Visnyk of the Lviv University. Series Physics 57 (2020) ñ. 15-31
DOI: https://doi.org/10.30970/vph.57.2020.15

Photoelastic effect of K2SO4 crystals doped by copper

R. Matviiv, V. Stadnyk

The spectral dependences (300--700 nm) of the refractive indices ni and the spectral-baric dependences of the birefringence \Deltani(\lambda) of K2SO4 crystals with copper impurities (1,7\% and 3,0\%) have been investigated and their crystal-optical parameters have been calculated. The introduction of impurity leads to a decrease in ni values and causes a shift of the position of the ultraviolet oscillators centers to the long-wavelength spectrum region along with a decrease in the strength of the corresponding oscillators. The values of the electronic polarizability also decrease. The dispersion \Deltani(\lambda) of pure and doped crystals for different directions of uniaxial pressure \sigmam have been studied. The introduction of impurity slightly changes the absolute value of \Deltani(\lambda), without changing the nature of the dispersion. It is shown that uniaxial mechanical pressure along different crystalophysics axes leads to changes in magnitude and sign of \Deltani(\lambda). The values of the combined \piim0 and absolutely \piim piezooptical and elastic-optical pim coefficients of doped crystals have been determined. Their insignificant decrease in comparison with a pure crystal have been established that testifies about increase of mechanical rigidity of doped crystals. The matrix of elastic-optical coefficients pin of these crystals have been filled. It is established that the elastic-optical effect in doped crystals of potassium sulfate is quite noticeable. The coefficient of acousto-optical efficiency M2 was calculated and it is shown that in the magnitude of the maximum values he is commensurate for crystals of quartz and strontium borate. It is proposed , considering the short wave-length limit of the transparency region of potassium sulfate crystals (\sim170 nm), use they for acousto-optical modulation of ultraviolet radiation.

Full text (pdf)


