ϕ)∂µ = ∂

∂ϕ where ξµ(t) =

(1, 0, 0, 0) and ξµϕ = (0, 0, 0, 1). This shows that the black
hole metric is invariant under time translation and rotati-
on around symmetry axis. The corresponding conserved
quantities are the energy E per unit mass and azimuthal
angular momentum Lz per unit mass. Therefore, the
equation of motion for the coordinates t and r can be
written as

ṫ =
E

1 + Q2

r2 − 2M
r − cr

(6)

and

ϕ̇ =
Lz

r2 sin2 θ
. (7)

Since the metric is spherically symmetric, we can consi-
der the motion of the particle in the equatorial plane
θ = π

2 and for the planar motion θ̇ = 0. Therefore,

ṫ =
E

1 + Q2

r2 − 2M
r − cr

(8)

and

ϕ̇ =
Lz

r2
. (9)

Throughout in this paper, the over dot represents di-
�erentiation with respect to proper time τ . Using the
normalization condition uµuµ = −1, we get the equation
of motion as

ṙ2 = E2 −
(
1 +

Q2

r2
− 2M

r
− cr

)
r2θ̇2 (10)

−
(
1 +

L2
z

r2 sin2 θ

)(
1 +

Q2

r2
− 2M

r
− cr

)
.

From the above equation, e�ective potential can be de�-
ned as

Ueff ≡
(
1 +

L2
z

r2 sin2 θ

)(
1 +

Q2

r2
− 2M

r
− cr

)
.

For the circular motion ṙ = 0, hence equation (10) gives

E2 =

(
1 +

L2
z

r2

)(
1 +

Q2

r2
− 2M

r
− cr

)
≡ Ueff . (11)

Now, consider the particle in the inner most stable
circular orbit r0, where r0 is the local minimum (which
is also the convolution point) of the e�ective potential
. The corresponding energy and azimuthal angular
momentum are given by

Lz0 =

(
r0

2
(
2Mr0 − 2Q2 − cr0

3
)

(2r02 − 6Mr0 + 4Q2 − cr03)

) 1
2

(12)

and

E0 =

√
2
(
r0

2 − 2Mr0 −Q2 − cr0
3
)

r0 (2r02 − 6Mr0 + 4Q2 − cr03)
1
2

. (13)

Now, let us consider that the particle moving in an
innermost stable circular orbit collides with another
particle, so that after the collision the particle will move
within a new plane tilted with respect to the original
equatorial plane. In general, after the collision the
particle will have a new integral of motion E,Lz and L.
To simplify the problem and reduce the space of initial
data to one parameter set, two restrictions are imposed.
After the collision, the azimuthal angular momentum
will not be changed and the initial radial velocity of the
particle after the collision will remain the same, ṙ0 = 0.
Under this restriction, only the new value of energy of
the particle can determine the motion of the particle.
As a result, after the collision the particle will get a
velocity v⊥ in the orthogonal direction to the equatorial
plane. Therefore, after the collision the total angular
momentum of the particle will be

L2 = r0
2v⊥

2 + Lz0
2, (14)

where Lz0 is the angular momentum before collision,
which is given in equation (12). The total energy of the
particle after the collision, which we can determine from
the equation (10), will be

E2 = E0
2 + v⊥

2

(
1 +

Q2

r02
− 2M

r0
− cr0

)
, (15)

where E0 is the total energy of the particle before the
collision, which is given in equation (13), and v⊥ is
the velocity of the particle after the collision in the
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orthogonal direction of the equatorial plane. This veloci-
ty can be written as

v⊥
2 =

E2 − E2
0(

1 + Q2

r02 − 2M
r0

− cr0

) . (16)

To study the �nal fate of the particle after the collision,
this velocity is taken as the initial velocity and after the
collision, the dynamics of the particle will be governed
by the following dynamical equations:

θ̈ = −2

r
ṙθ̇ +

cos θL2
z

r4 sin3 θ
, (17)

r̈ = θ̇2
(
r − 3M +

2Q2

r
− cr2

2

)
+

L2
z

r2 sin2 θ

(
1

r
− 3M

r2
+

2Q2

r3
− c

2

)
(18)

− 1

2

(
2M

r2
− 2Q2

r3
− c

)
,

ṫ =
E

1 + Q2

r2 − 2M
r − cr

(19)

and

ϕ̇ =
Lz

r2 sin2 θ
. (20)

Here equations (17) and (18) have been derived from the
following geodesic equation

ẍ+ Γµ
νσẋ

ν ẋσ = 0 (21)

and equation (19) and (20) are the �rst integrals of t and
θ components of the equation (21). After the collision,
there are three possibilities for the motion of the particle.
The particle may moved on a bounded orbit or it may
escape to in�nity or it may be captured by the black
hole. These three possibilities depend on the transferred
energy and momentum. For small values of transferred
energy and momentum, the orbits of the particle may be
slightly perturbed but for larger values of E − E0 the
particle can go away from the initial plane and �nally be
captured by the black hole or escape to in�nity.

