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In this paper, we will systematically present the method of collective variables with a reference
system for a classical many-particle interacting system in the grand canonical ensemble. The
emphasis will be placed on the details of calculations. In particular, the usage of total correlati-
on functions defined for the grand canonical ensemble allows us to investigate very accurately the
cumulants of the grand partition function for the reference system. It is shown that any cumulant
M, can be expressed as a product of three components: the average particle number within the
reference system. Kronecker’s symbol for n wave vectors, and the n-particle structure factor.

The functional expression for the grand partition function is derived, with all coefficients explicitly
defined. The coordinates of the critical point are computed in the mean field approximation.
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I. INTRODUCTION

The method of collective variables (CV) was developed
in [1, 2], and applied to description of classical equili-
brium systems [3] and phase transitions of the second
order [4]. A more thorough review of results achieved
using the method is presented in [5]. The method was
then extended to describe the system of interacting parti-
cles in the grand canonical ensemble. For simple fluids,
the notable works are [6-8]. For many-component
systems see [9, 10]. The concept of a reference system
(RS) was used along with the CV method. The interacti-
on between particles was arbitrarily divided into short-
range repulsive and long-range attractive parts. The
short-range repulsive part was usually considered the
reference system. In the current work, we systematically
introduce the collective variables in the grand canoni-
cal ensemble. We would like to emphasize the following
distinguishable points of this work:

e The factor of 1/v/ N is not used in the expressi-
ons for the Fourier components of the microscopic
particle density, which somewhat simplifies the

summation over N in the grand partition functi-
on (GPF).

e We use total correlation functions defined in
the grand canonical ensemble, which makes the
expressions for cumulants of the reference system
grand partition function much simpler compared
to the ones obtained in [7, 8]. This also helps to
avoid complications related to explicitly perform-
ing thermodynamic limit in those expressions.

e The theory is presented in such a way that the
reference system is treated generically and then
is chosen as a hard-sphere system only to obtain
numerical results for some quantities.

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-
v bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI.

We obtain an explicit functional expression for the GPF
of the classical many-particle interacting system with all
coefficients known. The obtained expression is analogous
to the one obtained in [7] except the coefficients are revi-
sited using more modern definitions for total correlation
functions. Some properties of these correlation functi-
ons are additionally investigated in Appendix A. We
conclude the work with calculation of the critical point
coordinates in the mean-field (MF) approximation. The
obtained value for the packing fraction is the same as
was obtained in [8], thus showing that for this quantity a
higher approach still needs to be developed. The obtai-
ned value for the critical temperature is higher that the
corresponding value reported in [8], since the latter was
obtained in a non-MF approximation. Finally, the criti-
cal value calculated for the excess chemical potential is
published for the first time.

II. PROBLEM STATEMENT

Consider a classical system of identical particles
interacting via a pairwise additive potential U(|r|),
where r is the distance in the three-dimensional space.
There are two assumptions made regarding the interacti-
on between particles. First, the interaction can be
decomposed into two parts

Ul(rij) = ¥(rij) + ®(r45), (1)

where ¥(r;;) is responsible for the repulsion between
particles — denoted by ¢ and j — at short distances, and
®(r;;) for the attraction at long distances, r;; = |r; — r;|.
Second that the attraction part of the potential possesses
a well-behaved Fourier transform. For more details on the
interaction potential, see Section IT A.

A physical observable dependent on the particle
coordinates is, in general, a functional of the microscopic
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particle density defined as

N

n(r) = Z(S(r —rj),

=1

where r; is the coordinate of the j-th particle, IV is the
number of particles in the system, d(...) is Dirac’s §-
function. The quantity n(r) can be represented in the
form of a Fourier series:

1 ~ ke
:7Zpkel )
4 k
1= T,Y,z

where 35y = 300 3oy Yk ki = s
n; =0,4+1,£2,... .V is the system volume, so that

/V n(r)dr = N

The Fourier component py is of the form:

N
Pk = Z exp(—ikr;),
j=1

Pr=0 = N. (2)

Alternatively,
Px = Pic — WPk
e N s N .
P = >_izq cos(kr;), Py = > i, sin(kr;)

Let the system be open. The probability that an open
system contains exactly N particles is given by:
12N
p(N) = :WZN
Here = is the grand partition function (GPF) of the
system:

o0

”Zz
- |

where z is the activity z = A=3exp(Bu), with 3 being
the inverse temperature, and p the chemical potential,
A = (232 /m)'/? the de Broglie thermal wavelength, /
Planck’s constant, m the mass of a particle.

Z is the configuration integral:

In = /exp(—ﬁUN(rN)) de

where Uy is the potential energy of interparticle
interaction, and the following notation is understood
rN=r,...,ry, deN =dr; ... dry.

Given the GPF, all the thermodynamic properties of
the system can be obtained.

A. Potential energy of interparticle interaction

Based on the assumption made in (1), the potential
energy of the interparticle interaction can be written in
the form:

UN(I‘N) = \I/N(I‘N) + CI)N(I‘N).
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Here Wy = 17 ¥ W(ry) is the potential

i#]
energy of the short-range repulsive interaction, and
Oy = %vazl Zj.v:l(b(rij) is the long-range attractive
i#]
counterpart.
One approach to separating long- and short-range
interaction is to choose ¥(r) as the hard-sphere (HS)

potential
00, <0,
¥(r) =

0, r>o

where o denotes the hard-sphere diameter. Then ®(r)
can be chosen so that it possesses a potential well at

r>o,eg.
() 0, r<o 3)
T =
LMorse(T); r>o,

using the Morse potential
Umorse(1) = e{exp{[—2(r — Ro)/a]}
— 2exp{[—(r — Ro)/al}}

with € being the characteristic energy of the potential,
Ry the coordinate of the minimum, and « the effective
range of action. In what follows, we develop a general
approach to deal with the system of interacting particles.
Particular forms of the reference system and attractive
part of the potential are chosen to obtain some numerical
and graphical results.

In general we assume that the attractive part of the
interaction potential possesses a well behaved Fourier
component Py such that:

1 P 1 A
— P tkr .~ d ikr dk
v 2t = [ et
and

Py = /@(T)e*ikr dr.

In such a case, the potential energy of the attractive
interaction can be written in terms of p:

1 A N A
o (rY) = qu)kpkp—k*ﬁzq’k' (4)
k k

Note, that in our approach we put ®(0) = 0, see (3), thus
the second term for ® 5 vanishes.

B. The Grand Partition Function with a reference
system singled out

The GPF is now written as

oo
eBuN

=2 N / exp(—fUy (r") - foy (™)) dr™.

