Journal of Physical Studies 28(1), Article 1701 [7 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.1701

CHANGES IN THERMAL AND REFRACTIVE PARAMETERS OF THE SULFATE GROUP CRYSTALS IN THE REGION OF THE PHASE TRANSITION

P. A. Shchepanskyi1 , V. Yo. Stadnyk1 , I. A. Pryshko1, R. S. Brezvin1 , O. R. Onufriv2, Z. Kohut{3,4} 

1Ivan Franko National University of Lviv, 19, Drahomanov St., Lviv, UA–79005, Ukraine,
e-mail: vasylstadnyk@ukr.net
2Ukrainian National Forestry University, 103, General Chuprynka St., Lviv, UA–79057 Ukraine,
3Częstochowa University of Technology, ul. J. H. Dąbrowskiego, 69, 42-201 Częstochowa, Poland,
4Lviv Polytechnic National University, 5, Ustyyanovych St., Lviv, UA–79013, Ukraine

Received 03 November 2023; in final form 03 December 2023; accepted 20 December 2023; published online 12 February 2024

Temperature changes of linear expansion and refractive indices of rubidium sulfate (RS) Rb$_2$SO$_4$ crystals were investigated in the work. It was established that the linear dimensions increase as the temperature increases. For the $Z$-direction (the direction of occurrence of ferroelastic deformation) these changes are significant. The temperature dependence of the spontaneous deformation $δχ_z$ was calculated, and it was found that the value of $δχ_z$ decreases parabolically as the temperature increases.

DTA was carried out and derivatogramm and thermogravimetrogramm of RS crystal were obtained. At the temperature of 923 K, a clear anomaly was found, which corresponds to the position of the phase transition (PT) point, which is endothermic in nature. In the temperature range of 625-738 K, a loss of the mass of the sample was detected, which was caused by the thermal decomposition of ОН$_3^{+}$ ions and the emission of Н$_2$ and О$_2$ molecules.

It was established that the temperature changes of the refractive indices $n_i$ of Rb$_2$SO$_4$ crystal decrease non-linearly as the temperature increases, and $|dn_z/dT| > |dn_x/dT| ≥ |dn_y/dT|$. During the PT, no jump-like changes in $n_i(T)$ were detected, which is characteristic of PT of the 2nd kind. The values of spontaneous changes in refractive indices $δ n_i^{\rm s}(T)$ were obtained. These are similar in behavior to the experimentally obtained dependence $χ_i^{\rm s}(T)$ and can be described by a parabolic dependence.

Using the obtained experimental values, the critical index of changes $δ n_i^{\rm s}(T)$ was estimated ($β = 0.21$), which corresponds to the values derived from Landau's thermodynamic theory for PT. It is assumed that the main cause of the detected changes in the vicinity of the PT is defects of the “random temperature” type.

The temperature change of the electronic polarizability $α(T)$ of the Rb$_2$SO$_4$ crystal was estimated. It characterizes the degree of displacement of the structural elements from the equilibrium position under the action of the external electric field of the incident light wave. In the PT region, the dependence of $α(T)$ has a complex anomalous character: it slightly decreases as the temperature increases, and after the PT, the value of $α(T)$ practically does not change with temperature.

Key words: thermal expansion, spontaneous deformation, differential thermal analysis, refractive index, critical index, electronic polarizability.

