Journal of Physical Studies 28(1), Article 1801 [9 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.1801

OPTICALLY ACTIVE TiO2 FILMS FABRICATED BY SPIN COATING METHOD FOR METHYLENE BLUE PHOTOREMEDIATION

Vicran Zharvan{1} , Gatut Yudhoyono{2} , Darminto{2} 

{1}Laboratory of Materials Physics, Department of Physics, Universitas Negeri Makassar, Indonesia,
e-mail: vicran.zharvan@unm.ac.id
{2}Department of Physics, Institut Teknologi Sepuluh Nopember, Indonesia

Received 05 July 2023; in final form 16 January 2024; accepted 31 January 2024; published online 26 March 2024

The spin-coating process was used to create the TiO2 layer successfully. The TiO2 film was created by dissolving TiO2 nanopowder in terpineol and ethylcellulose, and then spin coating it onto the corning glass. The films' shape, phase, and optical properties were then determined using SEM, XRD, and UV-Vis. Photocatalytic measurements of TiO2 films were performed using a UV lamp to irradiate a 12 mg/l methylene blue solution for 5 hours. According to the results, all TiO2 films feature an anatase phase with crystallite size values ranging from 5.55 nm to 6.94 nm and an absorbance region near the UV range. The best photocatalytic activity was found in a film containing TiO2 particles that had been stirred for 5 hours with the value of constant rate of discoloration dye 0.0032/min.

Key words: TiO2, anatase, thin-film, photocatalyst.

Full text


References
  1. J. Ovenstone, K. Yanagisawa, Chem. Mater. 11, 66 (2021);
    Crossref
  2. A. Castro, M. Nunes, A. Carvalho, F. Costa, M. Florencio, Solid State Sci. 10, 602 (2008);
    Crossref
  3. P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, S. Zinya, in Titanium Dioxide, edited by D. Yang (IntechOpen, Rijeka, 2018), Chap. 8;
    Crossref
  4. R. Vijayalakshmi, V. Rajendran, Arch. App. Sci. Res. 4, 1183 (2012).
  5. A. K. Tripathi et al., Mat. Sci. Sem. Proc. 23, 136 (2014);
    Crossref
  6. B. R. Fernandez, Makalah. Sintesis Nanopartikel (Pasca sarjana Universitas Andalas, Padang, 2011).
  7. H. N. Widaryanti, Darminto, AIP Conf. Proc. 1555, 11 (2013);
    Crossref
  8. V. Zharvan, G. Yudoyono, D. Darminto, J. Fis. Apl. 19, 25 (2023);
    Crossref
  9. A. J. Haider, Z. N. Jameel, I. H. Al-Hussaini, Energy Procedia 157, 17 (2019);
    Crossref
  10. A. A. Daniyan et al., J. Minerals Mater. Charact. Eng. 2, 15 (2014);
    Crossref
  11. V. T. Lukong, K. Ukoba, T.-C. Jen, Int. J. Adv. Manuf. Tech. 122, 3525 (2022);
    Crossref
  12. A. Hosseini, K. Ç. Içli, M. Özenbaş, Ç. Erçelebi, Energy Procedia 60, 191 (2014);
    Crossref
  13. T. Senthil, N. Muthukumarasamy, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Mater. Sci. Eng. B 174, 102 (2010);
    Crossref
  14. A. Elfanaoui et al., Int. J. Hydrog. Energy 36, 4130 (2011);
    Crossref
  15. S. Amole et al., J. Mater. Sci. Chem. Eng. 7, 23 (2019);
    Crossref
  16. R. Mori et al., J. Mater. Sci. 46, 1341 (2011);
    Crossref
  17. C. F. Holder, R. E. Schaak, ACS Nano 13, 7359 (2019);
    Crossref
  18. Y. Zhao et al., Mater. Lett. 61, 79 (2007);
    Crossref
  19. C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, Ceram. Int. 34, 1067 (2008);
    Crossref
  20. L. Ge, M. Xu, M. Sun, H. Fang, J. Sol-Gel Sci. Technol. 38, 47 (2006);
    Crossref
  21. S. Yang, Y. Liu, Y. Zhang, D. Mo, Bull. Mater. Sci. 33, 209 (2010);
    Crossref
  22. P. Głuchowski et al., J. Phys. Chem. C 126, 7127 (2022);
    Crossref
  23. S. Rohilla, IOP Conf. Ser.: Mater. Sci. Eng. 872, 012171 (2020);
    Crossref
  24. E. H. Kisi, Mater. Forum 18, 135 (1994).
  25. A. Mustafa et al., Surf. Eng. 37, 784 (2021);
    Crossref
  26. G. Li, J. Boerio-Goates, B. F. Woodfield, L. Li, App. Phys. Lett. 85, 2059 (2004);
    Crossref
  27. M. F. Sidra Jamil, Mater. Innov. 1, 21 (2021);
    Crossref
  28. I. Gosens et al., Part. Fibre Toxicol. 7, 1 (2010);
    Crossref
  29. N. Das, P. Ghosh, M. Mitra, K. Chattopadhyay, Physica E 42, 2097 (2010);
    Crossref
  30. S. Kale et al., Appl. Surf. Sci. 253, 4335 (2007);
    Crossref
  31. H. Zhang et al., in The 7th National Conference on Functional Materials and Applications (Changsha, Hunan, China, 2010), p. 359.
  32. B. Avinash et al., AIP Conf. Proc. 1728, 020426 (2016);
    Crossref
  33. M. El-Hagary, E. Shaaban, S. Moustafa, G. Gad, Solid State Sci. 91, 15 (2019);
    Crossref
  34. K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, G. Marin, in Thin Solid Films: Process and Applications, edited by S. C. Nam (Transworld Research Network, India, 2009), p. 189.
  35. O. Carp, C. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004);
    Crossref
  36. J. Yu, X. Zhao, Q. Zhao, J. Mater. Sci. Lett. 19, 1015 (2000);
    Crossref
  37. J. Santhanalakshmi, R. Komalavalli, P. Venkatesan, J. Nanosci. Nanotechnol. 2, 8 (2012);
    Crossref
  38. L. Andronic, A. Duta, Mater. Chem. Phys. 112, 1078 (2008);
    Crossref