III. DYNAMICS OF A CHARGED PARTICLE

Now, I investigate the e�ect of both the magnetic �eld
in the black hole exterior and the gravitational �eld on
the motion of the charged particle. The general killing
vector equation is given by [30]

ξµ;µ = 0, (22)

where ξµ is a killing vector. The above equation coinci-
des with the Maxwell equation for 4-potential Aµ in the
Lorentz gauge Aµ

;µ = 0. I choose [31]

Aµ =
β

2
ξµ(ϕ) (23)

as the test magnetic �eld, where β is the magnetic
�eld strength. The 4-potential is invariant under the
symmetries. Therefore,

LξAµ = Aµ,νξ
ν +Aνξ

ν
µ = 0. (24)

A magnetic �eld vector is de�ned as [32]

βµ = −1

2
expµνλσ Fλσuν , (25)

where

expµνλσ =
ϵµνλσ√
−g

, ϵ0123 = 1, g = det (gµν), (26)

ϵµνλσ is the Levi Civita symbol. The Maxwell tensor is
de�ned as

Fµν = Aν,µ −Aµ,ν = Aν;µ −Aµ;ν . (27)

The components of 4 velocity for a local observer at rest
at the turning point ṙ = 0 are

uµ
0 =

1√
1 + Q2

r2 − 2M
r − cr

ξµ(t),

uµ
1 = 0, uµ

2 = 0, (28)

uµ
3 =

1√
r2 sin2 θ

ξµ(ϕ).

From equations (25)�(28), the magnetic �eld is obtained
as

βµ = β
1√

1 + Q2

r2 − 2M
r − cr

(
cos θδµr −

sin θδµθ
r

)
. (29)

The Lagrangian of the moving particle of mass m and
electric charge q in curved space time in the presence of
an external magnetic �eld is given by [33]

L =
1

2
gµνu

µuν +
q

m
Aµu

µ. (30)

Therefore, for the above Lagrangian,

ṫ =
E

1 + Q2

r2 − 2M
r − cr

(31)

4901-4



DYNAMICS OF NEUTRAL AND CHARGED PARTICLE IN THE GRAVITATIONAL FIELD. . .

and

ϕ̇ =

(
Lz

r2 sin2 θ
−B

)
, (32)

where B ≡ qβ
2m . At the equatorial plane (θ = π

2 ), the
above equations become

ṫ =
E

1 + Q2

r2 − 2M
r − cr

(33)

and

ϕ̇ =

(
Lz

r2
−B

)
. (34)

By the normalization condition (uµuµ = −1) we can
determine

E2 = ṙ2 +

(
1 +

Q2

r2
− 2M

r
− cr

)
r2θ̇2

+

(
1 +

Q2

r2
− 2M

r
− cr

)
×

(
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
−B

)2
)
. (35)

From the above equation, we can de�ne e�ective potenti-
al as

Ueff =

(
1 +

Q2

r2
− 2M

r
− cr

)

×

(
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
−B

)2
)
. (36)

The equation of motion of a charged particle in an
external electromagnetic �eld Fµν is given by [26]

ẍ+ Γµ
νσẋ

ν ẋσ =
q

m
Fµ
α ẋ

α. (37)

From equation (37) for the metric de�ned in (1), we get
the dynamical equations for θ and r as

θ̈ = −2

r
ṙθ̇ −B2 sin θ cos θ +

cos θL2
z

r4 sin3 θ
(38)

and

r̈ = θ̇2
(
r − 3M +

2Q2

r
− cr2

2

)
+

L2
z

r2 sin2 θ

(
1

r
− 3M

r2
+

2Q2

r3
− c

2
.

