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In this paper, we will systematically present the method of collective variables with a reference
system for a classical many-particle interacting system in the grand canonical ensemble. The
emphasis will be placed on the details of calculations. In particular, the usage of total correlati-
on functions de�ned for the grand canonical ensemble allows us to investigate very accurately the
cumulants of the grand partition function for the reference system. It is shown that any cumulant
Mn can be expressed as a product of three components: the average particle number within the
reference system. Kronecker's symbol for n wave vectors, and the n-particle structure factor.
The functional expression for the grand partition function is derived, with all coe�cients explicitly

de�ned. The coordinates of the critical point are computed in the mean �eld approximation.
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I. INTRODUCTION

The method of collective variables (CV) was developed
in [1, 2], and applied to description of classical equili-
brium systems [3] and phase transitions of the second
order [4]. A more thorough review of results achieved
using the method is presented in [5]. The method was
then extended to describe the system of interacting parti-
cles in the grand canonical ensemble. For simple �uids,
the notable works are [6�8]. For many-component
systems see [9, 10]. The concept of a reference system
(RS) was used along with the CV method. The interacti-
on between particles was arbitrarily divided into short-
range repulsive and long-range attractive parts. The
short-range repulsive part was usually considered the
reference system. In the current work, we systematically
introduce the collective variables in the grand canoni-
cal ensemble. We would like to emphasize the following
distinguishable points of this work:

� The factor of 1/
√
N is not used in the expressi-

ons for the Fourier components of the microscopic
particle density, which somewhat simpli�es the
summation over N in the grand partition functi-
on (GPF).

� We use total correlation functions de�ned in
the grand canonical ensemble, which makes the
expressions for cumulants of the reference system
grand partition function much simpler compared
to the ones obtained in [7, 8]. This also helps to
avoid complications related to explicitly perform-
ing thermodynamic limit in those expressions.

� The theory is presented in such a way that the
reference system is treated generically and then
is chosen as a hard-sphere system only to obtain
numerical results for some quantities.

We obtain an explicit functional expression for the GPF
of the classical many-particle interacting system with all
coe�cients known. The obtained expression is analogous
to the one obtained in [7] except the coe�cients are revi-
sited using more modern de�nitions for total correlation
functions. Some properties of these correlation functi-
ons are additionally investigated in Appendix A. We
conclude the work with calculation of the critical point
coordinates in the mean-�eld (MF) approximation. The
obtained value for the packing fraction is the same as
was obtained in [8], thus showing that for this quantity a
higher approach still needs to be developed. The obtai-
ned value for the critical temperature is higher that the
corresponding value reported in [8], since the latter was
obtained in a non-MF approximation. Finally, the criti-
cal value calculated for the excess chemical potential is
published for the �rst time.

II. PROBLEM STATEMENT

Consider a classical system of identical particles
interacting via a pairwise additive potential U(|r|),
where r is the distance in the three-dimensional space.
There are two assumptions made regarding the interacti-
on between particles. First, the interaction can be
decomposed into two parts

U(rij) = Ψ(rij) + Φ(rij), (1)

where Ψ(rij) is responsible for the repulsion between
particles � denoted by i and j � at short distances, and
Φ(rij) for the attraction at long distances, rij ≡ |ri − rj |.
Second that the attraction part of the potential possesses
a well-behaved Fourier transform. For more details on the
interaction potential, see Section IIA.
A physical observable dependent on the particle

coordinates is, in general, a functional of the microscopic
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particle density de�ned as

n(r) =

N∑
j=1

δ(r− rj),

where rj is the coordinate of the j-th particle, N is the
number of particles in the system, δ(. . .) is Dirac's δ-
function. The quantity n(r) can be represented in the
form of a Fourier series:

n(r) =
1

V

∑
k

ρ̂ke
ikr,

where
∑

k =
∑

kx

∑
ky

∑
kz
, ki = 2π

V 1/3ni, i = x, y, z,

ni = 0,±1,±2, . . . . V is the system volume, so that∫
V

n(r)dr = N.

The Fourier component ρ̂k is of the form:

ρ̂k =

N∑
j=1

exp(−ikrj), ρ̂k=0 = N. (2)

Alternatively,

ρ̂k = ρ̂ck − iρ̂sk.

ρ̂ck =
∑N

i=1 cos(kri), ρ̂sk =
∑N

i=1 sin(kri)

Let the system be open. The probability that an open
system contains exactly N particles is given by:

p(N) =
1

Ξ

zN

N !
ZN .

Here Ξ is the grand partition function (GPF) of the
system:

Ξ =

∞∑
N=0

zN

N !
ZN .

where z is the activity z = Λ−3 exp(βµ), with β being
the inverse temperature, and µ the chemical potential,
Λ = (2πβℏ2/m)1/2 the de Broglie thermal wavelength, ℏ
Planck's constant, m the mass of a particle.
ZN is the con�guration integral:

ZN =

∫
exp
(
−βUN (rN )

)
drN

where UN is the potential energy of interparticle
interaction, and the following notation is understood
rN ≡ r1, . . . , rN , drN ≡ dr1 . . . drN .
Given the GPF, all the thermodynamic properties of

the system can be obtained.

A. Potential energy of interparticle interaction

Based on the assumption made in (1), the potential
energy of the interparticle interaction can be written in
the form:

UN (rN ) = ΨN (rN ) + ΦN (rN ).

Here ΨN = 1
2

∑N
i=1

∑N
j=1

i̸=j

Ψ(rij) is the potential

energy of the short-range repulsive interaction, and

ΦN = 1
2

∑N
i=1

∑N
j=1

i̸=j

Φ(rij) is the long-range attractive

counterpart.
One approach to separating long- and short-range

interaction is to choose Ψ(r) as the hard-sphere (HS)
potential

Ψ(r) =

{
∞, r ≤ σ,

0, r > σ

where σ denotes the hard-sphere diameter. Then Φ(r)
can be chosen so that it possesses a potential well at
r > σ, e.g.

Φ(r) =

{
0, r ≤ σ

UMorse(r), r > σ,
(3)

using the Morse potential

UMorse(r) = ε{exp{[−2(r −R0)/α]}

− 2 exp{[−(r −R0)/α]}}

with ε being the characteristic energy of the potential,
R0 the coordinate of the minimum, and α the e�ective
range of action. In what follows, we develop a general
approach to deal with the system of interacting particles.
Particular forms of the reference system and attractive
part of the potential are chosen to obtain some numerical
and graphical results.
In general we assume that the attractive part of the

interaction potential possesses a well behaved Fourier
component Φ̂k such that:

Φ(r) =
1

V

∑
k

Φ̂ke
ikr =

1

(2π)3

∫
Φ̂ke

ikr dk,

and

Φ̂k =

∫
Φ(r)e−ikr dr.

In such a case, the potential energy of the attractive
interaction can be written in terms of ρ̂k:

ΦN (rN ) =
1

2V

∑
k

Φ̂kρ̂kρ̂−k − N

2V

∑
k

Φ̂k. (4)

Note, that in our approach we put Φ(0) = 0, see (3), thus
the second term for ΦN vanishes.

B. The Grand Partition Function with a reference
system singled out

The GPF is now written as

Ξ =

∞∑
N=0

eβµN

N !Λ3N

∫
exp
(
−βΨN (rN )− βΦN (rN )

)
drN .
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Let us consider a system characterized only by the
repulsive part of the interaction potential as a reference
system (RS). The GPF for the RS system is

Ξ0 =

∞∑
N=0

1

N !

exp(βµ0N)

Λ3N

∫
exp
(
−βΨN (rN )

)
drN

where µ0 is the RS chemical potential. Now, the GPF is
expressed as

Ξ = Ξ0

∞∑
N=0

exp(βµ0N)

N !Λ3N

∫
exp
(
−βΨN (rN )

)
Ξ0

× exp
(
β(µ− µ0)N − βΦN (rN )

)
drN .

