Journal of Physical Studies 28(1), Article 1902 [20 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.1902

ON THE POSSIBILITY OF DETECTING A GLOBAL SIGNAL IN THE LINE OF THE HYPERFINE STRUCTURE OF HYDROGEN FROM THE DARK AGES

A. Konovalenko1 , V. Zakharenko1 , B. Novosyadlyj{2,3} , L. Gurvits4 , S. Stepkin1 , Y. Vasylkivskyi1 , P. Tokarsky1 , O. Ulyanov1 , A. Stanislavsky1 , I. Bubnov1 

1Institute of Radio Astronomy NAS Ukraine, Kharkiv, Ukraine,
2Astronomical Observatory of Ivan Franko National University of Lviv, Ukraine,
3College of Physics, International Center of Future Science, Jilin University, Changchun, China,
4Joint Institute for VLBI ERIC, Dwingeloo, Netherlands

Received 16 October 2023; in final form 27 November 2023; accepted 04 December 2023; published online 31 January 2024

We analyze the possibilities of detecting a signal in the hydrogen 21 cm line, which was formed in the early universe during the Dark Ages, using the Ukrainian radio telescopes UTR-2 and GURT of the National Academy of Sciences of Ukraine. As a result of cosmological expansion, this line is shifted to the decameter range of wavelengths ($λ_{\rm obs}≈18$ m, $ν_{\rm obs}≈16$ MHz) and is in the band of operating frequencies of these telescopes. The brightness temperature of the predicted sky-averaged global signal ranges from $\sim-0.08$ to $\sim0.02$ K, depending on the cosmological model. Such a weak signal is a big challenge even for the world's largest radio telescope in the decameter wavelength range UTR-2, since the signal level of the synchrotron radiation of the Galaxy at these frequencies is 20 000-40 000 K. The paper highlights the peculiarities of spectroscopy at decameter waves, interfering factors of natural and instrumental origin and ways to eliminate them in order to reliably detect the signal in the 21 cm line, which can become an important source of information both about the environment in which the first stars and galaxies were born, and about the nature of dark matter particles and the magnitude of primordial magnetic fields. It was concluded that the detection of such a signal using the most sensitive radio telescopes of the decameter wavelength range is quite possible (with a frequency accumulation of 25 MHz, the detection time will be $\sim50$ days) and can be implemented in the coming years of peace in Ukraine.

Key words: cosmological Dark Ages, hydrogen 21 cm line, radio spectroscopy, UTR-2 radio telescope.