)

+

(
BLz −

1

2

)(
2M

r2
− 2Q2

r3
− c

)
+B2 sin2 θ

(
−r +m+

3cr2

2

)
. (39)

IV. DIMENSIONLESS FORM OF THE DYNAMICAL EQUATION

I shall numerically integrate the dynamical equations. For this purpose I introduce the following dimensionless
quantities [32]:

σ =
τ

2M
, ρ =

r

2M
, l =

Lz

2M
, b = 2MB, q̄ =

Q

2M
, c̄ = 2Mc. (40)

Using the above equations, the equations (38) and (39) can be written as

d2θ

dσ2
= −2

ρ
+

cos θ l2

ρ4 sin3 θ
− b2 sin θ cos θ (41)

and

d2ρ

dσ2
=

(
dθ

dσ

)2(
ρ− 3

2
+

2q̄2

ρ

c̄ρ2

2

)
+

1

2
b2 sin2 θ

(
1− 2ρ+ 3c̄ρ2

)

+

(
− 1

2 + bl
) (

−2q̄2 + ρ− c̄ρ3
)

ρ3
+

l2
(
4q̄2 − 3ρ+ 2ρ2 − c̄ρ3

)
2ρ5 sin2 θ

. (42)
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In the dimensionless form, equations (32), (35) and (36) become

dϕ

dσ
=

(
l

ρ2 sin2 θ
− b

)
, (43)

E2 =

(
dρ

dσ

)2

+ ρ2
(
dθ

dσ

)2(
1− 1

ρ
− ρc̄+

q̄2

ρ2

)
+

(
1 +

(
l − bρ2 sin2 θ

)2
ρ2 sin2 θ

)(
1− 1

ρ
− ρc̄+

q̄2

ρ2

)
(44)

and

Ueff =

(
1 +

(
l − bρ2 sin2 θ

)2
ρ2 sin2 θ

)(
1− 1

ρ
− ρc̄+

q̄2

ρ2

)
. (45)

c = 0.125
c = 0.145
c = 0.165

7 8 9 10 11 12
Ρ0

0.08
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0.12

0.14

0.16

0.18

0.20

b

c = 0.145
c = 0.2
c = 0.3

7 8 9 10 11 12
Ρ0
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l

a b

Fig. 2. a: Magnetic �eld b as a function of ρ0 for di�erent value of c̄;
b: Angular momentum l as a function of ρ0 for di�erent value of c̄

Again, I consider the collision of a charged particle
moving in an innermost stable circular orbit of radius ρ0
with another charged particle. The collision mechanism is
the same as in the case of a neutral particle. The energy
of the charged particle moving in an innermost stable
circular orbit of radius ρ0 around the black hole at the
equatorial plane θ = π

2 is given by

E2
0 =

(
1 +

(
l − bρ20

)2
ρ20

)(
1− 1

ρ0
− ρ0c̄+

q̄2

ρ20

)
. (46)

The �rst and second derivatives of the e�ective potential
at the point ρ = ρ0 can be written as

[
dUeff

dρ

]
ρ=ρ0

=

(
1 +

q̄2

ρ20
− 1

ρ0
− c̄ρ0

)(
−
4b
(
l − bρ20

)
ρ0

−
2
(
l − bρ20

)
2

ρ30

)
+

(
−c̄− 2q̄2

ρ30
+

1

ρ20

)(
1 +

(
l − bρ20

)
2

ρ20

)
(47)

and

[
d2Ueff

dρ2

]
ρ=ρ0

=

(
1 +

q̄2

ρ20
− 1

ρ0
− c̄ρ0

)(
8b2 +

12b
(
l − bρ20

)
ρ20

+
6
(
l − bρ20

)
2

ρ40

)

+2

(
−c̄− 2q̄2

ρ30
+

1

ρ20

)(
−
4b
(
l − bρ20

)
ρ0

−
2
(
l − bρ20

)
2

ρ30

)
+

(
6q̄2

ρ40
− 2

ρ30

)(
1 +

(
l − bρ20

)
2

ρ20

)
. (48)
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Since the particle is moving in the innermost stable
circular orbit of radius ρ0, we can write the magnetic �eld
strength b and the angular momentum l in terms of ρ0

from the equations
[
dUeff

dρ

]
ρ=ρ0

= 0 and
[
d2Ueff

dρ2

]
ρ=ρ0

= 0

as

b =

α
(
βλ+ γ + δ

√
λ
)

(βλ+ γ)2 − δ2


1
2

(49)

and

l =
√
λ

α
(
βλ+ γ + δ

√
λ
)

(βλ+ γ)2 − δ2


1
2

, (50)

where

α = −2q̄2ρ20 + ρ30 − c̄ρ50,

β = −4q̄2 + 3ρ0 − 2ρ20 + c̄ρ30,

γ = −ρ50 + 2ρ60 − 3c̄ρ70

δ = −4q̄2ρ20 + 2ρ30 − 2c̄ρ50,

λ=
−ρ0 +3ρ20 −6c̄ρ30 −c̄ρ40 +3c̄2ρ50 +q̄2

(
3−8ρ0 +15c̄ρ20

)
3ρ20 −ρ30 +q̄2 (8q̄2 −9ρ0 + 11c̄ρ30)−c̄ (6ρ40 +3ρ50 −ρ60)

,

q̄ =


2
27

(
−1 + 9

2 c̄+

√
− (3c̄− 1)

3

)
c̄2


1
2

.