Taking into account (4) and (2), the second exponent
under the integral can be expressed in terms of ρ̂k:

exp
(
β(µ− µ0)N − βΦN (rN )

)
= exp

(
hρ̂0 −

1

2

∑
k

α(k)ρ̂kρ̂−k

)
. (5)

Here the following notations were introduced:

h = β(µ− µ0); α(k) =
βΦ̂k

V
. (6)

Let us de�ne the set of collective variables ρk =
ρck − iρsk via the following expressions:

ρ̂ck =

∫
ρckJ(ρ− ρ̂) (dρ),

ρ̂sk =

∫
ρskJ(ρ− ρ̂) (dρ),

ρ̂0 =

∫
ρ0J(ρ− ρ̂) (dρ) = N. (7)

Here (dρ) = dρ0
∏′

k dρ
c
kdρ

s
k, and

J(ρ− ρ̂) = δ(ρ0 − ρ̂0)
∏
k

′
δ(ρck − ρ̂ck)δ(ρ

s
k − ρ̂sk),

The `prime' sign over the product means that the wave-
vector takes on values only from the upper semi-space of
the reciprocal space, i.e. kz > 0, and k ̸= 0.
The collective variables ρk possess the following

properties:

ρ−k = ρ∗k; ρck = ρc−k; ρsk = −ρs−k.

Equations (7) can be written in a more concise form
ρ̂k =

∫
ρkJ(ρ − ρ̂) (dρ). Valid is also a more general

equality f(ρ̂k) =
∫
f(ρk)J(ρ − ρ̂) (dρ), where f is some

function of ρ̂k. Applied to (5), and then substituted into
the expression for the GPF, it leads to

Ξ = Ξ0

∫
exp

(
hρ0 −

1

2

∑
k

α(k)ρkρ−k

)
J(ρ) (dρ)

where the Jacobian function is de�ned as

J(ρ) = ⟨J(ρ− ρ̂)⟩RS. (8)

Here the average value over the reference system is de�-
ned as

⟨. . . ⟩RS = Ξ−1
0

∞∑
N=0

zN0
N !

∫
exp
(
−βΨN (rN )

)
. . . drN . (9)

with z0 = exp
(
βµ0/Λ

3
)
being the activity of the refe-

rence system.

III. THE JACOBIAN OF TRANSFORMATION

Let us rewrite the expression for the Jacobian (8) using
the integral representation for δ-functions:

δ(ρ0 − ρ̂0)
∏
k

′
δ(ρck − ρ̂ck)δ(ρ

s
k − ρ̂sk)

=

∫
exp

(
2πi

∑
k

(ρk − ρ̂k)ωk

)
(dω),

where ωk = 1
2 (ω

c
k + iωs

k) is a variable conjugate to ρk,

and (dω) = dω0

∏′
k dω

c
kdω

s
k. The Jacobian can now be

expressed as

J(ρ) =

∫
exp

(
i2π

∑
k

ρkωk

)
J̃(ω) (dω)

where the following notation is introduced

J̃(ω) =
1

Ξ0

∞∑
N=0

zN0
N !

×
∫
exp

(
−βΨN (rN )− i2π

∑
k

ωkρ̂k

)
drN .(10)

The expression for J̃(ω) can be expanded into a cumulant
series to give

J̃(ω) = exp

∑
n≥1

Dn(ω)


where

Dn(ω) =
(−i2π)n

n!

∑
k1,...,kn

Mn(k1, . . . ,kn)ωk1 . . . ωkn .

The cumulants Mn are calculated using the following
formula:

Mn(k1, . . . ,kn) =
1

(−i2π)n

(
∂n ln J̃(ω)

∂ωk1 . . . ∂ωkn

)
ωki

=0

. (11)

The calculation of the cumulants Mn is the objective of
the next Section IV.
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IV. CUMULANTS

A. Calculation of cumulants

Let us calculate Mn(k1, . . . ,kn) based on
Eqs. (11), (10). To simplify the notation for the
average value de�ned in (9), the subscript 0 will be used
to indicate RS

⟨. . . ⟩0 ≡ ⟨. . . ⟩RS

For the �rst cumulant, one gets:

M1(k) =
1

(−i2π)

∂ ln J̃(ω)

∂ωk1

∣∣∣∣
ωki

=0

= ⟨ρ̂k⟩0. (12)

For the second cumulant:

M2(k1,k2) =
1

(−i2π)2
∂2 ln J̃(ω)

∂ωk1∂ωk2

∣∣∣∣
ωki

=0

= ⟨ρ̂k1 ρ̂k2⟩0 − ⟨ρ̂k1⟩0⟨ρ̂k2⟩0.

Continuing this procedure, for the next cumulants one
gets:

M3(k1,k2,k3) = ⟨ρ̂k1 ρ̂k2 ρ̂k3⟩0

−
∑

l=

{
1,2,3
1,3,2
2,3,1

}⟨ρ̂kl1
ρ̂kl2

⟩0⟨ρ̂kl3
⟩0

+ 2⟨ρ̂k1
⟩0⟨ρ̂k2

⟩0⟨ρ̂k3
⟩0,

M4(k1,k2,k3,k4) = ⟨ρ̂k1
ρ̂k2

ρ̂k3
ρ̂k4

⟩0

−
∑

l=


1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1


⟨ρ̂kl1

ρ̂kl2
ρ̂kl3

⟩0⟨ρ̂kl4
⟩0

−
∑

l=

{
1,2,3,4
1,3,2,4
1,4,2,3

}⟨ρ̂kl1
ρ̂kl2

⟩0⟨ρ̂kl3
ρ̂kl4

⟩0

+ 2
∑

l=


1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



⟨ρ̂kl1
ρ̂kl2

⟩0⟨ρ̂k3⟩0⟨ρ̂k4⟩0

− 6⟨ρ̂k1
⟩0⟨ρ̂k2

⟩0⟨ρ̂k3
⟩0⟨ρ̂k4

⟩0. (13)

The expressions in the right-hand sides of (12)�(13) can
be called cumulant averages of ρ̂k. They remind formulae
for cumulants expressed via non-central moments. If
⟨ρk1 . . . ρkn⟩ are considered non-central moments (of a
probability distribution), then Mn(k1, . . . ,kn) can be
considered as cumulants (semi-invariants), and the relati-
onships between them are known [11].

As per our knowledge, the generic expression for the
cumulant average has not been found so far; however,Mn

can be derived for any n based on generating functional
ln J̃(ω) by virtue of (11).

B. Cumulants Mn(k
n) expressed via Fourier

components of the total correlation functions
ĥ(n)(kn)

In this subsection, explicit expressions for cumulants
Mn are presented in terms of the Fourier components

of total correlation functions ĥ(n). See Appendix A for
the de�nition and some properties of total correlation
functions. The calculation of the �rst two cumulants is
presented in detail in [12] (see Appendix B therein).