N=0

(1]
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Let us consider a system characterized only by the
repulsive part of the interaction potential as a reference
system (RS). The GPF for the RS system is

xp(BuoN

N )/exp(—B\I/N(rN))drN

where g is the RS chemical potential. Now, the GPF is
expressed as

- exp(BuoN) [ exp(—Bn(rY))
NIA3SN Zo

.:—HO

x eXp(B(u — o) N — BOx (xN)) dr.

Taking into account (4) and (2), the second exponent
under the integral can be expressed in terms of py:

exp(B(n — po)N — BEN(rY))

= exp <hﬁo - % Z Oé(k)ﬁkﬁ—k> : (5)

k

Here the following notations were introduced:

B
== (6)

h=pB(u—po); ofk)=

Let us define the set of collective variables px =
pr. — ipy. via the following expressions:

b = [l
b = [ il

Ao / pod(p— p) (dp) = N. (7)

Here (dp) = dpo [[} dpgdpf, and

T(p = p) = 3(po — po) [T 8ok — A8 ok — i),
k

The ‘prime’ sign over the product means that the wave-
vector takes on values only from the upper semi-space of
the reciprocal space, i.e. k., > 0, and k # 0.

The collective variables px possess the following
properties:

P-x = Pxi Pk =Pk Pr = Pk

Equations (7) can be written in a more concise form
i = [ped( ,0 - p) (dp) Valid is also a more general
equality f(px) = [ f(px)J(p — p) (dp), where f is some
function of px. Applied to (5) and then substituted into
the expression for the GPF, it leads to

EZEo/exp<hﬂo— %Z (k) prep— k> J(p) (dp)

k

where the Jacobian function is defined as

I(p) = (J(p—=p))rs- (8)

Here the average value over the reference system is defi-
ned as

N
(.. )rs =" Z ﬁ/exp(fﬁllfN(rN)) dr. (9)
N=0

with zp = exp(Buo/A?’) being the activity of the refe-
rence system.

III. THE JACOBIAN OF TRANSFORMATION

Let us rewrite the expression for the Jacobian (8) using
the integral representation for §-functions:

/
8(po — po) [ T 8(ri — pi)s (i — pi)
k

= /exp (27Ti Z(Pk - ﬁk)wk> (dw),

k

where wi = $(wf + iwj) is a variable conjugate to px,

and (dw) = dwp [] dwfdw;. The Jacobian can now be
expressed as

Jp) = /eXP <Z27TZPkwk) (w) (dw)

where the following notation is introduced

X
=
i
ho)
/T\
=
b=
=
\
-~
[N}
3
~[~]
g€
k3
)
~
N———
o,
]
=
=

The expression for J(w) can be expanded into a cumulant
series to give

‘;5 ) = exp ZD

n>1

"2” Z M, (ki, ... .k

)wkl cee Wk, -

The cumulants 91, are calculated using the following
formula:

L o)
(—i2m)n <8wk1 . -&«Ukn) (; (11)
wi,; =

The calculation of the cumulants 9, is the objective of
the next Section IV.

mn(klv"wkn) =

2602-3
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IV. CUMULANTS
A. Calculation of cumulants

Let us calculate 9M,(ky,...,k,) based on
Egs. (11), (10). To simplify the notation for the
average value defined in (9), the subscript 0 will be used
to indicate RS

(-~ )o=(..)rs
For the first cumulant, one gets:
1 9lnJ(w) .
k = I e— == . ].2
M) = g g o (2

For the second cumulant:

1 9?InJ(w)
(—i277)2 8wk1 8wk2

mQ(k17k2) -

wki =0

= (D1 Pia)0 — (Pk1 )0 (Pks )0

Continuing this procedure, for the next cumulants one
gets:

m3(k17k27k3> = <ﬁk1ﬁk2ﬁk3>0
=D Py Py oy Do
{1,2,3}
1={ 1,32
231
+ 2(PK;)0(PKz)0(PKs)05

S):n‘l(kla k27 k37 k4) = </A)k1 ﬁk2ﬁk3ﬁk4>0

<ﬁk11 ﬁkzz ﬁle >O<ﬁkl4 >0

<ﬁkzl ﬁkl2 >0<ﬁkz3 ﬁkl4 >0

<[7kzl ﬁkZZ >0<ﬁk3>0<ﬁk4>0

- 6<[)k1>O</3k2>0<[)k3>0</3k4>0~ (13)

The expressions in the right-hand sides of (12)-(13) can
be called cumulant averages of pyi. They remind formulae
for cumulants expressed via non-central moments. If
(pk; - - - Px,,) are considered non-central moments (of a
probability distribution), then 9, (ky,...,k,) can be
considered as cumulants (semi-invariants), and the relati-
onships between them are known [11].
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As per our knowledge, the generic expression for the
cumulant average has not been found so far; however, 91,
can be derived for any n based on generating functional
In J(w) by virtue of (11).

B. Cumulants 9,(k") expressed via Fourier
components of the total correlation functions
fl(n)(kn)

In this subsection, explicit expressions for cumulants
M, are presented in terms of the Fourier components
of total correlation functions h(™. See Appendix A for
the definition and some properties of total correlation

functions. The calculation of the first two cumulants is
presented in detail in [12] (see Appendix B therein).

My (k) = phM (k) = (N)odi, (14)

m2(k1, kg) = pil(l)(kl + k2) + ,02;1(2) (kl, kg)

= (N)obi 41 (1 + ph® (k). (15)

M (ki ko, ks) = ph™ (kg + ko + ks)
ot D]
{1,2,3}
1=4 1,32
2371

= (N)odis ks ks |1+ p(h) (k1) + 5 (k2)

W (ki, + Ky ki) + p° 2P (ki ko, kg)

FhP (s + k) + P k)| (16)

9:n4(k17"'ak4) = pi]’(l)(kl + ... +k4)

2

+p B(Q) (kh + klz + kls ) kl4)

(]

L loboio
Bl

T
—_——
D = =
=N O
N——

}AL@) (kll + kl2a kls + kl4)

+
bm
(]

MNPJ

N
—
— e

NS

o
~—

_|_ pg E iL(B) (kl1 + klg ) klsa kl4)
1,2,3,4
1,3,2,4
1= 1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2
+ p4iL(4) (klv 7k4)7 (17)
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Ma(ki, ... ka) = (N)o0k, +ks+ks+ka

+p2 Z iL(B) (kl17kl2) + psiL(4) (k17k23k3)

1=

4
L+pd h20)+p > bk, +ki,)

T

1
1
1

W N

)
)
)

The expression in the square brackets next to the d-function for Mi4(k™) can be also written in a form where it
depends only on ki, ko, ks, but does not depend on k4. Let us write for 9i:

Mk, ... k) =

s

7k4)

Then

3
my(ki, ko, ks) = 1+P(Zil(2)(kz)+ >

=1

The following statement should be true for any n: a
cumulant 9%, can be written in such a way that the
dependence on k,, will be present only in dx, 1. tk,, and
the other part, let us denote it by m,,, will depend only
onky,...,k, 1, or m, =m, (k")

My (k") = (N)o0kc, +...+1, M (K1),

A few first m,, are expressed via total correlation functi-
ons h(™ as follows:

(19)

ms(ky, ko) =1+ p(iz(z) (k1) + 7P (ko) + h® (ky + k2)>

+ p?h® (k1 ko),

and the expression for my is given by (18). It is evident
from (19) that mo(k) is the structure factor (see e.g.