We can determine the total energy of the charged particle
after the collision from the equation (44) as

E2 = E0
2 + v⊥

2

(
1− 1

ρ0
− ρ0c̄+

q̄2

ρ20

)
, (51)

where E0 is the total energy before the collision, which
is given in equation (46), and v⊥ is the velocity of the
charged particle just after the collision in the orthogonal
direction of the equatorial plane. v⊥ can be written as

v⊥
2 =

E2 − E2
0(

1− 1
ρ0

− ρ0c̄+
q̄2

ρ2
0

) . (52)

To study the �nal fate of the charged particle, this veloci-
ty is taken as initial velocity and the motion of the
charged particle after the collision will be governed by

the equations (41), (42) and (43). If we know the radius
ρ0 for the innermost stable circular orbit and the total
energy E of the charged particle after the collision, we
can determine the �nal fate of the charged particle after
the collision. After the collision, there are three possibi-
lities for the motion of the charged particle. The particle
may move on a bounded orbit or it may escape to in�ni-
ty or it may be captured by the black hole. These three
possibilities depend on the value of E and ρ0.

In Fig. 2,a, I have plotted the magnetic �eld strength
b as a function of ρ0 for di�erent value of c̄. It can be
concluded from the �gure that a large value of dark
energy decreases the magnetic �eld strength and the
magnetic �eld strength decreases with the distance from
the black hole.

In Fig. 2,b, angular momentum l versus ρ0 is plotted.
From the �gure, it can be concluded that a large value
of dark energy increases the angular momentum l and
angular momentum l decreases with the distance from
the black hole.

V. TRAJECTORIES FOR EFFECTIVE
POTENTIAL AND ESCAPE VELOCITY

The behavior of e�ective potential is demonstrated by
plotting it with respect to ρ in Fig. 3a . Since the motion
of the particles depends on the energy levels, then from
Fig. 3a we can consider four cases according to di�erent
values of E(E1, E2, E3, E4) for the motion as follows:

First, I consider the value of the energy E = E1 . In
this case, if the particle starts the motion at ρ > ρ1, it
will be closer ρ until it reaches to ρ = ρ1 and will rebound
from ρ = ρ1 to the in�nity. Therefore, for all values of ρ
the photons will never fall into the black hole.

When the energy of the particle is E2 and ρ̇ = 0, then
the orbit is circular and unstable at ρ = ρc. If the particle
starts the motion at ρ > ρc, it moves in an unstable
circular orbit at ρ = ρc, and if it starts the motion at
ρ2 < ρ < ρc, then it approaches ρ = ρ2 and �ies back,
moving in an unstable circular orbit at ρ = ρc.

In the case of E = E3, if the particle starts the motion
at ρ > ρ5, it will go to a minimum radius and then
escape to the in�nity. If the particle starts the motion at
ρ3 < ρ < ρ4, then it will move to ρ = ρ3 and �y back to
ρ = ρ4 and oscillate between ρ3 and ρ4.

Next, in the case of E = E4 , if the particle starts
the motion at ρ > ρ10, it will fall to a minimum radius
and then escape to the in�nity. If the particle starts the
motion at ρ8 < ρ < ρ9 then it will move to ρ = ρ8 and
then �y back to ρ = ρ9 and oscillate between ρ8 and ρ9. If
the particle starts the motion at ρc < ρ < ρ7 then it will
move to ρ = ρ7 and then �y back to ρ = ρ6 and oscillate
between ρ6 and ρ7. In Fig. 3,a, Umin1 corresponds to the
innermost stable circular orbit and Umin2 corresponds to
a stable circular orbit. Umax1 and Umax2 correspond to
an unstable circular orbit.
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Fig. 3. a: E�ective potential Ueff as a function of ρ;
b: E�ective potential Ueff as a function of ρ for di�erent values of c̄;

c: E�ective potential Ueff as a function of ρ for di�erent value of magnetic �eld strength b;
d: E�ective potential Ueff as a function of ρ for di�erent value of angular momentum l

In Fig. 3,b, e�ective potential versus ρ has been plotted
for di�erent values of c̄. For c̄ = 0.01, the �rst mini-
mum, the �rst maximum and the second minimum of
e�ective potential are at ρ = 0.503807, 0.962903 and
3.70573, respectively. For c̄ = 0.05, the �rst minimum,
the �rst maximum and the second minimum of e�ecti-
ve potential are at ρ = 0.520304, 0.983307 and 3.75975,
respectively. For c̄ = 0.1, the �rst minimum, the �rst
maximum and the second minimum of e�ective potenti-
al are at ρ = 0.544467, 1.01143 and 3.90575, respectively.
The minimum and maximum values of e�ective potential
correspond to the stable circular orbit and unstable ci-
rcular orbit, respectively. For an increasing value of the
quintessence parameter, both the stable and the unstable
circular orbits move away from the horizon. Also from
the �gure we can see that for an increasing value of the
quintessence parameter e�ective potential decreases.