M1(k) = ρĥ(1)(k) = ⟨N⟩0δk, (14)

M2(k1,k2) = ρĥ(1)(k1 + k2) + ρ2ĥ(2)(k1,k2)

= ⟨N⟩0δk1+k2
(1 + ρĥ(2)(k1)). (15)

M3(k1,k2,k3) = ρĥ(1)(k1 + k2 + k3)

+ ρ2
∑

l=

{
1,2,3
1,3,2
2,3,1

} ĥ(2)(kl1 + kl2 ,kl3) + ρ3ĥ(3)(k1,k2,k3)

= ⟨N⟩0δk1+k2+k3

[
1 + ρ(ĥ(2)(k1) + ĥ(2)(k2)

+ĥ(2)(k1 + k2))) + ρ2ĥ(3)(k1,k2)
]
. (16)

M4(k1, . . . ,k4) = ρĥ(1)(k1 + . . .+ k4)

+ ρ2
∑

l=


1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1


ĥ(2)(kl1 + kl2 + kl3 ,kl4)

+ ρ2
∑

l=

{
1,2,3,4
1,3,2,4
1,4,2,3

} ĥ(2)(kl1 + kl2 ,kl3 + kl4)

+ ρ3
∑

l=


1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



ĥ(3)(kl1 + kl2 ,kl3 ,kl4)

+ ρ4ĥ(4)(k1, . . . ,k4); (17)
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M4(k1, . . . ,k4) = ⟨N⟩0δk1+k2+k3+k4


1 + ρ

4∑
l=1

ĥ(2)(kl) + ρ
∑

l=

{
1,2
1,3
1,4

} ĥ(2)(kl1 + kl2)

+ρ2
∑

l=


3,4
2,4
2,3
1,4
1,3
1,2



ĥ(3)(kl1 ,kl2) + ρ3ĥ(4)(k1,k2,k3)


.

The expression in the square brackets next to the δ-function for M4(k
n) can be also written in a form where it

depends only on k1,k2,k3, but does not depend on k4. Let us write for M4:

M4(k, . . . ,k4) = ⟨N⟩0δk1+k2+k3+k4m4(k1,k2,k3).

Then

m4(k1,k2,k3) = 1 + ρ

( 3∑
l=1

ĥ(2)(kl) +
∑

l=

{
1,2
1,3
2,3

} ĥ(2)(kl1 + kl2) + ĥ(2)(k1 + k2 + k3)

)

+ ρ2
( ∑

l=

{
1,2
1,3
2,3

} ĥ(3)(kl1 ,kl2) +
∑

l=

{
1,2,3
1,3,2
2,3,1

} ĥ(3)(kl1 + kl2 ,kl3)

)
+ ρ3ĥ(4)(k1,k2,k3). (18)

The following statement should be true for any n: a
cumulant Mn can be written in such a way that the
dependence on kn will be present only in δk1+...+kn

, and
the other part, let us denote it by mn, will depend only
on k1, . . . ,kn−1, or mn = mn(k

n−1)

Mn(k
n) = ⟨N⟩0δk1+...+knmn(k

n−1).

A few �rst mn are expressed via total correlation functi-

ons ĥ(n) as follows:

m1 = 1.

m2(k) = 1 + ρĥ(2)(k). (19)

m3(k1,k2) = 1 + ρ

(
ĥ(2)(k1) + ĥ(2)(k2) + ĥ(2)(k1 + k2)

)
+ ρ2ĥ(3)(k1,k2),

and the expression for m4 is given by (18). It is evident
from (19) that m2(k) is the structure factor (see e. g.

Eq. (3.6.10) in [13]). By analogy, mn can be considered
the n-particle structure factor.
Expressions (14)�(17) for cumulants obtained in this

work can be compared with corresponding expressi-
ons presented in other works. In [8] (see Appendix B
therein), and in [14] (see Eq. (3.7) therein), the expressi-
ons for M2 through M4 were presented in a similar form,
but di�erent permutations of wave-vector values were
not accounted for. For example, it was considered that

ĥ(2)(k1) + ĥ(2)(k2) + ĥ(2)(k1 + k2) = 3ĥ(2)(k1). In [6]
(see Eqs. (2.6), (2.10), and (2.11) therein), the expressi-
ons for Mn(k

n) were presented in a more complicated
form, possibly due to the fact that correlation functions
were de�ned in the canonical ensemble.
In [9] the expressions analogous to (14)�(17) were wri-

tten for cumulants of a multicomponent system.
There are a few interesting things to note about the

general expression for mn. First, that the number of all
terms contributing to mn is equal to the Bell number Bn

[15, 16]. Second, if the terms are grouped by the powers
in ρ, then the number of terms at the k-th power in ρ is
the Stirling number of the second kind S(n, k) [15, 17].
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C. Explicit expressions for cumulants as functions
of wave-vector and packing fraction

To obtain expressions for cumulants, one can use an
explicit equation for the structure factor of a hard-

spheres system. For example, let us use Eq. (3) from [18]
for the structure factor as a function of wave-vector and
packing fraction η in the Percus�Yevick approximation.
In Fig. 1 m2 is shown as a function of k · σ at di�erent
values of η. In Fig. 2 m2 is shown as a function of η at
k = 0.

Fig. 1. Cumulant m2 as a function of kσ at di�erent
values of packing fraction η. 1 � η = 0.05, 2 � η = 0.1,

3 � η = 0.15, and 4 � η = 0.2

Fig. 2. Cumulant m2 as a function of packing fraction η
at k = 0

The formulas forM3(k,−k, 0) andM4(k,−k, 0, 0) can
be obtained from M2(k,−k) based on the recurrence
relations for n-particle distribution functions gn found
in [19] (see Eq. (A8) therein). Such formulas were obtai-
ned in [8] (see Appendix B therein), and in our notation
they read:

m3(k,−k) = m2(0)

[
m2(k) + η

∂m2(k)

∂η

]
, (20)

m4(k,−k, 0) = m2(0)

[
m2(k)m2(0) + 3ηm2(0)

∂m2(k)

∂η

+ ηm2(k)
∂m2(0)

∂η
+ η2

∂m2(0)

∂η

∂m2(k)

∂η

+ η2m2(0)
∂2m2(k)

∂η2

]
(21)

In Fig. 3 m3(k,−k) is shown as a function of k · σ
at di�erent values of η. In Fig. 4 m3(0, 0) is shown as a
function of η. In Fig. 5 m4(k,−k, 0) is shown as a function
of k · σ at di�erent values of η. In Fig. 6 m4(0, 0, 0) is
shown as a function of η.

For the system of hard spheres, the cumulants mn can
be found explicitly as functions of the packing fracti-
on η based on a given equation of state PV

NkT = f(η)
where f(η) is a function of the packing fraction only.
The structure factor at zero wave-vector value is found

via

m2 = S(0) = kT

(
∂ρ

∂P

)
T

.

From here one has

1

m2
= f(η) + η

∂f(η)

∂η
.

For example, in [14], the following expressions were obtai-
ned based on the equation of state by Carnahan and
Starling [20] for HS:

m2 =
(1− η)4

(1 + 2η)2 − 4η3 + η4
,

m3 =
(1− η)7(1− 5η − 20η2 − 4η3 + 5η4 − η5)

((1 + 2η)2 − 4η3 + η4)3
,

m4 = (1− η)10(1− 26η − 35η2 + 408η3 + 758η4

+ 28η5 − 114η6 − 40η7 + 37η8 − 10η9 + η10)

× ((1 + 2η)2 − 4η3 + η4)−5.

Note that here the signs for the term 4η3 in m3 and for
408η3 in m4 were corrected.
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Fig. 3. Cumulant m3(k,−k) as a function of kσ at di-
�erent values of packing fraction η. 1 � η = 0.05, 2 �

η = 0.1, 3 � η = 0.15, and 4 � η = 0.2

Fig. 4. Cumulant m3(0, 0) as a function of packing fracti-
on η

Fig. 5. Cumulant m4(k,−k, 0) as a function of kσ at
di�erent values of packing fraction η. 1 � η = 0.05, 2 �

η = 0.1, 3 � η = 0.15, and 4 � η = 0.2

Fig. 6. Cumulant m4(0, 0, 0) as a function of packing
fraction η

V. GRAND PARTITION FUNCTION IN THE
REPRESENTATION OF COLLECTIVE

VARIABLES

Based on theresults from Section III, the grand parti-
tion function is now written as

Ξ = Ξ0

∫
exp

[
hρ0 −

1

2

∑
k

α(k)ρkρ−k

]

× exp

i2π
∑
k

ωkρk +
∑
n≥1

(−i2π)n

n!