(V) 00k, +1es+ks+k, Ma(k1, ko, k3).

AP (g, + k) + AP (kg + ko + k3)>

h® (k;, + klz,kls)> + p°h W (kg kg, k). (18)

Eq. (3.6.10) in [13]). By analogy, m,, can be considered
the n-particle structure factor.

Expressions (14)—(17) for cumulants obtained in this
work can be compared with corresponding expressi-
ons presented in other works. In [8] (see Appendix B
therein), and in [14] (see Eq. (3.7) therein), the expressi-
ons for My through M, were presented in a similar form,
but different permutations of wave-vector values were
not accounted for. For example, it was considered that
A® (k1) 4+ h® (ky) + h®) (k; + ko) = 30D (k). In [6]
(see Egs. (2.6), (2.10), and (2.11) therein), the expressi-
ons for M, (k™) were presented in a more complicated
form, possibly due to the fact that correlation functions
were defined in the canonical ensemble.

In [9] the expressions analogous to (14)-(17) were wri-
tten for cumulants of a multicomponent system.

There are a few interesting things to note about the
general expression for m,. First, that the number of all
terms contributing to m, is equal to the Bell number B,
[15, 16]. Second, if the terms are grouped by the powers
in p, then the number of terms at the k-th power in p is
the Stirling number of the second kind S(n, k) [15, 17].

2602-5
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C. Explicit expressions for cumulants as functions
of wave-vector and packing fraction

To obtain expressions for cumulants, one can use an
explicit equation for the structure factor of a hard-

Fig. 1. Cumulant my as a function of ko at different
values of packing fraction n. 1 —n = 0.05, 2 — n = 0.1,
3—n=0.15,and 4 —n=0.2

The formulas for M3 (k, —k, 0) and M4 (k, —k,0,0) can
be obtained from 93(k, —k) based on the recurrence
relations for m-particle distribution functions g, found
in [19] (see Eq. (A8) therein). Such formulas were obtai-
ned in [8] (see Appendix B therein), and in our notation
they read:

Om (k)

ms (k, —k) = ms(0) {mQ(k) Ll

my(k, —k,0) = my(0) {mQ(k)m2(0)+3nm2(0)8nz;§k)
+ nm2(k)a"‘a2n(0) +n26n;277(0) an;;k)

- 05 @1

In Fig. 3 ms(k,—k) is shown as a function of k - o
at different values of 7. In Fig. 4 m3(0,0) is shown as a
function of n. In Fig. 5 my(k, —k, 0) is shown as a function
of k- o at different values of n. In Fig. 6 m4(0,0,0) is
shown as a function of 7.

For the system of hard spheres, the cumulants m,, can
be found explicitly as functions of the packing fracti-
on 71 based on a given equation of state % = f(n)
where f(n) is a function of the packing fraction only.
The structure factor at zero wave-vector value is found
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spheres system. For example, let us use Eq. (3) from [18§]
for the structure factor as a function of wave-vector and
packing fraction 7 in the Percus—Yevick approximation.
In Fig. 1 my is shown as a function of k - ¢ at different
values of 7. In Fig. 2 ms is shown as a function of n at
k=0.

0.9
0.8
0.7
0.6
0.54
0.4
0.39
0.2

0.14

Fig. 2. Cumulant my as a function of packing fraction n
at k=0

via
B B ap
my = S5(0) = kT (5‘P>T'

From here one has

L ) 4220

mo 67]

For example, in [14], the following expressions were obtai-
ned based on the equation of state by Carnahan and
Starling [20] for HS:

(1—n)*
(1+2n)2 — 4 + n*’

mo =

(1 —n)7(1 — 59— 20n% — 4n* + 5p* — n°)

e = (T +20)2 —4n® + n)? !

my = (1—n)'(1 — 269 — 350 + 408, 4 758"
+ 28n° — 114n% — 401" + 37° — 10n° + '?)
X ((1+2n)° =4 + ") 7>,

Note that here the signs for the term 473 in m3 and for
40873 in my were corrected.
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0.7 0N,

0.6

Fig. 3. Cumulant ms(k, —k) as a function of ko at di-
fferent values of packing fraction n. 1 — n = 0.05, 2 —
n=0.1,3—n=0.15,and4 —n=0.2

0.3 / \

0.2 !

o~ N

Fig. 5. Cumulant ms(k,—k,0) as a function of ko at
different values of packing fraction n. 1 —n = 0.05, 2 —
n=01,3—n7=0.15and4 —n=0.2

V. GRAND PARTITION FUNCTION IN THE
REPRESENTATION OF COLLECTIVE
VARIABLES

Based on theresults from Section III, the grand parti-
tion function is now written as

1
2 = Eo/exp [hﬂo -5 > alk)prpx

k

—i2m)"
X exp i27r2wkpk + Z %
- !

n>1

Y Mk, Kn)wi Wi, | (dw)(dp).
ki,....kn

0.8

0.6

0.4+

0.2

I ——— T
0.1 02 0.3 0.4 0.5 0.6 0.7

Fig. 4. Cumulant ms(0, 0) as a function of packing fracti-

on 7

0.8

0.6

0.4

0.29

Fig. 6. Cumulant m4(0,0,0) as a function of packing

fraction n

This form for GPF was also obtained in [7] (see Eq. (2.16)
therein).