Full text


References
  1. A. A. Penzias, R. W. Wilson, Astrophys. J. 142, 419 (1965);
    Crossref
  2. Planck Collaboration: N. Aghanim et al., Astron. Astrophys. 641, A1 (2020);
    Crossref
  3. Planck Collaboration: N. Aghanim et al., Astron. Astrophys., 641, A6 (2020);
    Crossref
  4. B. E. Robertson et al., Nat. Astron. 7, 611 (2023);
    Crossref
  5. E. Curtis-Lake, Four metal-poor galaxies spectroscopically confirmed beyond redshift ten; submitted to Nat. Astron.
  6. L. Verde, T. Treu, A.G. Riess, Nat. Astron. 3, 891 (2019);
    Crossref
  7. A. G. Riess et al., Astrophys. J. Lett. 934, 7 (2022);
    Crossref
  8. V. Bromm, N. Yoshida, Ann. Rev. Astron. Astrophys. 49, 373 (2011);
    Crossref
  9. J. R. Pritchard, A. Loeb, Rep. Prog. Phys. 75, 086901 (2012);
    Crossref
  10. J. D. Bowman et al., Nature 555, 67 (2018);
    Crossref
  11. S. Singh et al., Nat. Astron. 6, 607 (2022);
    Crossref
  12. B. Novosyadlyj, Yu. Kulinich, V. Shulga, W. Han, Astrophys. J. 888, 27 (2020);
    Crossref
  13. Yu. Kulinich, B. Novosyadlyj, V. Shulga, W. Han, Phys. Rev. D 101, id.083519 (2020);
    Crossref
  14. B. Novosyadlyj, Yu. Kulinich, B. Melekh, V. Shulga, Astron. Astrophys. 663, A120 (2022);
    Crossref
  15. B. Novosyadlyj, V. Shulga, Yu. Kulinich, W. Han, Physics of the Dark Universe 27, 100422 (2020);
    Crossref
  16. B. Novosyadlyj, Yu. Kulinich, G. Milinevsky, V. Shulga, Mon. Not. Roy. Astron. Soc. 526, 2724 (2023);
    Crossref
  17. K. Tauscher, D. Rapetti, J. O. Burns, E. Switzer, Astrophys. J. 853, 187 (2018);
    Crossref
  18. D. Rapetti, K. Tauscher, J. Mirocha and J. O. Burns, Astrophys. J. 897, 174 (2020);
    Crossref
  19. K. Tauscher, D. Rapetti, J. O. Burns, Astrophys. J. 897, 175 (2020);
    Crossref
  20. K. Tauscher et al., Astrophys. J. 915, 66 (2021);
    Crossref
  21. B. Novosyadlyj, Yu. Kulinich, O. Konovalenko, this issue; J. Phys. Stud. 28, 1901 (2024);
    Crossref
  22. S. Ya. Braude, Antennas 26, 3 (Svyaz' Publ., Moscow, 1978).
  23. O. O. Konovalenko et al., Radio Phys. Radio Astron. 26, 5 (2021);
    Crossref
  24. A. Konovalenko et al., Exp. Astron. 42, 11 (2016);
    Crossref
  25. V. Zakharenko et al., J. Astron. Instrum. 5, 1641010 (2016);
    Crossref
  26. A. А. Konovalenko et al., Radio Phys. Radio Astron. 21, 83 (2016);
    Crossref
  27. O. O. Konovalenko et al., Radio Phys. Radio Astron. 24, 3 (2019);
    Crossref
  28. J. D. Kraus, Radio Astronomy (McGraw-Hill, 1966).
  29. P. L. Tokarsky, A. A. Konovalenko, S. N. Yerin, IEEE Trans. Antennas Propag. 65, 4636 (2017);
    Crossref
  30. P. L. Tokarsky, A. A. Konovalenko, S. N. Yerin, I. N. Bubnov, IEEE Trans. Antennas Propag. 67, 7312 (2019);
    Crossref
  31. М. А. Sidorchuk et al., Radio Phys. Radio Astron. 26, 287 (2021);
    Crossref
  32. V. V. Krymkin, Radiophys. Quantum Electron. 14, 161 (1971);
    Crossref
  33. A. A. Konovalenko, L. G. Sodin, Nature 294, 135 (1981);
    Crossref
  34. A. A. Konovalenko, S. V. Stepkin, in: Radio astronomy from Karl Jansky to microjanski. Vol. 15, edited by L. I. Gurvits, S. Frey, S. Rawlings (EAS publ., Budapest, 2005), p. 271;
    Crossref
  35. S. V. Stepkin, A. A. Konovalenko, N. G. Kantharia, N. Udaya Shankar, Mon. Not. R. Astron. Soc. 374, 852 (2007);
    Crossref
  36. A. A. Konovalenko, in: Radio recombination lines: 25 years of investigation. Proceedings of IAU colloq., edited by M. A. Gordon, R. L. Sorochenko, (Springer, Dordrecht, 1990), p. 175;
    Crossref
  37. S. V. Stepkin, O. O. Konovalenko, Y. V. Vasylkivskyi, D. V. Mukha, Radio Phys. Radio Astron. 26, 314 (2021);
    Crossref
  38. A. K. Vydula et al., Astron. J. 167, 2 (2024);
    Crossref
  39. S. Ya. Braude, A. V. Megn, B. P. Ryabov, N. K. Sharykin, I. N. Zhouck, Astrophys. Space Sci. 54, 3 (1978);
    Crossref
  40. E. P. Abranin, Yu. M. Bruck, V. V. Zakharenko, A. A. Konovalenko, Exp. Astron. 11, 85 (2001);
    Crossref
  41. P. L. Tokarsky, A. A. Konovalenko, J. Modelski, IEEE Access 11, 75225 (2023);
    Crossref
  42. А. А. Коноваленко, дисс. канд. физ.-мат. наук (ИРЕ АН УССР, Харьков, 1982).
  43. A. А. Konovalenko, Pribory i tekhnika experimenta 6, 123 (1981);
  44. S. V. Stepkin, Radio Phys. Radio Astron. 1, 255 (1996); http://rpra-journal.org.ua/index.php/ra/article/view/22/278 .\\