×
∑

k1,...,kn

Mn(k1, . . . ,kn)ωk1
. . . ωkn

 (dω)(dρ).

This form for GPF was also obtained in [7] (see Eq. (2.16)
therein).

The next step in the calculation is to integrate over ωk

with k > B. This integration can be performed using the
Gaussian measure, i.e. the expressions in the exponent
are restricted to the powers in ω not higher than 2. Let
us denote the result of this integration by ΞG. Then the
grand partition function takes the form:

Ξ = Ξ0ΞGΞL. (22)

Here ΞL denotes long-wave contributions to the GPF and
is the object of our further investigation in this paper.
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The expression for ΞL is as follows:

ΞL =

∫
exp

hρ0 − 1

2

∑
k

k≤B

α(k)ρkρ−k


× exp

i2π
∑

k
k≤B

ωkρk +
∑
n≥1

(−i2π)n

n!

×
∑

k1,...,kn
ki≤B

M̃n(k1, . . . ,kn)ωk1
. . . ωkn


× (dω)NB (dρ)NB .

Here M̃n denote renormalized cumulants Mn due to
integration over k > B, and

(dω)NB (dρ)NB =

∏
k

k≤B

dωc
kdρ

c
kdω

s
kdρ

s
k

 dω0dρ0

In the approximation of the 4-th basic measure density,
ΞL is expressed as:

ΞL =

∫ (
1 +D4 +

1

2
D2

4 + . . .

)
W4(ρ;ω)(dρ)

NB (dω)NB ,

(23)
where the measure density W4(ρ;ω) is

W4(ρ;ω) = exp

hρ0 −
1

2

∑
k

k≤B

α(k)ρkρ−k

+ i2π
∑

k
k≤B

ωkρk +

4∑
n=1

(−i2π)n

n!

×
∑

k1,...,kn
ki≤B

M̃n(k1, . . . ,kn)ωk1 . . . ωkn

 .

and the following notation is introduced:

D4 =
∑
m>4

(−i2π)m

m!

∑
k1,...,km

ki≤B

M̃n(k1, . . . ,km)ωk1
. . . ωkm

.

The quantity NB is the number of variables to be
integrated over. It is equal to the number of values that
the wave vector takes on in the sphere of radius B in reci-
procal space. Let us assume that the wave-vector values
are distributed uniformly, then

NB =
B3

6π2
V. (24)

To derive this equation, consider the following
arguments. If we had a simple cubic lattice of spacing c in
real space, the �rst Brillouin zone of it would be a simple

cubic lattice in the reciprocal space with spacing 2B′,
where B′ = π/c. The number of values taken by the wave
vector in this zone would be NB = V/c3 = V (B′/π)3.
Under our assumption, the wave vector values are di-
stributed uniformly. Hence, the sphere of volume Ω in
reciprocal space must contain the same number of wave
vector values as a cube of the same volume Ω. Since
Ω = (2B′)3 = 4

3πB
3, one �nds that B′3 = π

6B
3 and,

therefore, arrives at Eq. (24).

In the current investigation, the following approxi-
mations are to be applied.

Approximation 1. D4 is neglected in the expression
(23) for ΞL;

Approximation 2. The di�erence between renormalized
values of cumulants M̃n and original cumulants Mn is
ignored, so that M̃n(k

n) ≈ Mn(k
n).

Approximation 3. The dependence of cumulants Mn

on the wave vectors ki is neglected, except for the
dependence via δ-functions

Mn(k
n) ≈ Mn(0

n)δk1+...+kn

where the following notation is used for simplicity: kn ≡
k1, . . . ,kn.

With these approximations applied, one arrives at the
following expressions:

ΞL =

∫
W4(ρ;ω) (dρ)

NB (dω)NB , (25)

and

W4(ρ;ω) = exp

hρ0 −
1

2

∑
k

k≤B

α(k)ρkρ−k

+ i2π
∑

k
k≤B

ωkρk +

4∑
n=1

(−i2π)n

n!
Mn(0

n)

×
∑

k1,...,kn
ki≤B

δk1+...+knωk1 . . . ωkn

 . (26)

Expression (26) for the 4-th measure density contains
non-zero terms in all powers of ω up to 4. Let us eliminate
the coe�cient next to the 3-rd power in ω. For this, the
following change of variables is performed:

ω0 = ω′
0 +

M3

(i2π)M4
.

From now on, we will understand Mn as Mn(0
n) where

it is not ambiguous. One should remember that Mn are
still dependent on the packing fraction η. The 4-th
measure density W4(ρ;ω) takes the form (the prime at
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ω0 is omitted):

W4(ρ;ω) = exp

{
M0 + (h+M3/M4)ρ0

−1

2

∑
k

k≤B

α(k)ρkρ−k − i2πM̃1ω0

+i2π
∑

k
k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑
k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑
k1,...,k4
ki≤B

δk1+...+k4
ωk1

. . . ωk4

}
(27)

with

M0 = −M1M3

M4
+

M2M
2
3

2M2
4

− M4
3

8M3
4

,

M̃1 = M1 −
M2M3

M4
+

M3
3

3M2
4

, (28)

M̃2 = M2 −
M2

3

2M4
.

We also want to eliminate the term at ω0. This is
achieved by the change of variables ρ0 = ρ′0 + M̃1. The
expression for W4(ρ;ω) becomes

W4(ρ;ω) = exp

{
M̃0 + µ∗ρ0 −

1

2

∑
k

k≤B

α(k)ρkρ−k

+i2π
∑

k
k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑
k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑
k1,...,k4
ki≤B

δk1+...+k4
ωk1

. . . ωk4

}
(29)

with

M̃0 = M0 + (h+M3/M4)M̃1 −
α(0)

2
M̃2

1, (30)

µ∗ = h+M3/M4 + α(0)M̃1. (31)

In (29) the prime at ρ0 is omitted.

One can compare the expression (29) with Eq. (3.14)
from [7], Eq. (12) from [8], and Eq. (3.5) from [21].

Approximation ηmin ηmax

Percus�Yevick, compressibility equation [22] 0.037346 0.221675

Percus�Yevick, virial equation [23] 0.037673 0.233899

Carnahan�Starling [20] 0.037455 0.225572

Ree�Hoower [24] 0.037423 0.224260

Table 1. The zero values of the cumulant M4. M4 < 0 for ηmin < η < ηmax

The �rst thing to note about W4(ρ;ω) is that the
integral for ΞL in (25) converges only for M4 < 0. The
values of M4 are negative only in some range of η. Thus
one can conclude that the 4-th measure density W4(ρ;ω)
is applicable only in that range of η. Table 1 summarizes
numerical solutions for the equation M4 = 0 in a few
approximations for HS equation of state. We are going
to work in the range 0.04 ≤ η ≤ 0.22. The dependence
of m4 = M4/⟨N⟩0 on η is presented in Fig. 6.

A. Integration over ω

Let us perform integration over ω in (25), using (29)
for W4(ρ;ω). First let us single out the integral over ω

J(ρ) =

∫
exp

i2π
∑

k
k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑
k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑
k1,...,k4
ki≤B

δk1+...+k4ωk1 . . . ωk4

 (dω)NB .

To factorize this integral, perform the following change
of variables

ω̃l =
1√
NB

∑
k

k≤B

ωke
−ikl, ρ̃l =

1√
NB

∑
k

k≤B

ρke
ikl.