The next step in the calculation is to integrate over wy
with £ > B. This integration can be performed using the
Gaussian measure, i.e. the expressions in the exponent
are restricted to the powers in w not higher than 2. Let
us denote the result of this integration by Zg. Then the
grand partition function takes the form:

(1]
(1]

0ZGEL. (22)

Here Z1, denotes long-wave contributions to the GPF and
is the object of our further investigation in this paper.
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The expression for =Zp, is as follows:

_ 1
I, = /exp hpo — 5 zk: a(k)prp—x
k<B
z27r
X exp | 27w Z Wk Pk + Z

n>1
kgB

X
g

=1
3
=

. ,kn)wkl cee Wk,
X (dw)™® (dp)N®

Here M,, denote renormalized cumulants 9, due to
integration over k > B, and

(dw)Vo (dp)™e = | [] dwidpidwidps, | dwodpo

k
k<B

In the approximation of the 4-th basic measure density,
=1, is expressed as:

1
ELz/(1+D4+2DZ+

where the measure density Wy(p;w) is

| ) Wa(ps)(dp)¥® (duw)Ne
(23)

1
Wi(p;w) = expq hpo— 5 > a(k)pepi

2
k
k<B
227r
+ 27 Z Wk Pk + Z
kgB
X Z fﬁtn(kl,...,kn)wkl...wkn
ki, kn
k;<B

i

and the following notation is introduced:

Dy = Z(_anlipm Z M, (K, ...

,km)wk1 ce Wk, -

The quantity Np is the number of variables to be
integrated over. It is equal to the number of values that
the wave vector takes on in the sphere of radius B in reci-
procal space. Let us assume that the wave-vector values
are distributed uniformly, then

BS
To derive this equation, consider the following

arguments. If we had a simple cubic lattice of spacing ¢ in
real space, the first Brillouin zone of it would be a simple

2602-8

cubic lattice in the reciprocal space with spacing 2B’,
where B’ = 7/c. The number of values taken by the wave
vector in this zone would be Ng = V/c® = V(B'/x)3.
Under our assumption, the wave vector values are di-
stributed uniformly. Hence, the sphere of volume 2 in
reciprocal space must contain the same number of wave
vector values as a cube of the same volume ). Since
Q = (2B')3 = 37B3, one finds that B® = ZB® and,
therefore, arrives at Eq. (24).

In the current investigation, the following approxi-
mations are to be applied.

Approximation 1. Dy is neglected in the expression
(23) for Ep;

Approzimation 2. The difference between renormalized
values of cumulants 9,, and original cumulants 9, is
ignored, so that 2, (k™) ~ M, (k™).

Approximation 8. The dependence of cumulants 9,
on the wave vectors k; is neglected, except for the
dependence via d-functions

m,, (k")

~ M, (0") 0k, +.. 4k,

where the following notation is used for simplicity: k™ =
ki,.... k.

With these approximations applied, one arrives at the
following expressions:

2= [ Wilpi) @) (@)™, (29
and
Wi(p;w) = expq hpo — % > alk)pep-i

k
k<B

+ 27 Z WkpPk + Z Z27T M, (0™)
*eB

X Z Oy oo ke Whey -+ Wiey, 0 (26)

ki7

Expression (26) for the 4-th measure density contains
non-zero terms in all powers of w up to 4. Let us eliminate
the coefficient next to the 3-rd power in w. For this, the
following change of variables is performed:

wn = wh + &
0 0 (Z.27T)S)ﬁ4.

From now on, we will understand 9t,, as 9,,(0") where
it is not ambiguous. One should remember that 91,, are
still dependent on the packing fraction 7. The 4-th
measure density Wa(p;w) takes the form (the prime at
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wo is omitted):

W4(p; w) = exp {mo + (h + m3/m4)po

We also want to eliminate the term at wp. This is
achieved by the change of variables pg = p{, + ;. The
expression for Wy(p;w) becomes

i 1
Wa(p;w) = exp {9370 + 1o — 5 Z a(k)prp—x

1 o
~3 Z a(k)prp—x — 120wy 2 4
k kE<B
k<B
—i27)? -
) —i2m)? - +i27 WkPk + (7931 WiW_
+i27 Z wikpk + %‘)ﬁg Z WKW—_Kk Ek: kPl 2! 2 zk: Kk
k k k<B kE<B
k<B k<B
—i27)4
—i2m)4 +(7£m Oyt 4y Wy » v W } 29
_1_%9%4 Z Okt ks Wik, ._.wk4} (27) a1 4 k1;k4 kit +kaWky ky (29)
' kq,...,kyq k;<B
k;<B
with with
MM MM 9 - (e
= — Mo = M, h =+ M3 /0t,) 0 — m 30
Mo 0, o s 0= Mo + (h+M3/Mg) DMy — —=My,  (30)
- MM | M = h+ My /My + (0)M 31
My =My — —3 28 pt = h+ Mz /My + o(0)MN. (31)
1 1 m4 39)??1 ( )
In (29) the prime at pg is omitted.
~ M2 One can compare the expression (29) with Eq. (3.14)
My = My — 29323 . from [7], Eq. (12) from [8], and Eq. (3.5) from [21].
4
Approximation Tmin Nmax
Percus—Yevick, compressibility equation [22] [0.037346 |0.221675
Percus—Yevick, virial equation [23] 0.037673 | 0.233899
Carnahan-Starling [20] 0.037455 | 0.225572
Ree-Hoower [24] 0.037423 | 0.224260

Table 1. The zero values of the cumulant 9t,. 91, < 0 for Nmin < 7 < Nmax

The first thing to note about Wy(p;w) is that the
integral for Zp, in (25) converges only for M, < 0. The
values of M, are negative only in some range of . Thus
one can conclude that the 4-th measure density Wy (p;w)
is applicable only in that range of 7. Table 1 summarizes
numerical solutions for the equation M, = 0 in a few
approximations for HS equation of state. We are going
to work in the range 0.04 < n < 0.22. The dependence
of my =My /(N) on 7 is presented in Fig. 6.

A. Integration over w

Let us perform integration over w in (25), using (29)
for Wy(p;w). First let us single out the integral over w

J()—/ex z'27rZw —l—ﬂﬂh wa
pP)= p a k Pk BT 2k kW—k

k<B k<B
. 4
(—i2m) N
+T9ﬁ4 E Oky+.. 4k Wk, - - - Wky (dw) B,
° kq,..., ky
ki <B

To factorize this integral, perform the following change
of variables

The following relations are valid:
Z wip = Z Wk Pk,
1 k
S ot = Y,
1 k

§ :~4 § :
NB W) = 5k1+.__+k4wk1 cee WKy

1 ki,....kq

where the following expression for Kronecker’s §-symbol
is used: dx = = >_,e . The sum over 1 should be
understood as running over Np values in real space
corresponding to the wave-vector values k, k < B.

2602-9
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The element of integration is changed as follows:

dwo [ dwidwi = 5 [ den
kgB !

where j is the Jacobian of transition from wy to @;.
Since the approximation of the 4-th measure density

is applicable only when 91, is negative, we will write

the following expressions using the absolute value of this

cumulant. Thus, the factorized expression for the integral

over w is:

J(p) =i [ n(a),
1
where we denoted the integral as
J](ﬁl) = /exp <7;27T(:J]ﬁ]

(2m)? o 5 (2m)!
- MG -

NB|f.m4@;*> day.

