Journal of Physical Studies 28(2), Article 2602 [19 pages] (2024)
DOI: https://doi.org/10.30970/jps.28.2602

GRAND PARTITION FUNCTION FUNCTIONAL FOR SIMPLE FLUIDS

I. R. Yukhnovskii , R. V. Romanik

Institute for Condensed Matter Physics, NAS of Ukraine,
1, Svientsitskii St., Lviv, UA–79011, Ukraine,
e-mail: romanik@icmp.lviv.ua

Received 08 December 2023; accepted 12 February 2024; published online 29 May 2024

In this paper, we will systematically present the method of collective variables with a reference system for a classical many-particle interacting system in the grand canonical ensemble. The emphasis will be placed on the details of calculations. In particular, the usage of total correlation functions defined for the grand canonical ensemble allows us to investigate very accurately the cumulants of the grand partition function for the reference system. It is shown that any cumulant $\mathfrak{M}_n$ can be expressed as a product of three components: the average particle number within the reference system. Kronecker's symbol for $n$ wave vectors, and the $n$-particle structure factor.

The functional expression for the grand partition function is derived, with all coefficients explicitly defined. The coordinates of the critical point are computed in the mean field approximation.

Key words: simple fluids, collective variables, grand canonical ensemble.

Full text


References
  1. D. Zubarev, Dokl. Acad. Nauk SSSR 95, 757 (1954).
  2. I. Yukhnovskii, Sov. Phys. JETP 7, 263 (1958).
  3. I. Yukhnovskii, M. Holovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1980).
  4. I. Yukhnovskii, Phase Transitions of the Second Order. Collective Variables Method (World Scientific, Singapore, 1987).
  5. I. R. Yukhnovskii, Ukr. J. Phys.: Reviews 10, 33 (2015).
  6. I. R. Yukhnovskii, Theor. Math. Phys. 79, 536 (1989);
    Crossref
  7. I. Yukhnovskii, Physica A 168, 999 (1990);
    Crossref
  8. I. R. Yukhnovskii, I. M. Idzyk, V. O. Kolomiets, J. Stat. Phys. 80, 405 (1995);
    Crossref
  9. O. V. Patsagan, I. R. Yukhnovskii, Theor. Math. Phys. 83, 387 (1990);
    Crossref
  10. I. Yukhnovskii, O. Patsahan, J. Stat. Phys. 81, 647 (1995);
    Crossref
  11. A. Stuart, K. Ord, Kendall's Advanced Theory of Statistics, 6th ed. Vol. 1: Distribution Theory (John Wiley & Sons, Chichester, 2010).
  12. I. Yukhnovskii, R. Romanik, preprint ICMP-23-01E (2023); https://icmp.lviv.ua/en/preprints/2023/23-01e
  13. J.-P. Hansen, I. R. McDonald, Theory of Simple Liquids: with Applications to Soft Matter, 4th ed. (Academic Press, Amsterdam, 2013).
  14. I. M. Idzik, V. A. Kolomiets, I. R. Yukhnovskii, Theor. Math. Phys. 73, 1204 (1987);
    Crossref
  15. P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, 1st ed. (Cambridge University Press, Cambridge, 1994).
  16. https://mathworld.wolfram.com/BellNumber.html
  17. https://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
  18. N. W. Ashcroft, J. Lekner, Phys. Rev. 145, 83 (1966);
    Crossref
  19. P. Schofield, Proc. Phys. Soc. 88), 149 (1966);
    Crossref
  20. N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51, 635 (1969);
    Crossref
  21. I. R. Yukhnovskii, V. O. Kolomiets, I. M. Idzyk, Condens. Matter Phys. 16, 23604 (2013);
    Crossref
  22. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963);
    Crossref
  23. E. Thiele, J. Chem. Phys. 39, 474 (1963);
    Crossref
  24. F. H. Ree, W. G. Hoover, J. Chem. Phys. 40, 939 (1964);
    Crossref
  25. I. R. Yukhnovskii, Condens. Matter Phys. 17, 43001 (2014);
    Crossref
  26. P. Attard, J. Chem. Phys. 93, 7301 (1990);
    Crossref
  27. Hernando, J. A. Phys. Rev. A 33, 1338–1348 Feb (1986);
    Crossref
  28. S. D. M. White, Mon. Not. R. Astron. Sci. 186, 145 (1979).