The following relations are valid:∑
l

ω̃lρ̃l =
∑
k

ωkρk,

∑
l

ω̃2
l =

∑
k

ωkω−k,

NB

∑
l

ω̃4
l =

∑
k1,...,k4
ki≤B

δk1+...+k4
ωk1

. . . ωk4

where the following expression for Kronecker's δ-symbol
is used: δk = 1

NB

∑
l e

−ikl. The sum over l should be
understood as running over NB values in real space
corresponding to the wave-vector values k, k ≤ B.
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The element of integration is changed as follows:

dω0

∏
k

k≤B

′
dωc

kdω
s
k = j

∏
l

dω̃l

where j is the Jacobian of transition from ωk to ω̃l.
Since the approximation of the 4-th measure density

is applicable only when M4 is negative, we will write
the following expressions using the absolute value of this
cumulant. Thus, the factorized expression for the integral
over ω is:

J(ρ) = j
∏
l

Jl(ρ̃l),

where we denoted the integral as

Jl(ρ̃l) =

∫
exp

(
i2πω̃lρ̃l

− (2π)2

2
M̃2ω̃

2
l −

(2π)4

4!
NB |M4|ω̃4

l

)
dω̃l.

Then the result of the integration can be presented in
the following form

J(ρ) = j
∏
l

ea0 exp

−
∑
n≥1

an
n!

ρ̃nl


where coe�cients an are found via

an = −
(
∂n ln Jl(ρ̃l)

∂ρ̃nl

)
ρ̃l=0

.

First, let us calculate ea0

Q(M̃2,M4) ≡ ea0

=

∫ ∞

−∞
exp

(
− (2π)2

2
M̃2ω̃

2
l −

(2π)4

4!
NB |M4|ω̃4

l

)
dω̃l.

Using the following representation for the Weber
parabolic cylinder function U(a, x)

U(a, x) =
2

Γ(a+ 1
2 )

e−
x2

4

∫ ∞

0

t2a exp

(
−xt2 − 1

2
t4
)
dt

one obtains:

Q(M̃2,M4) =
1

2
√
π

(
12

NB |M4|

)1/4

ey
2/2U(0, y), (32)

where

y =

(
3M̃2

2

NB |M4|

)1/2

.

For a2 the result is:

a2 =

(
3

NB |M4|

)1/2

U(y),

where U(y) = U(1, y)/U(0, y).
For a4 the result is:

a4 =
3

NB |M4|

(
3U2(y)− 3

U(2, y)

U(0, y)

)
=

3

NB |M4|
ϕ(y),

where ϕ(y) = 3U2(y) + 2yU(y)− 2. In the above equati-
on, we used the following recurrence relation for the
parabolic cylinder function U :

3U(2, y) = −2yU(1, y) + 2U(0, y).

The quantity J(ρ) takes the form

J(ρ) = jQ(M̃2,M4)
NB exp

(
− a2

2

∑
k

k≤B

ρkρ−k

− a4
NB4!

∑
k1,...,k4
ki≤B

ρk1
. . . ρk4

δk1+...+k4

)

where the following equations were taken into account:∑
l

ρ̃2l =
∑
k

ρkρ−k,

∑
l

ρ̃4l =
1

NB

∑
k1,...,k4
ki≤B

δk1+...+k4ρk1 . . . ρk4 .

Finally, the quantity ΞL takes the form:

ΞL = jQ(M̃2,M4)
NB exp

(
M̃0

)
Ξ
(1)
L (33)

where Q(M̃2,M4) is given by (32), NB by (24), M̃0

by (30), and Ξ
(1)
L is de�ned as follows

Ξ
(1)
L =

∫
exp

µ∗ρ0 −
1

2

∑
k

k≤B

d(k)ρkρ−k (34)

− a4
4!NB

∑
k1,...,k4
ki≤B

ρk1 . . . ρk4δk1+...+k4

 (dρ)NB

where µ∗ is given by (31), and d(k) = a2 + α(k), with
α(k) given by (6).
Expression (34) is the main result of this work. In

future, this expression will be subject to the renormali-
zation group transformation near the liquid-gas critical
point. In the CV approach, it is implemented via layer-
by-layer integration of the integral (34) in k-space.

B. Coe�cients of the e�ective Hamiltonian

The argument y of functions entering di�erent
expressions in the previous subsection is itself a function
of η and Bσ. Let us show this.

y =

(
3M̃2

2

NB |M4|

)1/2

=

(
⟨N⟩0
NB

)1/2(
3m̃2

2

|m4|

)1/2

,
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where the following notation is introduced

m̃2 = m2 −
m2

3

2m4
.

In the expression for y, the second multiplier depends
only on η. Let us take a look at the �rst multiplier. Tak-
ing into account (24), one has:

⟨N⟩0
NB

= η
36π

(Bσ)3
.

The quantity Bσ is dimensionless, but its value depends
on how B is selected. Based on the previous works, the
condition for selecting B is Φ̂k=B = 0. This condition
imposes some restrictions on the attractive part of the
interaction potential, in particular that Φ̂0 < 0. However,
the selection of the potential in the form of Eq. (3) obeys
this condition very well.
The explicit expression for the Fourier component of

this potential is as follows:

Φ̂k = − 16πεα3

{
1

1 + k2α2

(
σ

α
+

2

1 + k2α2

)
cos(kσ)

− 1

4 + k2α2

(
σ

α
+

4

4 + k2α2

)
cos(kσ)

+
σ/α

1 + k2α2

(
σ

α
+

1− k2α2

1 + k2α2

)
sin(kσ)

kσ

− σ/α

4 + k2α2

(
2
σ

α
+

4− k2α2

4 + k2α2

)
sin(kσ)

kσ

}
. (35)

In this expression it is already taken into account that
σ = R0 − α ln(2).

R0/α Bσ 2b2 1√
2b

2.0 1.47 1.68 0.77

2.5 1.70 1.02 0.99

3.0 1.88 0.72 1.18

3.5 2.01 0.57 1.33

4.0 2.13 0.48 1.45

4.5 2.22 0.42 1.55

5.0 2.29 0.37 1.64

Table 2. The zero values Bσ and parameters of the parabolic
approximation of the Fourier component Φ̂k for di�erent

values of R0/α

In Fig. 7 the dependence of Φ̂k/(εσ
3) on kσ is shown

for a few values of parameter R0/α. Values of Bσ for
di�erent R0/α are presented in Table 2.
In some particular calculations further on, the followi-

ng approximation will be used for the Fourier transform
at k < B:

Φ̂k = Φ̂0(1− 2b2k2), (36)

where

2b2 = − 1

2Φ̂0

∂2Φ̂k

∂k2

∣∣∣∣
k=0

.

Values of 2b2 along with 1/(
√
2b) (the point at which

the parabolic approximation is equal to zero) are also

presented in Table 2. Figure 8 shows Φ̂k together with
its parabolic approximation in one picture.

Fig. 7. Fourier component of the attractive part of
interaction potential, Eq. (35), for di�erent values of

R0/α; 1 � 2.77, 2 � 3.0, 3 � 3.5

Fig. 8. Fourier component of the attractive part of
interaction potential for R0/α = 3.5 (solid line) and
corresponding parabolic approximation, Eq. (36) (dashed

line)
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Fig. 9. Quantity ⟨N⟩0a2 as a function of η for
R0/α = 3.5.

Fig. 10. Quantity ⟨N⟩20a4 as a function of η for
R0/α = 3.5.

At this point, we can build some graphics for coe�ci-
ents a2 and a4 as functions of η. First, for a2 one has

a2 =

(
3

NB⟨N⟩0|m4|

)1/2

U(y)

=
1

⟨N⟩0

(
⟨N⟩0
NB

)1/2(
3

|m4|

)1/2

U(y)

and from here it is seen that the quantity ⟨N⟩0a2 depends
only on η and the parameter Bσ of the interaction
potential, see Fig. 9.
For a4 one has

a4 =
3

NB⟨N⟩0|m4|
ϕ(y) =

1

⟨N⟩20
⟨N⟩0
NB

3

|m4|
ϕ(y)

and from here it is seen that the quantity ⟨N⟩20a4 depends
only on η and the parameter Bσ of the interaction
potential, see Fig. 10.
To rewrite d(k) in a useful form, let us �rst consider

the quantity α(k)

α(k) =
βΦ̂k

V
=

1

⟨N⟩0
6

π
η

ε

kBT

Φ̂k

εσ3
.