References
  1. B. Mytsyk, Ya. Kost, N. Demyanyshyn, A. Andrushchak and I. Solskii, Crystallographiya. 60, 130--138 (2015). doi:10.1134/S1063774514050125.
  2. O. Buryy, A. Andrushchak, S. Ubizskii, D. Vynnyk, O. Yurkevych, A. Larchenko, K. Chaban, O. Gotra, O. Kushnir and A. Kityk, J. Applied Physics. 113, 083103(1--12) (2013). doi:10.1063/1.4792304.
  3. B. Mytsyk, A. Andrushchak and Ya. Kost’, Crystallography Reports. 57, 124--130 (2012). doi:10.1134/S1063774512010075.
  4. A. Andrushchak, O. Yurkevych, V. Andrushchak, O. Kushnir and A. Kityk, Electronics and information technologies. 1, 98--109 (2011).
  5. A. Àndrushchak, E. Chernyhivsky, Z. Gotra, M. Kaidan, A. Kityk, N. Andrushchak, T. Maksymyuk, B. Mytsyk and W. Schranz, J. Applied Physics. 108, 103118(1--5) (2010). doi:10.1063/1.3510518.
  6. B. Mytsyk, N. Demyanyshyn, A. Andrushchak, Ya. Kost’, O. Parasyuk and A. Kityk, Optical Material. 33, 26--30 (2010). doi:10.1016/j.optmat.2010.07.013.
  7. A. Mahmoud, A. Erba, Kh. El-Kelany, M. Rerat and R. Orlando, Phys. Rev. B. 89, 045103(1--9) (2014). doi:10.1103/PhysRevB.89.045103.
  8. A. Erba and R. Dovesi, Phys. Rev. B. 88, 045121 (2013). doi:10.1103/PhysRevB.88.045121.
  9. M. Mollaee, M. Roknabad, M. Razavi and M. Mollai, Optical and Quantum Electronics. 45, 919--924 (2013). doi:10.1007/s11082-013-9698-9.
  10. S. Xia and M. Mello, Experimental Mechanics. 51, 653--666 (2011). doi:10.1007/s11340-010-9448-x.
  11. J. Pfeiffer and K. Wagner, Applied Optics. 57, C26--C35 (2018). doi:10.1134/S1063774514050125.
  12. P. Natali, L. Montalto, F. Davi, P. Mengucci, A. Ciriaco, N. Paone and D. Rinaldi, Applied Optics. 57, 730--737 (2018). doi:10.1364/AO.57.000730.
  13. B. Mytsyk, Ya. Kost’, N. Demyanyshyn, V. Gaba and O. Sakharuk, Optical Materials. 39, 69--73 (2015). doi:10.1016/j.optmat.2014.10.066.
  14. B. Mytsyk, V. Stadnyk, N. Demyanyshyn, Ya. Kost and P. Shchepanskyi, Optical Materials. 88, 723--728 (2019). doi:10.1016/j.optmat.2018.12.005.
  15. A. Jonh and M. McGinnety, Acta Cryst. B. 28, 2845--2852 (1972). doi:10.1107/S0567740872007022.
  16. A. Berg and F. Tuinstra, Acta Cryst. B. 34, 3177--3181 (1978). doi:10.1107/S0567740878010432.
  17. M. Miyake and S. Iwai, Phys. Chem. Minerals. 7, 211--215 (2009). doi:10.1007/BF00311891.
  18. H. Arnold and W. Kurtz, Ferroelectrics. 25, 557--560 (1980). doi:10.1080/00150198008207069.
  19. V. Stadnyk, R. Matviiv, P. Shchepanskii, M. Rudysh and Z. Kogut, Physics of the Solid State. 61, 2130--2133 (2019). doi:10.1134/S1063783419110374.
  20. B. Mytsyk, V. Stadnyk, N. Demyanyshyn, Ya. Kost and P. Shchepanskyi, Optical Materials. 88, 723--728 (2019). doi:10.1016/j.optmat.2018.12.005.
  21. B. Andriyevsky, M. Romanyuk and V. Stadnyk, J. of Physics and Chemistry of Solids. 70, 1109--1112 (2009). doi:10.1016/j.jpcs.2009.06.007.
  22. S. Radhakrishna and K. Pande, Phys. Chem. Sol. 34, 2037--2044 (1973). doi:10.1016/S0022-3697(73)80052-6.
  23. R. Abdusabirov, Yu. Grjaznov and M. Zaripov, Physics of the solid state. 12, 657--659 (1970).
  24. B. Chowdari and P. Venkateswarlu, J. Chem. Phys. 48, 318--327 (1968). doi:10.1063/1.1667923.
  25. V. Stadnyk, R. Matviiv, M. Rudysh, R. Brezvin, P. Shchepanskyi and B. Andrievskii, J. Appl. Spectrosc. 87, 143--149 (2020). doi:10.1007/s10812-020-00975-7.
  26. R. Matviiv, M. Rudysh, V. Stadnyk, R. Brezvin, I. Matvii'shyn and L. Karpljuk, Visnyk of the Lviv University, series physics. 55, 50--61 (2018). doi:10.30970/vph.55.2018.50.
  27. M. O. Romanyuk, Crystalooptics: tutorial (Ivan Franko National University
  28. D. Podsiadla, Z. Czapla, B. Andriyevsky and O. Myshchyshyn, Phys. Status Solidi (B). 223, 729--736 (2001). doi:10.1002/1521-3951(200102)223:3<729::AID-PSSB729>3.0.CO;2-4.
  29. T. S. Narasimhamurti, Photoelastic and electrooptical properties of crystals (Mir, Moscow, 1984).
  30. V. Stadnyk, M. Romanyuk and R. Brezvin, Ferroelectrics. 192, 203--207 (1997). doi:10.1080/001501997082161905.
  31. K. S. Aleksandrov, B. V. Beznosikov, Structural phase transitions in crystals (potassium sulfate family) (Nauka, Novosibirsk, 1993).
  32. K. S. Aleksandrov, B. V. Beznosikov, Crystalochemical regularity of structural change related to the type of \alpha-K2SO4 [preprint] (AN SSSR, sib. otd., in-t fiziki im. L.V. Kirenskogo, Krasnoyarsk, 1985).
  33. V. Stadnyk, M. Romanyuk, O. Chyzh and V. Vachulovych, Condensed Matter Physics. 10, 45--50 (2007). doi:10.5488/CMP.10.1.45.
  34. R. Gaillac, P. Pullumbi and F.-X. Coudert, Journal of Physics: Condensed Matter. 28, 275201 (2016). doi:10.1088/0953-8984/28/27/275201.
  35. A. N. Vinchell, G. Vinchell, Optical properties of artificial minerals (Mir, Moscow, 1967).
  36. Ju. I. Sirotin, M. P. Shaskol'skaja, Fundamentals of Crystalophysic (Nauka, Moscow, 1979).
  37. M. J. Weber, Handbook of optical materials (CRC PRESS, Boca Raton, London, New York, Washington, 2002).
  38. M. P. Shaskol'skaja, Acoustic crystals (Nauka, Moscow, 1982).
  39. B. Andrievskij, V. Kurljak and M. Romanyuk, Bulletin of the Russian Academy of Sciences: Physics. 53, 1335--1338 (1989).