In Fig. 3,c, e�ective potential versus ρ has been plotted
for di�erent values of magnetic �eld b. For b = 0.35, the
�rst minimum, the �rst maximum and the second mini-

mum of e�ective potential are at ρ = 0.544467, 1.01143
and 3.90575, respectively. For b = 0.50, the �rst mi-
nimum, the �rst maximum and the second minimum
of e�ective potential are at ρ = 0.544467, 0.989431and
3.18512, respectively. For b = 0.75, the �rst minimum,
the �rst maximum and the second minimum of e�ecti-
ve potential are at ρ = 0.544467, 0.957784 and 2.57065,
respectively. We can observe from Fig. 3,c that orbits are
more stable in the presence of magnetic �eld compared
to the case when a magnetic �eld is absent, that is b = 0.
It can also be seen that as the value of b increases, the
�rst minimum of e�ective potential that is the innermost
stable circular orbit is unchanged but the second mini-
mum of the e�ective potential, which corresponds to a
stable circular orbit, is shifting towards the horizon.

In Fig. 3,d, I have plotted e�ective potential versus ρ
for di�erent values of angular momentum l. For l = 3, the
�rst minimum, the �rst maximum and the second mini-
mum of e�ective potential are at ρ = 0.544467, 1.00903
and 2.94107, respectively. For l = 3.4, the �rst minimum,
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the �rst maximum and the second minimum of e�ecti-
ve potential are at ρ = 0.544467, 1.00767 and 3.16082,
respectively. For l = 3.8, the �rst minimum, the �rst
maximum and the second minimum of e�ective potenti-
al are at ρ = 0.544467, 1.00783 and 3.36408, respecti-
vely. For an increasing value of the angular momentum,
the position of the �rst minimum of e�ective potential
is unchanged but the second minimum moves away from
the horizon. From this �gure, we can conclude that the
particle having a larger value of angular momentum l has
more possibility to escape compared to the particle with
a lower value of angular momentum l.
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Fig. 4. a: Velocity of the charged particle after collision as
a function of ρ0 for di�erent values of energy. Plots 1, 2, 3

correspond to the energy E2 = 3, 2, 1;
b: Velocity of the charged particle after collision as a function
of ρ0 for di�erent values of c̄. Plots 1, 2, 3 correspond to

c̄ = 0.12, 0.11, 0.1

In Fig. 4,a, I have plotted the velocity of the charged
particle after collision for di�erent values of energy E.
From this �gure, we can see that the particle having
greater energy has more possibility to escape to in�ni-
ty from the vicinity of the black holes compared to the
particle with a lesser value of energy. Also for a larger
value of ρo, which corresponds to the innermost stable
circular orbit, the possibility to escape from the vicinity
of a black hole also increases.
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Fig. 5. a: Trajectory of the charged particle after collision for
E2 = 1, c̄ = 0.1, ρ0 = 8.9.

b: Trajectory of the charged particle after collision for E2 = 2,
c̄ = 0.1, ρ0 = 8.9.

c: Trajectory of the charged particle after collision for E2 = 3,
c̄ = 0.1, ρ0 = 8.9.

The velocity of the charged particle after collision for
di�erent values of c̄ has been plotted in Fig. 4,b. It shows
that for a greater value of c̄, the velocity of the charged
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particle after collision will be greater; that is the possi-
bility to escape to in�nity increases.
By solving numerically the equations (41), (42) and

(43), I have plotted the trajectories of the charged parti-
cle after collision in Fig. 5,a, Fig. 5,b and Fig. 5,c for di-
�erent values of energy E. The initial velocity of the
charged particle after collision has been determined from
the equation (52). In Fig. 5,a, the trajectory of the
charged particle after collision has been given for the
initial velocity v⊥ = 3.59409 and the range of σ has
been taken [0,2]. In Fig. 5,b, the trajectory of the charged
particle after collision has been given for the initial
velocity v⊥ = 5.0853 and the range of σ has been taken
[0,1.5]. In Fig. 5,c, the trajectory of the charged parti-
cle after collision has been given for the initial velocity
v⊥ = 6.22921 and the range of σ has been taken [0, 1.2].
From these trajectories, we can observe that at the time
of collision, if the charged particle gets su�cient energy,
then the charged particle after collision can escape to
in�nity from the vicinity of the black hole.