It is evident now that the quantity ⟨N⟩0d(k) is a function
of η, but also depends on the parameter of the interaction
potential Φ, as well as on the temperature T .

VI. EFFECTIVE HAMILTONIAN IN THE
MEAN-FIELD APPROXIMATION

Consider the long-wave contribution ΞL to the GPF,
Eq. (33). Let us calculate ΞL in the approximation when
all ki = 0

Ξ
(1)
L =

∫
exp

(
µ∗ρ0 −

d(0)

2
ρ20 −

a4
4!NB

ρ40

)
dρ0.

Since, as previously learned, d(0) ∝ ⟨N⟩0 and a4 ∝ ⟨N⟩20,
it is convenient to perform the following substitution of
variables ρ = ⟨N⟩0ρ′0 in the above expression and obtain

Ξ
(1)
L = ⟨N⟩0

∫
exp[⟨N⟩0E(ρ′0)]dρ

′
0,

where the following notations were introduced

E(ρ′0) = µ∗ρ′0 −
d′(0)

2
ρ′

2
0 −

a′4
4!
ρ′

4
0,

d′(0) = ⟨N⟩0d(0) = a′2 +
6

π
η

ε

kBT

Φ̂0

εσ3
.

a′2 = ⟨N⟩0a2, a′4 =
⟨N⟩0
NB

⟨N⟩20a4.

The presence of ⟨N⟩0 in the exponent justi�es the appli-
cation of the steepest-descent method for integration.
The result is as follows:

Ξ
(1)
L = ⟨N⟩0 exp[⟨N⟩0E(ρ0,max)], (37)

where ρ0,max maximizes the quantity E(ρ′0) and is found
from the following conditions:

∂E

∂ρ′0
= 0;

∂2E

∂ρ′20
< 0.

In the explicit form, these conditions become:

µ∗ − d′(0)ρ0 −
a′4
3!
ρ′

3
0 = 0, (38)

−d′(0)− a′4
2
ρ′

2
0 < 0.
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A. Naive approximation

In the most simple approximation, the quantity µ∗,
de�ned in (31), plays the same role as an external
magnetic �eld in the Ising model. For the Ising model, it
is known that the critical point appears in the absence
of an external �eld; thus to �nd the critical point in our
approximation, one condition is:

µ∗ = 0.

The quantity µ∗ depends on the chemical potential,
through the term β(µ−µ0), on the temperature, through
the term proportional to α(0), and on the packing fracti-
on η. If we assume that µ = µ0, then the condition µ∗ = 0
will relate the temperature and η

M3/M4 + α(0)M̃1 = 0.

This is the �rst condition that relates these two quanti-
ties. The second condition follows from the requirement
that a non-zero solution exists for ρ′0:

ρ′
3
0 +

3!d′(0)

a′4
ρ′0 = 0,

ρ01 = 0; ρ02,03 = ±

√
−3!d′(0)

a′4
.

Since a′4 is always positive in the region 0.04 ≤ η ≤ 0.22,
the solutions ρ02 and ρ03 are real when d′(0) ≤ 0. Thus
the second condition for the critical point is

d′(0) = 0

Explicitly, the system of two equations relating the
temperature and the packing fraction is as follows:

m3

m4
+

6η

π

1

T ∗
Φ̂0

εσ3

(
1− m2m3

m4
+

m3
3

3m2
4

)
= 0;

a′2 +
6η

π

1

T ∗
Φ̂0

εσ3
= 0, (39)

where T ∗ = kBT/ε is the reduced temperature. The
equation for �nding the critical value of η is:

m3

m4
− a′2

(
1− m2m3

m4
+

m3
3

3m2
4

)
= 0. (40)

Figure 11 shows this equation graphically. The numeri-
cal solution to the equation gives ηc = 0.1742 (ρ∗c =
0.3327 for the reduced density ρ∗ = σ3⟨N⟩/V ) in the
Percus�Yevick approximation, and ηc = 0.1766 (ρ∗c =
0.3374) in the Carnahan�Starling approximation. The
critical temperature is now found:

T ∗
c = − 6ηc

πa′2

Φ̂0

εσ3

which for the parameters value R0/α = 3.5 is T ∗
c = 2.14

in the Percus�Yevick approximation, and T ∗
c = 2.15

in the Carnahan�Starling one. It is very important
to note that both the critical density and the cri-
tical temperature depend on the parameters of the
attractive part of the potential. In particular, the cri-
tical temperature Tc approaches zero as the interacti-
on potential becomes more and more narrow (α → ∞,

Φ̂0 → 0).

Fig. 11. Equation (40) for the critical packing fraction ηc

The solutions to Eq. (38) for ρ′0 can be written in the
general form via the discriminant of this cubic equation
(via the Cardano's formulas). We are not going to do
so for this simple approximation, but in our future work
we are going to integrate expression (33) over non-zero
values of k, obtain a similar equation for ρ0 but with
re-normalized coe�cients, and investigate the obtained
equation more closely.

B. Applying condition ⟨N⟩0 = ⟨N⟩

Another way to address the problem of �nding the
critical point coordinates is to impose the condition
of equality between particle number averages for the
reference system and the whole system:

⟨N⟩0 = ⟨N⟩.

This condition was, for example, applied in [8].
The general equation to �nd the average (equilibrium)

number of particles is:(
∂ ln Ξ

∂(βµ)

)
T,V

= ⟨N⟩.

In expression (22) for the GPF Ξ, only ΞL depends on
the chemical potential. Taking into account its expressi-

on (33), as well as expression (37) for Ξ
(1)
L , we arrive at

the equation:

⟨N⟩0
(
m1 +

m2m3

|m4|
+

m3
3

3m2
4

+ ρmax
0

)
= ⟨N⟩.
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Applying the conditions ⟨N⟩0 = ⟨N⟩ and m1 = 1, we
get:

ρmax
0 = −

(
m2m3

|m4|
+

m3
3

3m2
4

)
.

In a number of works, (see e.g. [8, 21, 25]), the right-hand
side expression is considered a distinct quantity and is
denoted as ∆:

∆ ≡ −
(
m2m3

|m4|
+

m3
3

3m2
4

)
.

Thus there are three conditions to be met at the cri-
tical point. The �rst one, which follows from the requi-
rements of the Ising model symmetry, is:

µ∗ = 0.

The second one is

d′(0) = 0,

and the third one, which follows from the requirement
that ρmax

0 = 0 at the critical point, is:

∆ = 0.

From the last condition, we can immediately �nd the
value of the critical density. Solving the equation ∆ = 0
numerically gives us ηc = 0.12867 (ρ∗c = 0.24574) in the
Percus�Yevick approximation, and ηc = 0.13044 (ρ∗c =
0.24913) in the Carnahan�Starling approximation. It is
worth noting that the condition ∆ = 0 is equivalent to
M3 = 0, and consequently to m3 = 0.
The equation for the critical temperature follows from

the second condition:

T ∗
c = − 6ηc

πa′2

Φ̂0

εσ3
= −ρ∗c

a′2

Φ̂0

εσ3
.