Then the result of the integration can be presented in
the following form

70 = i L exp
1

an ~n
—E 0P
n!"

n>1

where coefficients a,, are found via

_ <6n 111 J]([)]))
an = — | —F3=n .
apl /=0

First, let us calculate e®°

Q(My, M) = e

e <] 2 2 2 4
:/ exp(—(g)zmgaf— ( Z‘) NB|zm4aJ;*> dén.

Using the following representation for the Weber
parabolic cylinder function U(a, x)

2 2 [ 1
Ula,r) = ——— e & / t**exp | —xt? — —t* ) dt
F(a + 5) 0 2

one obtains:

~ 1 12
Q(M2,My) = oV (W
where

32

~ 1/2
o~ (o)

For as the result is:

3 1/2
ar= (=) Uy,
? <NB9ﬁ4|> )

2602-10

where U(y) =U(1,y)/U(0,y).
For a4 the result is:

_ 3 2 o U(zay) _ 3
= N (3U ) ‘°’U<o,y>> = N O

where ¢(y) = 3U?(y) + 2yU(y) — 2. In the above equati-
on, we used the following recurrence relation for the
parabolic cylinder function U:

The quantity J(p) takes the form

J(p) = jQ(Ma, M) exp <— % Ek: PrP—k

k<B
a4
- Nndl E Pk - - 'pk45k1+---+k4
B= ki,....kq
ki <B

where the following equations were taken into account:

Z pi = Z PrP—k;
1 K

- 1
Epil ~Ng Z Oky+...4kaPky - - - Pk

ki,....ka
k,<B

Finally, the quantity =, takes the form:
EL = jQ (Mo, My) Ve eXp(imo)Eg) (33)

where Q(9My,9M,) is given by (32), Nz by (24), M,
by (30), and E(Ll) is defined as follows

=) _ S
B = /eXP Wopo = 5 zk: d(k) pxp—x (34)
k<B
aq
- 4'NB Z Pk - - 'pk46k1+...+k4 (dp)NB
VB ke

ki<B

where p* is given by (31), and d(k) = a2 + a(k), with
a(k) given by (6).

Expression (34) is the main result of this work. In
future, this expression will be subject to the renormali-
zation group transformation near the liquid-gas critical
point. In the CV approach, it is implemented via layer-
by-layer integration of the integral (34) in k-space.

B. Coefficients of the effective Hamiltonian

The argument y of functions entering different
expressions in the previous subsection is itself a function
of n and Bo. Let us show this.

~ 1/2
(s /:(<N>o>”2(3rﬁ%)”2
Np|MMy| Np |y ’
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where the following notation is introduced

. m3
My =my — ——.
2m4

In the expression for y, the second multiplier depends

only on 7. Let us take a look at the first multiplier. Tak-
ing into account (24), one has:

(N)o 36

Ny (Bo)®

The quantity Bo is dimensionless, but its value depends
on how B is selected. Based on the previous works, the
condition for selecting B is ®,_p = 0. This condition
imposes some restrictions on the attractive part of the
interaction potential, in particular that &3 < 0. However,
the selection of the potential in the form of Eq. (3) obeys
this condition very well.

The explicit expression for the Fourier component of
this potential is as follows:

. 1 o 2
— 3 .
Dy = 16mec { 20 (a + T k2a2> cos(ko)
1 o 4
S S (AT — k
44 k20?2 (a + 4+k2a2) cos(ke)
n o/a (0’ N 1- k2a2> sin(ko)

1+ k202 \a 1+ k202 ko
o/a o 4—k%?\ sin(ko)
_ (2= . (35
4+k2a2<a+4+k2a2 ko (35)

In this expression it is already taken into account that
o= Ro— aln(2).

-101

-201

-304

Fig. 7. Fourier component of the attractive part of
interaction potential, Eq. (35), for different values of
Rojo; 1 — 2.77,2 — 3.0, 3 — 3.5

Ro/a |Bo 2b? %
2.0 [1.47|1.68(0.77
2.5 |1.70(1.02(0.99
3.0 [1.88/0.72(1.18
3.5 [2.01{0.57|1.33
4.0 [2.13]0.48|1.45
4.5 12.22(0.42]1.55

5.0 12.29(0.37|1.64

Table 2. The zero values Bo and parameters of the parabolic
approximation of the Fourier component &, for different
values of Ro/«

In Fig. 7 the dependence of ®;/(c0®) on ko is shown
for a few values of parameter Ry/a. Values of Bo for
different Ro/« are presented in Table 2.

In some particular calculations further on, the followi-
ng approximation will be used for the Fourier transform
at k < B:

By = (1 — 20%k2), (36)
where
202 = —i@ :
20, OK* |,

Values of 2b% along with 1/(1/2b) (the point at which
the parabolic approximation is equal to zero) are also

presented in Table 2. Figure 8 shows Dy, together with
its parabolic approximation in one picture.

-104

-154

204

Fig. 8. Fourier component of the attractive part of

interaction potential for Ro/a = 3.5 (solid line) and

corresponding parabolic approximation, Eq. (36) (dashed
line)
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351 <N>ga,

5]

2.5

2<

151

1<

n
0.54— T T T
0.05 0.10 0.15 0.20

Fig. 9. Quantity (N)oaz as a function of 7 for

Ro/a = 3.5.

At this point, we can build some graphics for coeffici-
ents as and a4 as functions of n. First, for as one has

3 1/2
92 = (NB<N>O|m4|) vw)

= @ (%Y (hj|)/ vw)

and from here it is seen that the quantity (N)gas depends
only on 7 and the parameter Bo of the interaction
potential, see Fig. 9.

For a4 one has

3 1 (N)o 3

- Np(N)o|my| y) = (N)§ Np mgf)(y)

aq

and from here it is seen that the quantity (N)3a4 depends
only on n and the parameter Bo of the interaction
potential, see Fig. 10.
To rewrite d(k) in a useful form, let us first consider
the quantity «(k)
Bdy 1 6 & &

k) = 57~ = e 7 haT 208

It is evident now that the quantity (N)od(k) is a function
of n, but also depends on the parameter of the interaction
potential @, as well as on the temperature 7.

VI. EFFECTIVE HAMILTONIAN IN THE
MEAN-FIELD APPROXIMATION

Consider the long-wave contribution Zp, to the GPF,
Eq. (33). Let us calculate Ep, in the approximation when
allk; =0

—(1 * d(O) a4
:(L) = /exp(u Po — TP?) - 4!NBP3 dpo.

