Visnyk of the Lviv University. Series Physics 57 (2020) ñ. 3-14
DOI: https://doi.org/10.30970/vph.57.2020.3

Mechanical properties of bimetallic nanorods: a computer simulation study

B. Natalich, D. Zakharova, U. Shvets, V. Borysiuk%

The behavior of three different samples of bimetallic nanorods with core-shell structure, namely Ag@Pd, Pd@Ag and Pd@Pt under stretching and compression was simulated within classical molecular dynamics methods. Calculations of the interaction between atoms in the samples were carried out using the embedded atom method (EAM). Interatomic forces between atoms of different types were calculated within EAM model for alloys. Numerical procedures of stretching and compression were applied to investigate the mechanical properties of nanorods and to calculate strain-stress curves. Temperature was controlled by Berendsen thermostat. LAMMPS software for classical molecular dynamics simulation was used for calculations. During deformation, the mechanical stresses in the samples were calculated using the viral theorem. The elastic moduli for all samples under stretching and compression were calculated. Mechanic parameters were obtained by linear regression of the elastic part of the strain-stress curves for both stretching and compression. Obtained values during stretching are E=110 GPa, E=87.5 GPa and E=153.7 GPa for Ag@Pd, Pd@Ag and Pd@Pt samples respectively. For tension, obtained values of elastic moduli are E=87.5 GPa, E=63.5 GPa and E=107.9 GPa for Ag@Pd, Pd@Ag and Pd@Pt samples respectively. Obtained values of elastic parameters are relatively agreed for every sample in case of stretching and compression. It is worth to mention that in general case, calculated values of the elastic modulus may depend on many factors such as size and shape of the sample, measuring procedure, strain rate, etc., thus obtained in our work parameters can only be considered as approximate values that must be confirmed in further studies.

Full text (pdf)


References
  1. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait and G. Rubio-Bollinger, Adv. Mater. 24, 772-775 (2012). doi: https://doi.org/10.1002/adma.201103965.
  2. C. Lee, X. D. Wei, J. W. Kysar, Science. 321, 385-388 (2008). doi:https://doi.org/10.1126/science.1157996.
  3. J. H. Lee, P. E. Loya, J. Lou, E. L. Thomas, Science. 346, 1092-1096 (2014). doi:https://doi.org/10.1126/science.1258544.
  4. A Navrotsky, MRS Bull. 41, 139-145 (2016). doi: https://doi.org/10.1557/mrs.2015.336.
  5. R. Gh. Chaudhuri, S. Paria, Chem. Rev. 112, 2373-1433 (2012). doi: https://doi.org/10.1021/cr100449n.
  6. S. Alayoglu, F. Tao, V. Altoe, C. Specht, Zh. Zhu, F. Aksoy, D. R. Butcher, R. J. Renzas, Zh. Liu and G. A. Somorjai, Catal. Lett. 141, 633-640 (2011). doi: https://doi.org/10.1007/s10562-011-0565-7.
  7. W.-Y. Yu, G. M. Mullen, D. W. Flaherty and C. B. Mullins, J. Am. Chem. Soc. 136, 11070-11078 (2014). doi: https://doi.org/10.1021/ja505192v.
  8. S. J. Mejia-Rosales, C. Fernandez-Navarro, E. Perez-Tijerina, JM Montejano-Carrizales and M. Jose-Yacaman, J. Phys. Chem. B. 110, 12884-12889 (2006). doi: https://doi.org/10.1021/jp0614704.
  9. M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino and M. Nishio, Crys. Growth Des. 6, 1801-1807 (2006). doi: https://doi.org/10.1021/cg060103e.
  10. H. S. Park, J. A. Zimmerman, Phys. Rev. B. 72, 054106 (2005). doi: https://doi.org/10.1103/PhysRevB.72.054106.
  11. Ch. M. Lieber, MRS Bull. 28, 486-491 (2003). doi: https://doi.org/10.1557/mrs2003.144.
  12. N. I. Kovtyukhova, T. E. Mallouk, Chemistry. 8, 4355-4363 (2002). doi: https://doi.org/10.1002/1521-3765(20021004)8:19
  13. X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, Acta Mater. 49, 4005-4015 (2001). doi: https://doi.org/10.1016/S1359-6454(01)00287-7.
  14. W. Zou, H. N. G. Wadley, X. W. Zhou, S. Ghosal, R. Kosut and D. Brownell, J. Vac. Sci. Tech., A. 19, 2414-2424 (2001). https://doi.org/10.1116/1.1387051.
  15. S. Y. Park, S.-Ye. Ryu, S.-Ye. Kwak, International Conference on Biology, Environment and Chemistry IPCBEE (IACSIT Press, Singapore) 1, 183-186 (2011).
  16. W. I. Abdel-Fattaha, M. M. Eid, Sh. I. Abd El-Moez, E. Mohamed and Gh. W. Alia, Materials Research Express. 183, 28-36 (2017). doi: https://doi.org/10.1016/j.lfs.2017.06.017.
  17. D. Chen, Ch. Li, H. Liu, F. Ye, J. Yanga. Sci. Rep. 5, 11949 (2015). doi: https://doi.org/10.1038/srep11949.
  18. T. Zhang, L. Li, Zh. Ye, Q. Tian, X. Guo, RSC Adv. 8, 18252-18259 (2018). doi: https://doi.org/10.1039/C8RA02563K.
  19. D. H. Tsai, J. Chem. Phys. 70, 1375-1382 (1979). doi: https://doi.org/10.1063/1.437577.
  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Chem. Phys. 81, 3684-3690 (1984). doi: https://doi.org/10.1063/1.448118.
  21. S. Plimpton, J. Comp. Phys. 117, 1-19 (1995). doi: https://doi.org/10.1006/jcph.1995.1039.
  22. URL: https://www.webelements.com.