Its numerical values for the potential parameter R0/α =
3.5 are T ∗

c = 2.197 and T ∗
c = 2.202 in the Percus�Yevick

and Carnahan�Starling approximations, respectively.
There are a few important conclusions regarding the

results based on the condition ⟨N⟩0 = ⟨N⟩. First, the
value of the critical density does not depend on the
parameters of the attractive part of the potential. This
consequence is very contradictory since the critical densi-
ty is the same for any form of Φ(r) at r ≥ σ, including
very weak interactions. The value of ηc does not depend
on the approximation used for the GPF calculation, and
its mean-�eld value obtained in this work is the same as
the one obtained in [8].
Second, the critical temperature does depend on the

parameters of interaction, and approaches zero as the
range of interaction becomes shorter and shorter (α →
∞, Φ̂0 → 0).
In this approach, we can also �nd the value of the

chemical potential at the critical point. From the condi-
tion µ∗ = 0 and Eq. (31) we get:

β(µc − µ0) = −M3/M4 − α(0)M̃1

= −m3/m4 −
6η

π

ε

kBT

Φ̂0

εσ3
m̃1.

where the following notation was introduced by analogy
with Eq. (28):

m̃1 = m1 −
m2m3

m4
+

m3
3

3m2
4

,

Since m3 = 0 at the critical point, and m1 = 1, we get:

β(µc − µ0) = − ρ∗c
T ∗
c

Φ̂0

εσ3
= a′2.

The numerical values of the chemical potential di�erence
at the critical point are summarized in Table 3 for di-
�erent interaction parameters.

R0/α β(µc − µ0) βµex
c

2.0 2.6699 4.0342

2.5 2.6228 3.9872

3.0 2.5812 3.9456

3.5 2.5453 3.9097

4.0 2.5143 3.8787

4.5 2.4877 3.8520

5.0 2.4645 3.8289

5.5 2.4444 3.8088

6.0 2.4268 3.7911

Table 3. Critical values of chemical potential for di�erent
parameters R0/α

The chemical potential of a system can be represented
as a sum of ideal and excess parts

µ = µid + µex.

Thus the di�erence β(µ−µ0) is essentially the di�erence
between excess chemical potentials. The excess chemi-
cal potential of a hard-sphere system in the Carnahan�
Starling approximation is

βµex
0 =

8η − 9η2 + 3η3

(1− η)3
.

At the critical density (βµex
0 )c = 1.3644. Thus, we can

calculate the excess chemical potential of the whole
system at the critical point. The results are presented
in Table 3.

VII. CONCLUSION

We have obtained the functional-integral representati-
on for the grand partition function for the classical many-
particle interacting system. The main result is presented
with Eq. (34). This expression will be subject to apply-
ing the renormalization group transformation near the
liquid-gas critical point in future works. In this paper,
the mean-�eld approximation was applied to calculate
the coordinates of the critical point, using a system of
hard-spheres with the Morse potential as an example.
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Appendix A: Total correlation functions

A.1. Definitions

The de�nition of the n-particle distribution function is taken from [13] (see Eq. (2.6.7) therein):

g(n)(rn) =
ρ(n)(r1, . . . , rn)∏n

i=1 ρ
(1)(ri)

where ρ(n) is the n-particle density (see Eq. (2.6.1) in [13]), which is de�ned as:

ρ(n)(rn) =
1

Ξ

∞∑
N=n

zN

(N − n)!

∫
exp(−βUN ) dr(N−n).

Here rn ≡ r1, . . . , rn, and dr(N−n) = drn+1 . . . drN .
Let us introduce an hierarchy of total correlation functions. The most widely known element of this hierarchy is

the pair correlation function:

h(2)(r1, r2) = g(2)(r1, r2)− 1.

Let us express the total correlation functions in terms of the n-particle distribution functions. Formally, one can
introduce the hierarchy of total correlation functions starting with n = 1 and on. By de�nition,

g(1)(r) ≡ 1.

Thus, for n = 1 one has:

h(1)(r) = g(1)(r) = 1.

For n = 2:

h(2)(r1, r2) = g(2)(r1, r2)− 1.

For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3)− g(2)(r1, r2)− g(2)(r1, r3)− g(2)(r2, r3) + 2.

For n = 4 :

h(4)(r1, r2, r3, r4) = g(4)(r1, r2, r3, r4)− g(3)(r1, r2, r3)− g(3)(r1, r2, r4)− g(3)(r1, r3, r4)− g(3)(r2, r3, r4)

−g(2)(r1, r2)g
(2)(r3, r4)− g(2)(r1, r3)g

(2)(r2, r4)− g(2)(r1, r4)g
(2)(r2, r3) + 2(g(2)(r1, r2) + g(2)(r1, r3)

+g(2)(r1, r4) + g(2)(r2, r3) + g(2)(r2, r4) + g(2)(r3, r4))− 6.

A.2. Expressed via g(n) and h(m<n)

The total correlation function h(n) can be expressed via g(n) and h(m<n). Such representation for h(3) and h(4) was
used in [26].
For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3)− h(2)(r1, r2)− h(2)(r1, r3)− h(2)(r2, r3)− 1.

For n = 4:

h(4)(r1, r2, r3, r4) = g(4)(r1, r2, r3, r4)− h(3)(r1, r2, r3)− h(3)(r1, r2, r4)− h(3)(r1, r3, r4)− h(3)(r2, r3, r4)

−h(2)(r1, r2)h
(2)(r3, r4)− h(2)(r1, r3)h

(2)(r2, r4)− h(2)(r1, r4)h
(2)(r2, r3)− h(2)(r1, r2)− h(2)(r1, r3)− h(2)(r1, r4)

−h(2)(r2, r3)− h(2)(r2, r4)− h(2)(r3, r4)− 1.

From here it's straightforward to express g(n) via h(m), where m ≤ n (in [27] such expressions were presented for
n ≤ 3).
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A.3. Expressed via g(n) through g(1)

For n = 2:

h(2)(r1, r2) = g(2)(r1, r2)− g(1)(r1)g
(1)(r2).

For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3)− g(2)(r1, r2)g
(1)(r3)− g(2)(r1, r3)g

(1)(r2)− g(2)(r2, r3)g
(1)(r1)

+ 2g(1)(r1)g
(1)(r2)g

(1)(r3).

For n = 4 :

h(4)(r1, r2, r3, r4) = g(4)(r1, r2, r3, r4)− g(3)(r1, r2, r3)g
(1)(r4)− g(3)(r1, r2, r4)g

(1)(r3)

−g(3)(r1, r3, r4)g
(1)(r2)− g(3)(r2, r3, r4)g

(1)(r1)− g(2)(r1, r2)g
(2)(r3, r4)− g(2)(r1, r3)g

(2)(r2, r4)

−g(2)(r1, r4)g
(2)(r2, r3) + 2[g(2)(r1, r2)g

(1)(r3)g
(1)(r4) + g(2)(r1, r3)g

(1)(r2)g
(1)(r4)

+g(2)(r1, r4)g
(1)(r2)g

(1)(r3) + g(2)(r2, r3)g
(1)(r2)g

(1)(r4) + g(2)(r2, r4)g
(1)(r1)g

(1)(r3)

+g(2)(r3, r4)g
(1)(r1)g

(1)(r2)]− 6g(1)(r1)g
(1)(r2)g

(1)(r3)g
(1)(r4).

Equivalent representations for n-point correlation functions were used in [28] in the study on galaxy clustering.
To simplify the notation, let us denote (r1, . . . , rn) = (1, . . . , n). And let us group similar terms under summation

sings. Then h(3) and h(4) can be rewritten as

h(3)(1, 2, 3) = g(3)(1, 2, 3)−
∑

l=

{
1,2,3
1,3,2
2,3,1

} g(2)(l1, l2)g
(1)(l3) + 2g(1)(1)g(1)(2)g(1)(3).

h(4)(1, 2, 3, 4) = g(4)(1, 2, 3, 4)−
∑

l=


1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1


g(3)(l1, l2, l3)g

(1)(l4)−
∑

l=

{
1,2,3,4
1,3,2,4
1,4,2,3

} g(2)(l1, l2)g
(2)(l3, l4)

+ 2
∑

l=


1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



g(2)(l1, l2)g
(1)(l3)g

(1)(l4)− 6g(1)(1)g(1)(2)g(1)(3)g(1)(4).