2602-12

094 <N> oza 4
0.8
0.7
0.6
0.5
0.4+
031
0.2+

0.1+

n

T T T T
0.05 0.10 0.15 0.20

Fig. 10. Quantity (N)3as as a function of n for

Ro/Oé = 3.5.
Since, as previously learned, d(0) o< (N)g and ay o (N)2,

it is convenient to perform the following substitution of
variables p = (N)opj, in the above expression and obtain

=0 = o [ expl(V)oE(e})]dpi

where the following notations were introduced

. d'(0) 2 aj 4

E(py) = 1w ph = ——ro = 3o
6 g (i)o

U _ — —

d'(0) = (N)od(0) = a5 + Tl'nkBT g
N

ag = (N)oas, aj= <N>O<N>§a4-

B

The presence of (V)¢ in the exponent justifies the appli-
cation of the steepest-descent method for integration.
The result is as follows:

(Y = (N)o exp[(N)o E(po,max)]; (37)

where pg max maximizes the quantity E(p{) and is found
from the following conditions:

oF 0’E
Ipy I’y
In the explicit form, these conditions become:

!

* a 3
= d'0)po = 510 =0, (38)

/ aﬁl /2
—d'(0) = o5 < 0.
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A. Naive approximation

In the most simple approximation, the quantity u*,
defined in (31), plays the same role as an external
magnetic field in the Ising model. For the Ising model, it
is known that the critical point appears in the absence
of an external field; thus to find the critical point in our
approximation, one condition is:

p*=0.

The quantity p* depends on the chemical potential,
through the term S(p— o), on the temperature, through
the term proportional to «(0), and on the packing fracti-
on 7. If we assume that y = g, then the condition u* =0
will relate the temperature and n

9)?3/9)?4 + a(O)iﬁtl =0.

This is the first condition that relates these two quanti-
ties. The second condition follows from the requirement
that a non-zero solution exists for pf:

5 31d'(0)
p/O + a/ p/O = 07
4

31d(0)
S

po1 =0;  po203 =+

Since a)j is always positive in the region 0.04 <7 < 0.22,
the solutions ppe and pg3 are real when d'(0) < 0. Thus
the second condition for the critical point is

d'(0) =0

Explicitly, the system of two equations relating the
temperature and the packing fraction is as follows:

%_’_6771 D (1_m2m3+m§>:0;

my w T*eod my 3m3
677 1 (io
AR R 39
at m T* eo3 ’ (39)

where T* = kpT/e is the reduced temperature. The
equation for finding the critical value of 7 is:

g_a/ 1_m2m3+L§ :0 (40)
my 2 my 3m? ’

Figure 11 shows this equation graphically. The numeri-
cal solution to the equation gives n. = 0.1742 (p =
0.3327 for the reduced density p* = o3(N)/V) in the
Percus—Yevick approximation, and n. = 0.1766 (p; =
0.3374) in the Carnahan—Starling approximation. The
critical temperature is now found:

677(: (i>0

T = —
¢ mah e03

which for the parameters value Ry/o = 3.51is T} = 2.14

in the Percus—Yevick approximation, and T} = 2.15

in the Carnahan—Starling one. It is very important
to note that both the critical density and the cri-
tical temperature depend on the parameters of the
attractive part of the potential. In particular, the cri-
tical temperature 7T, approaches zero as the interacti-
on potential becomes more and more narrow (o — o0,

qA)O —)0)

12+

Fig. 11. Equation (40) for the critical packing fraction 7.

The solutions to Eq. (38) for p{ can be written in the
general form via the discriminant of this cubic equation
(via the Cardano’s formulas). We are not going to do
so for this simple approximation, but in our future work
we are going to integrate expression (33) over non-zero
values of k, obtain a similar equation for py but with
re-normalized coefficients, and investigate the obtained
equation more closely.

B. Applying condition (N)o = (N)

Another way to address the problem of finding the
critical point coordinates is to impose the condition
of equality between particle number averages for the
reference system and the whole system:

(N)o = (V).

This condition was, for example, applied in [8].
The general equation to find the average (equilibrium)
number of particles is:

(g(lgj)T,v =W

In expression (22) for the GPF =, only =j, depends on
the chemical potential. Taking into account its expressi-
on (33), as well as expression (37) for ES), we arrive at

the equation:

3
moms ms max
N my + + — + = (N).
< >0< 1 | 4| 32 P ) < >
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Applying the conditions (N)g = (N) and m; = 1, we
get:

pmax — _ (m2m3 ms3 )
0 jma|  3mi

In a number of works, (see e.g. [8, 21, 25]), the right-hand
side expression is considered a distinct quantity and is

denoted as A:
3
_ moms m3
A = DY .
( |my + 3mi>

Thus there are three conditions to be met at the cri-
tical point. The first one, which follows from the requi-
rements of the Ising model symmetry, is:

w*=0.
The second one is
d'(0) =0,

and the third one, which follows from the requirement
that pf'®* = 0 at the critical point, is:

A=0.

From the last condition, we can immediately find the
value of the critical density. Solving the equation A =0
numerically gives us 7. = 0.12867 (p} = 0.24574) in the
Percus—Yevick approximation, and 7. = 0.13044 (p} =
0.24913) in the Carnahan—Starling approximation. It is
worth noting that the condition A = 0 is equivalent to
M3 = 0, and consequently to mz = 0.

The equation for the critical temperature follows from
the second condition:
_ 6ne @g pe Po

* __
T = -
as €0

(&

I o3
TAY EC

Its numerical values for the potential parameter Ry/a =
3.5 are T} = 2.197 and T} = 2.202 in the Percus—Yevick
and Carnahan—Starling approximations, respectively.

There are a few important conclusions regarding the
results based on the condition (N)q = (N). First, the
value of the critical density does not depend on the
parameters of the attractive part of the potential. This
consequence is very contradictory since the critical densi-
ty is the same for any form of ®(r) at r > o, including
very weak interactions. The value of 7. does not depend
on the approximation used for the GPF calculation, and
its mean-field value obtained in this work is the same as
the one obtained in [8].

Second, the critical temperature does depend on the
parameters of interaction, and approaches zero as the
range of interaction becomes shorter and shorter (o —
o, qA)O — 0)

In this approach, we can also find the value of the
chemical potential at the critical point. From the condi-
tion p* = 0 and Eq. (31) we get:

Be — po) = —M3 /My — a(0)D,
_ 6n ¢ <i>0 N
= —ma/my 7 kT eo3

2602-14

where the following notation was introduced by analogy
with Eq. (28):

- momz  m3
m; =my — PR
my 3my

Since mg = 0 at the critical point, and m; = 1, we get:

,02 (i)O I
— = ————— = da5.
5(NJC ‘LL()) Tg o3 2
The numerical values of the chemical potential difference
at the critical point are summarized in Table 3 for di-
fferent interaction parameters.