VI. CENTER OF MASS ENERGY OF A
COLLIDING PARTICLE

First, I consider the collision of two neutral particles of
massesm1 andm2 near a black hole coming from in�nity
in the absence of a magnetic �eld. The collision energy
of the particles of masses m1 = m2 = m0 in the center
of mass frame is de�ned as [34]

Ecm = m0

√
2
√
1− gµνu

µ
1u2ν, (53)

where

uµ
i ≡ dxµ

dτ
, i = 1, 2 (54)

is the four velocity of the particles. The CME for neutral
particles, falling freely from the rest at in�nity is given
by

E2
cm = 2

(
1 +

r2E1E2

Q2 − cr − 2Mr + r2
− L1L2

r2

)
m2

0 (55)

− 2

√(
−1 +

r2E2
1

Q2 − cr − 2Mr + r2
− L2

1

r2

)(
−1 +

r2E2
2

Q2 − cr − 2Mr + r2
− L2

2

r2

)
m2

0,

where

Q =

 2

27
×

(
−1 + 9Mc+

√
−(6Mc− 1)3

)
c2


1
2

.

In the presence of a magnetic �eld the expression for CME of charged particles coming from in�nity colliding near
the black hole is given by

E2
cm = 2

(
1−B2r2 +

r2E1E2

Q2 − cr − 2Mr + r2
− L1L2

r2
+B (L1 + L2)

)
m2

0 (56)

− 2

√(
−1−B2r2 +

r2E2
1

Q2 − cr − 2Mr + r2
+BL1 −

L2
1

r2

)(
−1−B2r2 +

r2E2
2

Q2 − cr − 2Mr + r2
+BL2 −

L2
2

r2

)
m2

0,

where

Q =

 2

27
×

(
−1 + 9Mc+

√
−(6Mc− 1)3

)
c2


1
2

.

Here, E1 and E2 are the energies of the �rst and the
second particle respectively. L1 and L2 are the angular
momenta of the �rst and the second particle respectively.

In Fig. 6, I have plotted center of mass energy Ecm as
a function of r for di�erent values of the magnetic �eld
strength B. From Fig. 6 it can be seen that the presence
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of a magnetic �eld increases the center of mass energy
Ecm.

B=0.07

B=0.0

4 6 8 10 12 r

0.023

0.024

0.025

Ecm

Fig. 6. Center of mass energy Ecm as a function of r for di-
�erent values of B. Here L1 = 1, L2 = 1.5, E1 = 1, E2 =

2, m0 = 0.01, M = 1, c = 0.10

VII. LYAPUNOV EXPONENT FOR THE
INSTABILITY OF AN ORBIT

The Lyapunov exponent measures the average rate at
which nearby trajectories in a phase space converge or
diverge. A positive Lyapunov exponent indicates a di-
vergence between nearby trajectories. The equation of
motion for a Geodesic stability analysis in terms of the
Lyapunov exponent can be written as [35]

dXi

dt
= Hi (Xj) . (57)

Its linearized form about a certain orbit is given by

dδXi(t)

dt
= Kij(t)δXj(t), (58)

where

Kij =
∂Hi

∂Xj

is the linear stability matrix. The solution of the above
equation can be written as

δXi(t) = Zij(t)δXj(0),

where Lij(t) is the evolution matrix which obey

˙Lij(t) = KimLmj(t) and Lij(0) = δij .

Determination of the eigenvalues of Lij leads to the
principal Lyapunov exponent λ as

λ = lim
t→∞

1

t
log

(
Lij(t)

Lij(0)

)
. (59)

In the case of a two dimensional phase space of the form
Xi(t) = (pr, r) which includes circular orbits in a stati-
onary spherically symmetric space-time, linearizing the

equations of motion about orbits of constant r solution
is given by

K11 = 0, K12 =
d

dr

(
ṫ−1 δL

δr

)
, K21 = −

(
ṫgrr

)−1
,

where L is the Lagrangian for geodesic motion. For ci-
rcular orbits

λ =
√

K12K21.

