Journal of Physical Studies 28(1), Article 1702 [9 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.1702

FEATURES OF NiCx (x ≤ 1) FORMATION AT MECHANICAL ALLOYING OF THE EQUIMOLAR Ni–CNT AND Ni–GRAPHITE MIXTURES

Nadia Belyavina , Roman Ostapenko , Alla Kuryliuk , Olesya Nakonechna 

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., 01601 Kyiv, Ukraine,
e-mails: nbelyavina@ukr.net, roman.ostapenko@knu.ua, alla.kuryliuk@knu.ua, olesya.nakonechna@knu.ua

Received 30 October 2023; in final form 18 December 2023; accepted 04 January 2024; published online 31 January 2024

Comprehensive theoretical and experimental studies of simultaneous mechanical alloying (MA) of Ni-carbon nanotubes (CNT) and Ni-Graphite mixtures (3:1, 3:2 and 1:1 component ratios) in a high-energy planetary ball mill have shown that the interaction of nickel atoms with CNTs or graphite leads to the formation of nanoscaled NiC$_{x}$ carbide ($x<1$). During mechanical alloying the crystal structure of NiC$_{x}$ carbide undergoes a transformation from the defective $s$-ZnS sphalerite type structure (with up to 2 carbon atoms per carbide lattice) to its internally deformed derivative described as own NiC type structure (2-4 carbon atoms per carbide lattice). Components of the charge (CNT or graphite) demonstrate their features at the formation of NiC$_{x}$ carbide. It means a different crystal lattice size for the same number of carbon atoms in its crystal structure as well as different values of the parameters of its real structure (deformations of the first- and second- order) at the same processing time in the mill. Analysis of the experimental data reveals that the plots of numbers of carbon atoms embedded in the NiC$_{x}$ lattice ($N_{\rm C}$) vs MA milling time ($t$) is fitted well by the following equation: $N_{\rm C}=A[1-\exp(-kt)]$, where $A$ and $k$ are constants. The $A$ constant could be associated with the reaction capacity for CNTs or graphite for formation of NiC$_{x}$ carbide ($A_{\rm CNT} > A_{\rm Gr}$), while the $k$ constant characterizes the rate of this process ($k_{\rm CNT} < k_{\rm Gr}$). The magnetic properties of the final MA powders as well as the microhardness of the samples sintered at high pressure and high temperature depend on the carbon form used (CNT or graphite), too. In our opinion, these features are probably related to the $sp^{2}$/$sp^{3}$ ratio of carbon atoms formed in the initial CNT or graphite powders as well as CNT or graphite powders at mechanical alloying.

Key words: monocarbides, mechanochemical synthesis, X-ray diffraction method, crystal structure.

Full text


References
  1. S. Phimsen et al., Energy Convers. Manag. 151, 324 (2017);
    Crossref
  2. J. Yang et al., Chem. Eng. J. 352, 940 (2018);
    Crossref
  3. A. Munir et al., Electrochim. Acta 341, 136032 (2020);
    Crossref
  4. P. Wang et al., Small 16, 2001642. (2020);
    Crossref
  5. L. Qiao, W. Zhao, Y. Qin, M. T. Swihart, Angew. Chem. Int. Ed. 55, 8023 (2016);
    Crossref
  6. B. C. Bayer et al., J. Phys. Chem. A 120, 22571 (2016).
    Crossref
  7. T. Ujvari et al., Surf. Interface Anal. 36, 760 (2004);
    Crossref
  8. H. Li et al., Mater. Lett. 145, 291 (2015);
    Crossref
  9. G. Radnoczi et al., Metall. Mater. High Struct. Efficiency 101 (2004);
    Crossref
  10. V. K. Portnoi, A. V. Leonov, S. N. Mudretsova, S. A. Fedotov, Phys. Met. Metallogr. 109, 153 (2010);
    Crossref
  11. О. І. Nakonechna, N. N. Belyavina, M. M. Dashevskyi, A. M. Kuryliuk, V. A. Makara, Dop. Nat. Akad. Nauk. Ukr. 4, 50 (2019);
    Crossref
  12. О. І. Nakonechna et al., Dop. Nat. Akad. Nauk. Ukr. 3, 47 (2020);
    Crossref
  13. O. Nakonechna, K. Ivanenko, A. Kuryliuk, N. Belyavina, Metallofiz. Noveishie Tekhnol. 44, 327 (2022);
    Crossref
  14. R. Ostapenko, K. Ivanenko, A. Kuryliuk, O. Nakonechna, N. Belyavina, Adv. Powder Technol. 33, 103390 (2022);
    Crossref
  15. О. І. Nakonechna, N. N. Belyavina, R. V. Ostapenko, A. M. Kuryliuk, V. A. Makara, Dop. Nat. Akad. Nauk. Ukr. 6, 36 (2019);
    Crossref
  16. O. I. Nakonechna, M. G. Dusheiko, N. N. Belyavina, A. M. Kuryliuk, A. S. Osipov, Metallofiz. Noveishie Tekhnol. 42, 1659 (2020);
    Crossref
  17. O. I. Nakonechna, K. O. Ivanenko, A. M. Kuryliuk, N. N. Belyavina, Phys. Chem. Solid State 22, 59 (2021);
    Crossref
  18. O. I. Nakonechna, D. A. Stratiichuk, A. M. Kuryliuk, N. N. Belyavina, Phys. Chem. Solid State 23, 34 (2022);
    Crossref
  19. M. Dashevskyi, О. Boshko, O. Nakonechna, N. Belyavina, Metallofiz. Noveishie Tekhnol. 39, 541 (2017);
    Crossref
  20. Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, D.H. Wu, Carbon 37, 493 (1999);
    Crossref
  21. B. Zhou et al., Thin Solid Films 701, 137942 (2020);
    Crossref
  22. O. I. Nakonechna, M. M. Dashevskyi, О. І. Boshko, V. V. Zavodyanny, N. N. Belyavina, Prog. Phys. Met. 20, 1 (2019);
    Crossref