The sums extend over all distinct argument lists in which each point appears exactly once. For instance, g(3)(1, 2, 3)
and g(3)(3, 2, 1) are not considered distinct, and terms such as g(2)(1, 2)g(2)(2, 3) do not appear [28].

A.4. Fourier components of total correlation functions

The following generic notation is used for the Fourier components of the total correlation function:

ĥ(n)(k1, . . . ,kn) =

∫
exp(−ik1r1 − . . .− iknrn)h

(n)(r1, . . . , rn) dr1 . . . drn.

By properly selecting the origin, it can be shown that for a homogeneous isotropic system

g(n)(r1, . . . , rn) = g(n)(r1 − rn, . . . , rn−1 − rn)

and applying a proper change of variables it can be written as

g(n) = g(n)(r1, . . . , rn−1).
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Thus,

h(n)(r1, . . . , rn) ⇒ h(n)(r1, . . . , rn−1)

It enables us to write the following expressions for the Fourier components ĥ(n)(kn):

1

V
ĥ(n)(kn) = ĥ(n)(k1, . . . ,kn−1)δk1+...+kn

where

ĥ(n)(k1, . . . ,kn−1) =

∫
exp(−ik1r1 − . . .− ikn−1rn−1)h

(n)(r1, . . . , rn−1) dr1 . . . drn−1

In particular, for n = 1:

1

V
ĥ(1)(k) = δk.

For n = 2:

1

V
ĥ(2)(k1,k2) = ĥ(2)(k1)δk1+k2

A.5. Fourier transform of the radial correlation function for the hard-spheres system

From [18] (see Eqs. (3)�(5) therein) an explicit expression for ĥ(2)(k) can be calculated in the Percus�Yevick

approximation. Figure 12 shows the dependency of ĥ(2)(k)/σ3 on kσ. Figure 13 shows the dependency of ĥ(2)(0)/σ3

on packing fraction η.

Fig. 12. Fourier transform of the total correlation function
ĥ(2)(k)/σ3 as a function of kσ. 1 � η = 0.05, 2 � η = 0.1,

3 � η = 0.15, and 4 � η = 0.2.

Fig. 13. Fourier transform of the total correlation functi-
on ĥ(2)(k)/σ3 as a function of packing fraction η at k = 0

A.6. Some recurrence relations for correlation functions

In this section, some recurrence relations for the total correlation functions h(n) will be presented. They are derived
based on Eqs. (A7)�(A8) from [19]. More detailed derivation can be found in Preprint [12].
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The relations between ĥ(3) and ĥ(2) are

ĥ(3)(k1,k2, 0) = 2ĥ(2)(0)ĥ(2)(k1,k2)

+
∂ĥ(2)(k1,k2)

∂ρ
(1 + ρĥ(2)(0)),

ĥ(3)(k,−k) = 2ĥ(2)(0)ĥ(2)(k) +
∂ĥ(2)(k)

∂ρ
(1 + ρĥ(2)(0)). (A.1)

Similarly, the relations between ĥ(4) and ĥ(3) are as follows:

ĥ(4)(k1,k2,k3, 0) = 3ĥ(2)(0)ĥ(3)(k1,k2,k3) +
∂ĥ(3)(k1,k2,k3)

∂ρ
(1 + ρĥ(2)(0)),

ĥ(4)(k1,k2, 0) = 3ĥ(2)(0)ĥ(3)(k1,k2) +
∂ĥ(3)(k1,k2)

∂ρ
(1 + ρĥ(2)(0)). (A.2)

Relations (20) and (21) for cumulants follow directly from (A.1) and (A.2), respectively.
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ÔÓÍÊÖIÎÍÀË ÂÅËÈÊÎ� ÑÒÀÒÈÑÒÈ×ÍÎ� ÑÓÌÈ ÄËß ÏÐÎÑÒÈÕ ÏËÈÍIÂ

I. Ð. Þõíîâñüêèé , Ð. Â. Ðîìàíiê
Iíñòèòóò êîíäåíñîâàíèõ ñèñòåì ÍÀÍ Óêðà¨íè,

âóë. Ñâ¹íöiöüêîãî, 1, Ëüâiâ, 79011, Óêðà¨íà

e-mail: romanik@icmp.lviv.ua

Ó ðîáîòi ïîñëiäîâíî îïèñàíî ìåòîä êîëåêòèâíèõ çìiííèõ iç ñèñòåìîþ âiäëiêó äëÿ êëàñè÷íî¨ ñè-
ñòåìè áàãàòüîõ âçà¹ìîäiéíèõ ÷àñòèíîê ó âåëèêîìó êàíîíi÷íîìó àíñàìáëi. Îñíîâíó óâàãó ïðèäiëåíî
äåòàëÿì îá÷èñëåíü. Çîêðåìà,

� ìíîæíèêà 1/
√
N íå âèêîðèñòîâó¹ìî ó âèðàçàõ äëÿ ôóð'¹-êîìïîíåíò äëÿ ìiêðîñêîïi÷íî¨

ãóñòèíè ÷àñòèíîê, ùî äåùî ñïðîùó¹ ñóìóâàííÿ ïî N ó âåëèêié ñòàòèñòè÷íié ñóìi.

� Çàñòîñîâó¹ìî ïîâíi êîðåëÿöiéíi ôóíêöi¨, îçíà÷åíi äëÿ âåëèêîãî êàíîíi÷íîãî àíñàìáëþ,
ùî äà¹ çìîãó äåòàëüíî äîñëiäèòè êóìóëÿíòè âåëèêî¨ ñòàòèñòè÷íî¨ ñóìè ñèñòåìè âiäëiêó.
Îäåðæàíi âèðàçè äëÿ êóìóëÿíòiâ ïðîñòiøi ïîðiâíÿíî ç îòðèìàíèìè â ïîïåðåäíiõ ðîáî-
òàõ [I. Yukhnovskii, Physica A 168, 999 (1990); I. R. Yukhnovskii, I. M. Idzyk, V. O. Kolomi-
ets, J. Stat. Phys. 80, 405 (1995)]. Ïîêàçàíî, ùî áóäü-ÿêèé êóìóëÿíò Mn ìîæíà çàïèñàòè
ÿê äîáóòîê òðüîõ êîìïîíåíò: ñåðåäíüîãî ÷èñëà ÷àñòèíîê ñèñòåìè âiäëiêó, ñèìâîëó Êðî-
íåêåðà n õâèëüîâèõ âåêòîðiâ i n-÷àñòèíêîâîãî ñòðóêòóðíîãî ôàêòîðà.

� Òåîðiÿ ïîäàíà òàê, ùî ñèñòåìó âiäëiêó ðîçãëÿäà¹ìî çàãàëîì i ¨¨ ìîæíà âèáðàòè äîñèòü
äîâiëüíî. Ñèñòåìó òâåðäèõ ñôåð àíàëiçó¹ìî â ðîáîòi ëèøå ÿê ïðèêëàä äëÿ îòðèìàííÿ
÷èñëîâèõ i ãðàôi÷íèõ ðåçóëüòàòiâ.

Îäåðæàíî äëÿ âåëèêî¨ ñòàòèñòè÷íî¨ ñóìè ôóíêöiîíàëüíèé âèðàç, ó ÿêîìó âñi âåëè÷èíè çàïèñàíi
â ÿâíîìó âèãëÿäi. Ðîçðàõîâàíî êîîðäèíàòè êðèòè÷íî¨ òî÷êè â íàáëèæåííi ñåðåäíüîãî ïîëÿ.

Âàæëèâèì òàêîæ ¹ äîäàòîê À, ó ÿêîìó äîêëàäíî ðîçãëÿíóòî âëàñòèâîñòi ïîâíèõ êîðåëÿöiéíèõ
ôóíêöié.

Êëþ÷îâi ñëîâà: ïðîñòi ïëèíè, êîëåêòèâíi çìiííi, âåëèêèé êàíîíi÷íèé àíñàìáëü.
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