Now from the equation of motion

d

τ

δL

δṙ
=

δL

δr

using the de�nition of e�ective potential

ṙ2 = E2 − Ueff

and conditions of circular geodesic

Ueff = 0, U ′
eff = 0

Lyapunov exponent λ reduces to

λ =

√
−U ′′

eff(r)

2ṫ(r)2
. (60)

We can check the instability of a circular orbit by
Lyapunov exponent λ. For a charged particle the
Lyapunov exponent can be written as

λ2 =

(
−

(
Q2 − 2Mr + r2 − cr3

)
2r6 (L2 + r2 − 2BLr2 +B2r4)

)
,

(
20L2Q2 − 24L2Mr + 6L2r2 + 6Q2r2 − 12BLQ2r2

−2cL2r3− 4Mr3+8BLMr3+2B2r6−6B2cr7
)
, (61)

where

Q =

 2

27
×

(
−1 + 9Mc+

√
−(6Mc− 1)3

)
c2


1
2

.

In Fig. 7, Lyapunav exponent (λ) versus r has been
plotted. It is observed that a greater value of the
magnetic �eld strength increases the instability of the
circular orbit.

VIII. EFFECTIVE FORCE ON A PARTICLE

The e�ective force on a particle is given by [29]

F = −1

2

dUeff

dr
. (62)
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Fig. 7. Lyapunov exponent λ for di�erent values of B as a
function of radial coordinate r

Fmax

Fmin

4 6 8 10 12
r

-0.6

-0.4

-0.2

F

Fig. 8. E�ective force F as a function of r. Here M = 1, L =
3.22, B = 0.5, c = 0.05

Therefore e�ective force for the charged particle can be
written as

F = c

(
1

2
−BL

)
+B2M +

2L2Q2

r5
− 3L2M

r4

+
(1− 2BL)Q2

r3
+

− cL2

2 + (−1 + 2BL)M

r2
(63)

− B2r +
3

2
B2cr2,

where

Q =

 2

27
×

(
−1 + 9Mc+

√
−(6Mc− 1)3

)
c2


1
2

.

In Fig. 8, I have plotted the e�ective force versus r for
a charged particle. In the �gure, Fmax corresponds to
the unstable circular orbit and Fmin corresponds to the
stable circular orbit.

IX. CONCLUSION

I have investigated the dynamics of neutral and
charged particles moving around the Reissner�
Nordstr�om black hole in the presence of quintessence
and a magnetic �eld. Depending on the energy, initial
velocity and position of the charged particle, the charged
particle may either fall into the black hole, or escape to
in�nity, or move in a stable circular orbit, or oscillate
between two orbits. The presence of dark energy a�ects
the motion of the charged particle. For anincreasing
value of the quintesence parameter, both the stable and
the unstable circular orbit move away from the horizon.
For an increasing value of the quintesence parameter,
e�ective potential decreases. The orbits are more stable
in the presence of a magnetic �eld as compared to the
case when a magnetic �eld is absent, that is b = 0. It
can also be seen that as the value of b increases, the �rst
minimum of e�ective potential, that is the �rst stable
circular orbit, is unchanged but the second minimum
of the e�ective potential which corresponds to a stable
circular orbit is shifting towards the horizon. For an
increasing value of angular momentum, the position of
the �rst minimum of e�ective potential is unchanged
but the second minimum moves away from the horizon.
The particle having a larger value of angular momentum
l has more possibility to escape compared to the particle
with a lower value of angular momentum l.

When we consider the collision of a charged parti-
cle moving in the innermost stable circular orbit wi-
th another charged particle, then the particle getting
greater energy after the collision has more possibility
to escape to in�nity from the vicinity of the black hole
compared to the particle getting lesser energy. Also for
the larger value of ρo which corresponds to the innermost
stable circular orbit, the possibility to escape to in�nity
after the collision from the vicinity of the black hole also
increases. For a greater value of c̄, the velocity of the
charged particle after the collision will be greater; that
is the possibility to escape to in�nity increases. It can be
concluded that at the time of the collision if the charged
particle gets su�cient energy, then the charged particle
can escape to in�nity after the collision from the vicinity
of the black hole.

The presence of a magnetic �eld increases the center
of mass energy Ecm. It is observed that a greater value
of the magnetic �eld strength increases the instability of
the circular orbit.

In this paper, the dynamics of neutral and charged
particles has been investigated around the Reissner�
Nordstr�om black hole in the presence of quintessence and
the magnetic �eld which was derived from the Kiselev
black hole space-time. In [36] Matt Visser showed that
for the single component Kiselev's black hole space time

ds2 = −
(
1− 2M

r
− k

r1+3ω

)
dt2 +

dr2(
1− 2M

r − k
r1+3ω

)
+ r2

(
dθ2 + sin2 θ dϕ2

)
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energy density and pressure can be written as

ρ = −pr = − 3kω

8πr3(1+ω)
, pt = −3kω(1 + 3ω)

16πr3(1+ω)
.