Ro/a | B(pe — po) | Bue
2.0 2.6699 | 4.0342
2.5 2.6228 | 3.9872
3.0 2.5812 3.9456
3.5 2.5453 3.9097
4.0 2.5143 3.8787
4.5 2.4877 3.8520
5.0 2.4645 3.8289
5.5 2.4444 | 3.8088
6.0 2.4268 | 3.7911

Table 3. Critical values of chemical potential for different
parameters Ro/«

The chemical potential of a system can be represented
as a sum of ideal and excess parts

= Mid —|—/.LCX.

Thus the difference 5(u— o) is essentially the difference
between excess chemical potentials. The excess chemi-
cal potential of a hard-sphere system in the Carnahan—
Starling approximation is

e 81— 9%+ 31°

Ho = (1 _ T])3

At the critical density (Bu§*). = 1.3644. Thus, we can
calculate the excess chemical potential of the whole

system at the critical point. The results are presented
in Table 3.

VII. CONCLUSION

We have obtained the functional-integral representati-
on for the grand partition function for the classical many-
particle interacting system. The main result is presented
with Eq. (34). This expression will be subject to apply-
ing the renormalization group transformation near the
liquid-gas critical point in future works. In this paper,
the mean-field approximation was applied to calculate
the coordinates of the critical point, using a system of
hard-spheres with the Morse potential as an example.
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Appendix A: Total correlation functions

A.1. Definitions

The definition of the n-particle distribution function is taken from [13] (see Eq. (2.6.7) therein):
(n)
(n) (n _ P (I‘l,...7l‘n)
g \r) = 7
" T )

where p(™) is the n-particle density (see Eq. (2.6.1) in [13]), which is defined as:
p(N) (r") = i i L /exp(—ﬂUN) dpV—")
= (N —n)!

Here r" =rq,...,r,, and drN-n) = drpyq...dry
Let us introduce an hierarchy of total correlation functions. The most widely known element of this hierarchy is
the pair correlation function:
h® (ri,r9) = g(2)(r1,r2) —1.
Let us express the total correlation functions in terms of the n-particle distribution functions. Formally, one can

introduce the hierarchy of total correlation functions starting with n = 1 and on. By definition,
gP(r)=1.

Thus, for n = 1 one has:
hD(r) = gM(r) = 1.

For n = 2:
R (ri,r2) = g(2)(r1,r2) —1.

For n = 3:
A (ry,re,13) = ¢ (r1, 10, 13) — ¢ (r1,12) — gD (r1,13) — gP (r2,13) + 2.

Forn=4":

h(4)(r1,r2,r3,r4) = 9(4)(1'1,1‘271“371“4) - 9(3)(1“171'2,1‘3) - 9( )(1‘1,1“271“4) - g( )(rl,rg,u) - g( )(1‘2,1‘3,1“4)
g (r1,12)gP (r3,14) — 92 (r1,13)9® (r2, 1) — g@ (r1,14)9"? (r2,13) + 2(9P (r1,72) + 9@ (r1,13)

+g(2)(r17r4) + g(2) (1‘271'3) + 9(2) (1'2,1'4) + g(2) (1'3,1'4)) -6

Expressed via g™ and h(™<™

A.2.
The total correlation function h(™ can be expressed via ¢( and h("<™ . Such representation for A®) and h(*) was
used in [26].
For n = 3:
A (r1,ro,13) = ¢ (r1,10,13) — KD (r1,12) — hP (r1,13) — KD (ra,13) — 1.

For n = 4:

A (ry,ra,3,14) = gW (r1, 0,13, 14) — K (11,12, 13) — h®) (11, v2,14) — RO (1,13, 14) — B3 (19, 13, 14)
—h(z)(rl, rg)h(2)(r3, ry) — h( (rq1, r3)h(2) (ro,ry) — h(2)(r1, r4)h(2) (ra,r3) — h(z)(rl, ro) — h( (r,r3) — h(z)(rl, ry)

—h A (ry,r3) — K (rg,14) — hP (rg,1,) — 1.
From here it’s straightforward to express ¢ via h(™, where m < n (in [27] such expressions were presented for
2602-15
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A.3. Expressed via ¢ through ¢

For n = 2:

R (r1,r2) = ¢P(r1,12) — g (r1)g™ (r2).

For n = 3:
K3 (r1,ra,13) = ¢ (r1,r2,13) — 9P (r1,12)gW (r3) — ¢P (11, 13)9™ (r2) — 9@ (r2,13)9V (r1)

+ 29 (r1)gM (r2) g (r3).

Forn=14:
A (ry,ro,r5,1s) = gW (r1,12,15,14) — g (11, rg,rg)g(l)(m) —g®(ry, rg,r4)g(1)(r3)
—9(3) (ry,r3, T4)9(1)(r2) - 9(3) (r2, 13, P4)9(1)(P1) - 9(2) (r1, 1“2)9(2)(1‘37 ry) — 9(2) (r1, 1“3)9(2)(1‘27 ry)
—gP(r1,14)9® (ra,13) +2[g (r1,12)9 " (r5) g™ (r4) + 9 (r1,73) 9™ (r2)g ™" (r4)
+9® (r1,14)g (r2) g™ (r3) + 9 (r2,73)9™ (r2) g (r4) + 9*) (r2,74) g (x1) g™ (r5)

+9@ (r3,14) 9V (r1) g™ (r2)] — 69 (1) g™ (r2) g™V (r3)g™ (ra).

Equivalent representations for n-point correlation functions were used in [28] in the study on galaxy clustering.
To simplify the notation, let us denote (ry,...,r,) = (1,...,n). And let us group similar terms under summation
sings. Then h®) and A®) can be rewritten as

h3(1,2,3) = ¢¥(1,2,3) = Y g®(lh,12)gW(ls) + 26" (1)9V(2)g™M (3).
{1,2,3}
1={1,3,2
2,3,1
hD(1,2,3,4) = ¢W(1,2,3,4) - > gOhl)gW ) - > 9Pl l)gP (s, 1)

1,2,3,4 1,2,3,4
1=J 1,243 1={1,3,2,4
—)1,34,2 1,4,2,3
2,3,4,1

+20 Y gDl l)eW Us)gM (L) — 691 (1)g™M (29 (3)9 ().