Full text


References
  1. C. Schwartz, D. S. Chemla, R. C Smith, Opt. Commun. 5, 244 (1975);
    Crossref
  2. G. C. Bhar, Appl. Phys. 13, 455 (1980);
    Crossref
  3. S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 52, 5607 (1970);
    Crossref
  4. S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 59, 1625 (1973);
    Crossref
  5. V. I. Stadnyk, V. M. Gaba, B. V. Andrievskii, Z. O. Kogut, Phys. Solid State 53, 131 (2011);
    Crossref
  6. V. Yo. Stadnyk, M. O. Romanyuk, R. S. Brezvin, Ferroelectrics 192, 203 (1997);
    Crossref
  7. P. A. Shchepanskyi, O. S. Kushnir, V. Yo. Stadnyk, R. S. Brezvin, A. O. Fedorchuk, Ukr. J. Phys. Opt. 19, 141 (2018);
    Crossref
  8. V. I. Stadnyk, O. S. Kushnir, R. S. Brezvin, V. M. Gaba, Opt. Spectrosc. 106, 614 (2009);
    Crossref
  9. V. I. Stadnik, N. A. Romanyuk, R. S. Brezvin, Crystallogr. Rep. 50, 961 (2005);
    Crossref
  10. P. E. Tomaszewski, Phase Transit. 38, 127 (1992);
    Crossref
  11. O. Muller, R. Roy, The Major Ternary Structural Families (Berlin–Heidelberg–New York, Springer-Verlag, 1974).
  12. V. M. Gaba, Acta Phys. Polon. A 117, 129 (2010);
    Crossref
  13. M. Ya. Rudysh et al., Optik 269, 169875 (2022);
    Crossref
  14. H. E. Hagy, W. D. Shirkey, Appl. Opt. 14, 2099 (1975);
    Crossref
  15. H. D. Megaw, Mater. Res. Bull. 6, 1007 (1971);
    Crossref
  16. Huidan Zheng et al., Chem. Phys. Lett. 662, 268 (2016);
    Crossref
  17. Taixin Liang et al., Composites Part B 166, 428 (2019);
    Crossref
  18. G. Laplanche et al., J. Alloys Compd. 746, 244 (2018);
    Crossref
  19. R. Ishige et al., Macromolecules 50, 2112 (2017);
    Crossref
  20. М. О. Романюк, Кристалооптика (ЛНУ імені Івана Франка, Львів, 2017).
  21. М. О. Романюк, А. С. Крочук, І. П. Пашук, Оптика (ЛНУ імені Івана Франка, Львів, 2012).
  22. В. М. Габа, Спектрально-температурні деформації оптичних індикатрис у іонних кристалах та фізичні аспекти їх практичного застосування (Ліга-Прес, Львів 2006).
  23. K. S. Aleksandrov et al., Ferroelectrics 95, 3 (1989);
    Crossref
  24. M. Miyake, M. Matsuo, M. Hata, S. Iwai, Phys. Chem. Minerals 7, 88 (1981);
    Crossref
  25. F. A. I. El-Kabbany, J. Badr, N. H. Taher, S. Taha, Appl. Phys. Commun. 6, 313 (1987).
  26. H. Arnold, W. Kurtz, Ferroelectrics 25, 557 (1980);
    Crossref
  27. O. S. Kushnir, R. Y. Shopa, R. O. Vlokh, Ukr. J. Phys. Opt. 9, 169 (2008);
    Crossref
  28. Y. I. Shopa et al., Ukr. J. Phys. Opt. 10, 71 (2009);
    Crossref
  29. N. R. Ivanov, A. P. Levanyuk, S. A. Minyukov, J. Kroupa, J. Fousek, J. Phys.: Condens. Matter 2, 5777 (1990);
    Crossref
  30. A. P. Levanyuk, A. S. Sigov, Ferroelectrics 63, 39 (1985);
    Crossref
  31. M. M. Maior, P. H. M. van Loosdrecht, H. van Kempen, S. B. Molnar, V. Yu. Slivka, Physica B 202, 152 (1994);
    Crossref
  32. O. V. Bovgyra, V. I. Stadnyk, O. Z. Chyzh, Phys. Solid State 48, 1268 (2006);
    Crossref
  33. O. S. Kushnir, P. A. Shchepanskyi, V. Yo. Stadnyk, A. O. Fedorchuk, Opt. Mater. 95, 109221 (2019);
    Crossref
  34. H. Arnold, W. Kurtz, A. Richter-Zinnius, J. Bethke, G. Heger, Acta Cryst. B37, 1643 (1981);
    Crossref
  35. M. Miyake, S. Iwai, Phys. Chem. Mater. 7, 211 (1981);
    Crossref