Journal of Physical Studies 28(1), Article 1901 [15 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.1901

SIGNAL IN THE HYPERFINE STRUCTURE LINE OF ATOMIC HYDROGEN'S GROUND STATE FROM THE DARK AGES AS A COSMOLOGICAL TEST

B. Novosyadlyj{1,2} , Yu. Kulinich1 , O. Konovalenko3 

1Astronomical Observatory of Ivan Franko National University of Lviv, Ukraine,
2College of Physics, International Center of Future Science, Jilin University, Changchun, China,
3Institute of Radio Astronomy NAS Ukraine, Kharkiv, Ukraine

Received 16 October 2023; in final form 29 November 2023; accepted 04 December 2023; published online 31 January 2024

We analyze the formation of the redshifted hyperfine structure line 21-cm of hydrogen atoms in Dark Ages at $30\le z\le300$ in different cosmologies. To study its dependence on the values of cosmological parameters and physical conditions in the intergalactic medium, the evolution of the global (sky-averaged) differential brightness temperature in this line was computed in standard and non-standard cosmological models with different parameters. The standard $Λ$CDM model with post-Planck parameters predicts the following value of the differential brightness temperature in the center of the absorption line: $δ T_{\rm br}≈35$ mK at $z≈87$. The frequency of the line in the absorption maximum is 16 MHz, the effective half-width of the line is 17 MHz. The depth of the line is moderately sensitive to $Ω_{\rm b}$ and H$_0$, weakly sensitive to $Ω_{\rm dm}$, and insensitive to other parameters of the standard $Λ$CDM model. But the line is very sensitive to additional mechanisms of heating or cooling of baryonic matter during the Dark Ages, so it can be a good test of non-standard cosmological models. In the models featuring decaying and self-annihilating dark matter, along with a primordial stochastic magnetic field, the temperature of baryonic matter in this period increases with higher densities of these dark matter components and stronger magnetic field strengths. The absorption line gradually becomes shallower, and eventually disappears, transitioning into emission when the values of the component parameters are lower than their upper limits, as determined by current observational data. Estimates show that such spectral features may be detected by radio telescopes in the decameter wavelength range in the near future.

Key words: cosmological Dark Ages, hydrogen 21 cm line, self-annihilating dark matter, decaying dark matter, primordial magnetic fields.