The sums extend over all distinct argument lists in which each point appears exactly once. For instance, g(g)(l, 2,3)
and ¢g®(3,2,1) are not considered distinct, and terms such as g (1,2)g(®(2,3) do not appear [28].

A.4. Fourier components of total correlation functions
The following generic notation is used for the Fourier components of the total correlation function:
ﬁ(”)(kl, oo ky) = /exp(—ik1r1 - = iknrn)h(”)(rl, ooy rp)dry .. dry,.
By properly selecting the origin, it can be shown that for a homogeneous isotropic system

g(n)(r17~~~7rn) = g(n)(rl —Ip,...,Tp-1 _rn)

and applying a proper change of variables it can be written as
g™ = ¢ (ri,...,rp_1).
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Thus,

h(”)(rl, ceyTp) = h(")(rl, cesTpo1)
It enables us to write the following expressions for the Fourier components A (k™):
%h(n) (k™) = A" (K, Knm1)Ok 4t
where
fz(”)(kl, ko) = /exp(fiklrl —- = ikn_lrn_l)h(")(rl, ceoyTp_1)dry...dr,—1
In particular, for n = 1:
—h M (k) = 6.
For n = 2:

1~ ~
Vh(Q) (k17 k2) = h(2) (k1)6k1+k2

A.5. Fourier transform of the radial correlation function for the hard-spheres system

From [18] (see Eqs. (3)—(5) therein) an explicit expression for h(® (k) can be calculated in the Percus—Yevick

approximation. Figure 12 shows the dependency of h(2)(k)/o® on ko. Figure 13 shows the dependency of h(®(0)/o3
on packing fraction 7.

Fig. 12. Fourier transform of the total correlation function
h®(k)/o® as a function of ko. 1 — n = 0.05, 2 — 1 = 0.1,
3—n=0.15,and 4 — n=0.2.

Fig. 13. Fourier transform of the total correlation functi-
on h? (k) /o* as a function of packing fraction 7 at k = 0

A.6. Some recurrence relations for correlation functions

In this section, some recurrence relations for the total correlation functions (™ will be presented. They are derived
based on Eqgs. (A7)-(A8) from [19]. More detailed derivation can be found in Preprint [12].
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The relations between h3) and h(?) are

;L(?)) (k17 k27 0) = 2;\7“(2) (O)iL(Q) (k17 k2)

Oh? (ky, k
n (k1, ko)

A3 (k, —k) = 202 (0)hP (k) +

(1+ph®(0)),

Similarly, the relations between h(*) and h(®) are as follows:

h (ki ko, ks, 0) = 302 (0)h® (ky, ko, k) +

A4 (ki ks, 0) = 302 (0)A® (k1 ks)

I (1 4 ph2(0)) (a1)
7 (3) .
W(l + ph?(0)),
4 POda) i) (4.2

Relations (20) and (21) for cumulants follow directly from (A.1) and (A.2), respectively.
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GRAND PARTITION FUNCTION FUNCTIONAL FOR SIMPLE FLUIDS

®YHKIIIOHAJI BEJINKOI CTATUCTUYHOI CYMM AJIs IIPOCTUX IIJIMHIB

I. P. FOxuoscekuit | P. B. Pomanix
Inemumym xondencosanuz cucmem HAH Yrpainu,
eya. Ceenuyiyvkozo, 1, Jlveis, 79011, Yxpaina
e-mail: romanik@icmp.lviv.ua

Y poboTi TOCTiTOBHO OMMCAHO METOJ KOJEKTHBHUX 3MIHHUX i3 CHCTEMOIO BiMJIiKY M1 KJIACUYHOI CH-
cTeMu 6araThboX B3AEMOMIHNX YACTUHOK Y BEJIMKOMY KaHoHiuHOMY aHcambOii. OCHOBHY yBary mpuijieHo
JleTasisiM OO4YnCIeHb. 30KpeMa,

® MHOXKHUKA 1/ V/N He BUKOPHCTOBYEMO y BUpa3ax st (pyp e-KOMIOHEHT Jisi MIKPOCKOIIYHOT
TYCTHHY YaCTUHOK, IO JEIIO CIPOIIYE CyMyBaHHS Mo [N y BeaWKiil cTaTHCTHIHIN cymi.

e 3aCTOCOBYEMO TIOBHI KOpENSIiiiHi (hyHKIIT, 0O3HAUEH] JJIs BEJINKOTO KAHOHITHOTO aHCaMOJIIO,
0 JIA€ 3MOTY JIETAJILHO JOCTITUTHA KYMYJISHTU BEJITUKOI CTATUCTHIHOI CYMHU CUCTEMU BiJJIIKY.
OneprkaHi BUpa3u [IJisd KyMYJASHTIB IPOCTIili TOPIBHIHO 3 OTPUMAaHUMHK B TIOMEPEIHIX pobo-
rax [I. Yukhnovskii, Physica A 168, 999 (1990); I. R. Yukhnovskii, I. M. Idzyk, V. O. Kolomi-
ets, J. Stat. Phys. 80, 405 (1995)]. IToka3zaHo, 110 Oyab-sikuit KyMmyassHT 91, MOXKHA 3aMHCATH
SK JIOOYTOK TPHbOX KOMITOHEHT: CEPEJIHbOTO YHCJIa YACTUHOK CHCTEMU Bi/uiiky, cumBoiy Kpo-
HEKePa N XBUJIBOBUX BEKTOPIB i N-4aCTHHKOBOTO CTPYKTYPHOrO (akTopa.

e Teopisa mogana Tak, IO CHCTEMY BiJTIKy PO3IVISIAEMO 3arajgoM i i1 MOXKHA BHOPATH JOCHTH
poBinbHO. Cucremy TBepaux cdep aHaiizyeMo B pobOTi Jinie siK HPUKJIIAL JAJjisi OTPUMAHHS

quCyIOBUX i rpadivHUX pe3yabTaTiB.
OepkaHo I BEIMKOl CTATUCTUYHOI CyMu (PYHKITIOHAJIBHU BUPA3, Y SKOMY BCi BEJIMYUNHU 3aTTUCAHI

B IBHOMY BHUIJIsAl. PO3paxoBaHO KOOPAWMHATH KPUTHYIHOI TOUKY B HAOJMKEHHI CEPETHBOTO MOJIS.
BaxkuBuM TakoXK € JOJATOK A, y IKOMY JOKJAIHO PO3MJISHYTO BJIACTHBOCTI MOBHUX KOPEJISITHIX
dyHKITIH,
KurrouoBi ciioBa: mpoCTi MIMHM, KOJEKTUBHI 3MiHHI, BEJINKWI KAHOHIIHUH aHCAMOJIb.
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