Visnyk of the Lviv University. Series Physics 57 (2020) . 32-45
DOI: https://doi.org/10.30970/vph.57.2020.32

Classical dS and AdS cosmologies in the general case of deformed space with minimal length

M. I. Samar

The effects of the minimal length uncertainty relation on classical de Sitter and Anti-de Sitter cosmological models is studied in the general case of deformed space. We obtain exact solutions for these models in case of some special choices of deformed spaces with minimal length and minimal or maximal momentum. It is shown that minimal length might affect and even change the inflationary nature of the de Sitter cosmology. Anti-de Sitter model with deformation has oscillatory behaviour, but depending on the choice of deformation function the period of oscillations can be larger or smaller in comparison to the undeformed model.

Full text (pdf)


References
  1. D. J. Gross and P. F. Mende, Nucl. Phys. B 303, 407-454 (1988). doi:10.1016/0550-3213(88)90390-2.
  2. M. Maggiore, Phys. Lett. B 304, 65-69 (1993). doi:10.1016/0370-2693(93)91401-8.
  3. E.Witten, Phys. Today 49, 24-31 (1996). doi:10.1063/1.881493
  4. A. Kempf, J. Math. Phys. 35, 4483-4496 (1994). doi:10.1063/1.530798.
  5. A. Kempf , G. Mangano and R. B. Mann, Phys. Rev. D 52, 1108-1118 (1995). doi:10.1103/PhysRevD.52.1108.
  6. H. Hinrichsen and A. Kempf, J. Math. Phys. 37, 2121-2137 (1996). doi:10.1063/1.531501.
  7. A. Kempf, J. Phys. A: Math. Gen. 30, 2093-2102 (1997). doi: 10.1088/0305-4470/30/6/030.
  8. T. Maslowski , A. Nowicki and V. M. Tkachuk, J. Phys. A 45, 075309 (2012). doi:
  9. C. Quesne and V. M. Tkachuk, J. Phys. A 37, 4267-4281 (2004). doi: 10.1088/0305-4470/37/14/006.
  10. C. Quesne and V. M. Tkachuk, J. Phys. A 36, 10373-10391 (2003). doi:10.1088/0305-4470/36/41/009.
  11. C. Quesne and V. M. Tkachuk, J. Phys. A 37, 10095-10114 (2004). doi:10.1088/0305-4470/37/43/006.
  12. L. N. Chang , D. Minic , N. Okamura and T. Takeuchi, Phys. Rev. D 65, 125027 (2002). doi:10.1103/PhysRevD.65.125027.
  13. I. Dadic , L. Jonke and S. Meljanac, Phys. Rev. D 67, 087701 (2003). doi:10.1103/PhysRevD.67.087701.
  14. C. Quesne and V. M. Tkachuk, J. Phys. A 38, 1747-1766 (2005). doi:10.1088/0305-4470/38/8/011.
  15. C. Quesne and V. M. Tkachuk, J. Phys. A 39, 10909-10922. (2006). doi:10.1088/0305-4470/39/34/021.
  16. F. Brau, J. Phys. A 32, 7691-7696 (1999). doi:10.1088/0305-4470/32/44/308.
  17. S. Benczik , L. N. Chang , D. Minic and T. Takeuchi, Phys. Rev. A 72, 012104 (2005). doi:10.1103/PhysRevA.72.012104.
  18. M. M. Stetsko and V. M. Tkachuk, Phys. Rev. A 74, 012101 (2006). doi:10.1103/PhysRevA.74.012101.
  19. M. I. Samar and V. M. Tkachuk, J. Phys. Stud. 14, 1001-1-1001-5 (2010).
  20. M. I. Samar, J. Phys. Stud. 15, 1007-1-1007-7 (2011). doi:10.30970/jps.15.1007.
  21. F. Brau and F. Buisseret, Phys. Rev. D 74, 036002 (2006). doi:10.1103/PhysRevD.74.036002.
  22. P. Pedram , K. Nozari and S.H. Taheri , J. High Energy Phys. 1103, 093 (2011). doi: 10.1007/JHEP03(2011)093.
  23. M. I. Samar and V. M. Tkachuk, J. Math. Phys. 57, 042102 (2016). doi: 10.1063/1.4945313.
  24. N. Ferkous, Phys. Rev. A 88, 064101 (2013). doi: 10.1103/PhysRevA.88.064101.
  25. M. I. Samar and V. M. Tkachuk, J. Math. Phys. 57, 082108 (2016). doi: 10.1063/1.4961320.
  26. T. V. Fityo , I. O. Vakarchuk and V. M. Tkachuk, J. Phys. A 39, 2143-2149 (2006).
  27. D. Bouaziz and M. Bawin, Phys. Rev. A 76, 032112 (2007). doi:10.1103/PhysRevA.76.032112.
  28. D. Bouaziz and M. Bawin, Phys. Rev. A 78, 032110 (2008). doi:10.1103/PhysRevA.78.032110.
  29. A. M. Frassino and O. Panella, Phys. Rev. D 85, 045030 (2012).doi:10.1103/PhysRevD.85.045030.
  30. M. M. Stetsko and V. M. Tkachuk, Phys. Rev. A 76, 012707 (2007). doi:
  31. S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan and T. Takeuchi, Phys. Rev. D 66, 026003 (2002). doi:10.1103/PhysRevD.66.026003.
  32. Z. K. Silagadze, Phys. Lett. A 373, 2643-2645 (2009). doi:10.1016/j.physleta.2009.05.053.
  33. T. Fityo, Phys. Lett. A 372, 5872-5877 (2008). doi:j.physleta.2008.07.047.
  34. A. M. Frydryszak and V. M. Tkachuk, Czech. J. Phys. 53, 1035-1040 (2003).
  35. F. Buisseret, Phys. Rev. A 82, 062102 (2010). doi: 10.1103/PhysRevA.82.062102.
  36. C. Quesne and V. M. Tkachuk, Phys. Rev. A 81,012106 (2010). doi:10.1103/PhysRevA.81.012106.
  37. V. M. Tkachuk, Phys. Rev. A 86, 062112 (2012). doi:10.1103/PhysRevA.86.062112.
  38. L. N. Chang , D. Minic , N. Okamura and T. Takeuchi, Phys. Rev. D 65, 125028 (2002).
  39. B. Vakili, Int. J. Mod. Phys. D 18, 1059-1071 (2009). doi:10.1142/S0218271809014935.
  40. B. Vakili, Phys. Rev. D 77 , 044023 (2008). doi:10.1103/PhysRevD.77.044023.
  41. M. V. Battisti and G. Montani, Int. J. Mod. Phys. A 23,1257-1265 (2008). doi:10.1142/S0217751X08040184.
  42. S. Jalalzadeh , S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90, 023541 (2014).
  43. P. Pedram, Phys. Rev. D 91, 063517 (2015). doi: 10.1103/PhysRevD.91.063517.