These are not isotropic. He also showed anisotropic
nature of energy density and pressure is also true for the
generalized N -component Kiselev black hole. So stress
energy tensor in Kiselev's space time cannot be the
perfect �uid. Within the cosmology community, quin-

tessence refers to a scalar �eld with a time-like gradient.
The stress energy tensor associated with quintessence is
that of a zero-vorticity perfect �uid. The Kiselev space-
time does not represent quintessence in the sense that
this term used within the cosmology community. Despi-
te these terminological the issues, the Kiselev black hole
has some interesting physical and mathematical properti-
es and does merit investigation.
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P. MANDAL

ÄÈÍÀÌIÊÀ ÍÅÉÒÐÀËÜÍÎ� ÒÀ ÇÀÐßÄÆÅÍÎ� ×ÀÑÒÈÍÊÈ Â �ÐÀÂIÒÀÖIÉÍÎÌÓ ÏÎËI
×ÎÐÍÎ� ÄIÐÈ ÐÀÉÑÑÍÅÐÀ�ÍÎÐÄÑÒÐÜÎÌÀ ÇÀ ÍÀßÂÍÎÑÒI ÇÎÂÍIØÍÜÎÃÎ ÌÀÃÍIÒÍÎÃÎ

ÏÎËß ÒÀ ÒÅÌÍÎ� ÅÍÅÐ�I�

Ïðîñàíòà Ìàíäàë
Êîëåäæ Ñðiïàò Ñií õ,

Äæià àíäæ, Ìóðøiäàáàä, Çàõiäíèé Áåí àë, Iíäiÿ

Ó ñòàòòi äîñëiäæåíî äèíàìiêó íåéòðàëüíî¨ òà çàðÿäæåíî¨ ÷àñòèíîê íàâêîëî ÷îðíî¨ äiðè
Ðàéññíåðà�Íîðäñòðüîìà, îòî÷åíî¨ êâiíòåñåíöi¹þ, çà íàÿâíîñòi çîâíiøíüîãî ìàãíiòíîãî ïîëÿ. Ñïåðøó
ðîçãëÿíóòî çiòêíåííÿ íåéòðàëüíî¨ ÷àñòèíêè, ùî ðóõà¹òüñÿ íàâêîëî ÷îðíî¨ äiðè, ç iíøîþ íåéòðàëü-
íîþ ÷àñòèíêîþ. Ïîòiì îáãîâîðåíî çiòêíåííÿ çàðÿäæåíî¨ ÷àñòèíêè, ùî ðóõà¹òüñÿ íàâêîëî ÷îðíî¨
äiðè, ç iíøîþ çàðÿäæåíîþ ÷àñòèíêîþ. Çà äîïîìîãîþ ÷èñåëüíèõ ðîçâ'ÿçêiâ ðiâíÿíü ðóõó ïîêàçàíî,
ùî ïiñëÿ çiòêíåííÿ, ÿêùî ÷àñòèíêà îòðèìó¹ äîñòàòíþ åíåð iþ, âîíà ìîæå âòåêòè â áåçìåæíiñòü.
Çàëåæíiñòü îðáiò âiä êâiíòåñåíöi¨ òà ìàãíiòíîãî ïîëÿ äëÿ çàðÿäæåíî¨ ÷àñòèíêè äåòàëüíî âèâ÷åíî
çà äîïîìîãîþ åôåêòèâíîãî ïîòåíöiàëó çàðÿäæåíî¨ ÷àñòèíêè. Âèêîðèñòîâóþ÷è ïîêàçíèê Ëÿïóíîâà,
îáãîâîðåíî âïëèâ ìàãíiòíîãî ïîëÿ òà òåìíî¨ åíåð i¨ íà ñòàáiëüíiñòü ÷àñòèíêè. Âèâåäåíî âèðàç äëÿ
åíåð ié öåíòðà ìàñ çàðÿäæåíèõ ÷àñòèíîê, ùî ñòèêàþòüñÿ, ðóõàþ÷èñü íàâêîëî ÷îðíî¨ äiðè. Çà íàÿâ-
íîñòi òåìíî¨ åíåð i¨ òà ìàãíiòíîãî ïîëÿ îáãîâîðåíî âïëèâ åôåêòèâíî¨ ñèëè íà çàðÿäæåíó ÷àñòèíêó.

Êëþ÷îâi ñëîâà: ðiâíÿííÿ Åéëåðà�Ëà ðàíæà, öèêëi÷íà êîîðäèíàòà, øâèäêiñòü óòå÷i, åíåð iÿ
öåíòðà ìàñ òà åôåêòèâíà ñèëà.
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