Full text


References
  1. B. E. Robertson et al., Nat. Astron. 7, 611 (2023);
    Crossref
  2. E. Curtis-Lake. Four metal-poor galaxies spectroscopically confirmed beyond redshift ten. Submitted to Nat. Astron.
  3. L. Verde, T. Treu, A. G. Riess, Nat. Astron. 3, 891 (2019);
    Crossref
  4. A. G. Riess et al., Astrophys. J. Lett. 934, 7 (2022); \linebreak
    Crossref
  5. R. Barkana, A. Loeb, Phys. Rep. 349, 125 (2001);
    Crossref
  6. X. Fan, C. L. Carilli, B. Keating, Ann. Rev. Astron. Astrophys. 44, 415 (2006);
    Crossref
  7. S. R. Furlanetto, S. P. Oh, F. H. Briggs, Phys. Rep. 433, 181 (2006);
    Crossref
  8. V. Bromm, N. Yoshida, Ann. Rev. Astron. Astrophys. 49, 373 (2011);
    Crossref
  9. J. R. Pritchard, A. Loeb, Rep. Prog. Phys. 75, 086901 (2012);
    Crossref
  10. A. Natarajan, N. Yoshida, Prog. Theor. Exp. Phys. 2014, 06B112 (2014);
    Crossref
  11. H. Shimabukuro, K. Hasegawa, A. Kuchinomachi, H. Yajima, S. Yoshiura, Publ. Astron. Soc. Jpn 75, 1 (2023);
    Crossref
  12. T. Minoda et al., Publ. Astron. Soc. Jpn 75, S154 (2023);
    Crossref
  13. I. T. Iliev, P. R. Shapiro, A. Ferrara, H. Martel, Astrophys. J. 572, L123 (2002);
    Crossref
  14. I. T. Iliev, E. Scannapieco, H. Martel, P. R. Shapiro, Mon. Not. Roy. Astron. Soc. 341, 81 (2003);
    Crossref
  15. S. R. Furlanetto, S. P. Oh, Astrophys. J. 652, 849 (2006);
    Crossref
  16. P. R. Shapiro et al., Astrophys. J. 646, 681 (2006);
    Crossref
  17. M. Kuhlen, P. Madau, R. Montgomery, Astrophys. J. Lett. 637, 1 (2006);
    Crossref
  18. B. Novosyadlyj, V. Shulga, Yu. Kulinich, W. Han, Phys. Dark Universe 27, 100422 (2020);
    Crossref
  19. S. Wouthuysen, Astrophys. J. 57, 31 (1952);
    Crossref
  20. G. B. Field, Proc. IRE 46, 240 (1958);
    Crossref
  21. G. B. Field, Astrophys. J. 129, 536 (1959);
    Crossref
  22. J. R. Pritchard, A. Loeb, Phys. Rev. D 82, 023006 (2010);
    Crossref
  23. J. Mirocha, G. J. A. Harker, J. O. Burns, Astrophys. J. 777, 118 (2013);
    Crossref
  24. J. Mirocha, G. J. A. Harker, J. O. Burns, Astrophys. J. 813, 11 (2015);
    Crossref
  25. A. Cohen, A. Fialkov, R. Barkana, M. Lotem, Mon. Not. Roy. Astron. Soc. 472, 1915 (2017);
    Crossref
  26. R. A. Monsalve, A. E. E. Rogers, J. D. Bowman, T. J. Mozdzen, Astrophys. J. 847, 64 (2017);
    Crossref
  27. R. A. Monsalve et al., Astrophys. J. 863, 11 (2018); \linebreak
    Crossref
  28. R. A. Monsalve et al., Astrophys. J. 875, 67 (2019);\linebreak
    Crossref
  29. B. Novosyadlyj, Yu. Kulinich, G. Milinevsky, V. Shulga, Mon. Not. Roy. Astron. Soc. 526, 2724 (2023);
    Crossref
  30. J. D. Bowman et al., Nature 555, 67 (2018);
    Crossref
  31. R. Barkana, Nature 555, 71 (2018);
    Crossref
  32. A. Ewall-Wice et al. Astrophys. J. 868, 63 (2018);
    Crossref
  33. A. Halder, S. Shekhar Pandey, A.S. Majumdar, J. Cosmol. Astropart. Phys. {bf 22}, 049 (2022);
    Crossref
  34. R. Hills, G. Kulkarni, P. D. Meerburg, E. Puchwein, Nature 564, E32 (2018);
    Crossref
  35. S. Singh et al., Nat. Astron. 6, 607 (2022);
    Crossref
  36. M. J. Bentum et al., Adv. Space Res. 65, 856 (2020);
    Crossref
  37. D. Rapetti, J. Hibbard, N. Bassett, J. Burns, Bull. Am. Astron. Soc. 55, 2023n6i315p07 (2023); https://baas.aas.org/pub/2023n6i315p07/release/1
  38. L. Plice, K. Galal, J.O Burns, preprint arXiv:1702.00286 (2017);
    Crossref
  39. A. Goel et al., Bull. AAS, 54, 6 (2022); https://baas.aas.org/pub/2022n6i312p06/release/1
  40. Y. G. Shkuratov et al., Acta Astronaut. 154, 214 (2019);
    Crossref
  41. Planck Collaboration: N. Aghanim et al., Astron. Astrophys. 641, A1 (2020);
    Crossref
  42. Planck Collaboration: N. Aghanim et al., Astron. Astrophys., 641, A6 (2020);
    Crossref
  43. B. Novosyadlyj, O. Sergijenko, V.M. Shulga, Kinem. Phys. Celest. Bodies, 33, 255;
    Crossref
  44. Yu. Kulinich, B. Novosyadlyj, V. Shulga, W. Han, Phys. Rev. D 101, 083519 (2020);
    Crossref
  45. B. Novosyadlyj, Yu. Kulinich, V. Shulga, W. Han, Astrophys. J. 888, 27 (2020);
    Crossref
  46. B. Novosyadlyj, Yu. Kulinich, B. Melekh, V. Shulga, Astron. Astrophys. 663, A120 (2022);
    Crossref
  47. S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Lett. 523, p. 1 (1999);
    Crossref
  48. S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Supl. Ser. 128, 407 (2000);
    Crossref
  49. P. R. Shapiro, H. Kang, Astrophys. J. 318, 32 (1987);
    Crossref
  50. P. Anninos, Y. Zhang, T. Abel, M. L. Norman, New Astron. 2, 209 (1997);
    Crossref
  51. K. Subramanian, Rep. Prog. Phys. 79, 076901 (2016);
    Crossref
  52. A. Neronov, I. Vovk, Sience 328, 73 (2010);
    Crossref
  53. K. Takahashi, M. Mori, K. Ichiki, S. Inoue, H. Takami, Astrophys. J. Lett. 771, L42 (2013);
    Crossref
  54. Planck Collaboration: P. A. R. Ade et al., Astron. Astrophys. 594, A19 (2016);
    Crossref
  55. S. K. Sethi, K. Subramanian, Mon. Not. Roy. Astron. Soc. 356, 778 (2005);
    Crossref
  56. J. Chluba, D. Paoletti, F. Finelli, J.A. Rubiño-Martin, Mon. Not. Roy. Astron. Soc. 451, 2244 (2015);
    Crossref
  57. A. Mack, T. Kahniashvili, A. Kosowsky, Phys. Rev. D 65, 123004 (2002);
    Crossref
  58. T. Minoda, H. Tashiro, T. Takahashi, Mon. Not. Roy. Astron. Soc. 488, 2001 (2019);
    Crossref
  59. J. Chluba, Mon. Not. Roy. Astron. Soc. 402, 1195 (2010);
    Crossref
  60. H. Liu, T.R. Slatyer, Phys. Rev. D 98, 023501 (2018);
    Crossref
  61. J. B. Muñoz, E. D. Kovetz, Y. Ali-Haïmoud, Phys. Rev. D 92, 083528 (2015);
    Crossref
  62. Y. Ali-Haïmoud, J. Chluba, M. Kamionkowski, Phys. Rev. Lett. 115, 071304 (2015);
    Crossref
  63. R. Essig, T. Volansky, T.-T. Yu, Phys. Rev. D 96, 043017 (2017);
    Crossref
  64. P. Madau, A. Meiksin, M. J. Rees, Astrophys. J. 475, 429 (1997);
    Crossref
  65. M. Zaldarriaga, S. R. Furlanetto, L. Hernquist, Astrophys. J. 608, 622 (2004);
    Crossref
  66. O. Konovalenko et al., this issue; J. Phys. Stud. 28, 1902 (2024);
    Crossref