Visnyk of the Lviv University. Series Physics 57 (2020) ρ. 56-64
DOI: https://doi.org/10.30970/vph.57.2020.56

Effect of Dopant Concentration and Crystalline Structure on Absorption Edge of ZnO:Co Films

B. Turko, L. Toporovska, Y. Eliyashevskyi, V. Kapustianyk, U. Mostovoy, Y. Kulyk, M. Rudko

We have studied the crystalline structure and absorption spectra for zinc oxide films with different levels of doping with cobalt, deposited by high-frequency magnetron sputtering on the glass substrates. We estimated the concentration of the free charge carriers and showed that the shift of the fundamental absorption edge in ZnO:Co films with dopant level increasing is explained by the Burstein–Moss effect.

Full text (pdf)


References
  1. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morko\c{c}, Journal of Applied Physics. 98, 041301-1–041301-103 (2005). doi:10.1063/1.1992666.
  2. E. Bellingeri, S. Rusponi, A. Lehnert, H. Brune, F. Nolting, A. Leveratto, A. Plaza and D. Marr\'{e}, Scientific Reports. 9, 149-1–149-12 (2019). doi:10.1038/s41598-018-36336-w.
  3. F. Moosavi, M.E. Bahrololoom, R. Kamjou, A. Mirzaei, S.G. Leonardi and G. Neri, Chemosensors. 6, 61-1–61-11 (2018). doi:10.3390/chemosensors6040061.
  4. H. Nichev, O. Angelov, J. Pivin, R. Nisumaa and D. Dimova-Malinovska, Journal of Physics: Conference Series. 113, 012035-1–012035-4 (2008). doi:10.1088/1742-6596/113/1/012035.
  5. M. Basit, N.A. Shah, S.M. Ali, A. Zia, World Applied Sciences Journal. 32, 1664–1670 (2014). doi:10.5829/idosi.wasj.2014.32.08.787.
  6. C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu, Journal of Alloys and Compounds. 497, 373–376 (2010). doi:10.1016/j.jallcom.2010.03.076.
  7. M. Li, J. Xu, X. Chen, X. Zhang, Y. Wu, P. Li, X. Niu, Ch. Luo, L. Li, Superlattices and Microstructures. 52, 824–833 (2012). doi:10.1016/j.spmi.2012.07.014.
  8. M. Taskin, J. Podder, App. Sci. Report. 9, 1–6 (2015). doi:10.15192/PSCP.ASR.2015.9.1.16.
  9. A. Kaphle, T. Reed, A. Apblett, P. Hari, Journal of Nanomaterials. 2019, 7034620-1–7034620-13 (2019). doi:10.1155/2019/7034620.
  10. A.R. Khantoul, M. Sebais, B. Rahal, B. Boudine, O. Halimi, Acta Physica Polonica A. 133, 114–117 (2018). doi:10.12693/APhysPolA.133.114.
  11. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Journal of Physical Chemistry C. 118, 9715–9725 (2014). doi:10.1021/jp411848t.
  12. A.I. Savchuk, I.D. Stolyarchuk, I. Stefaniuk, B. Cieniek, E. Sheregii, Semiconductor Physics, Quantum Electronics \& Optoelectronics. 17, 353–357 (2014). doi:10.15407/spqeo17.04.353.
  13. M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai and D.P. Norton, New Journal of Physics. 10, 065002-1–065002-21 (2008). doi:10.1088/1367-2630/10/6/065002.
  14. A. Chanda, S. Gupta, M. Vasundhara, Sh.R. Joshi, G.R. Muttae and J. Singh, RSC Adv. 7, 50527–50536 (2017). doi:10.1039/c7ra08458g.
  15. S. Benramache, A. Arif, O. Belahssen, A. Guettaf, Journal Of Nanostructure in Chemistry. 3, 80-1–80-6 (2013). doi:10.1186/2193-8865-3-80.
  16. S. Benramache, B. Benhaoua, H. Bentrah, Journal Of Nanostructure in Chemistry. 3, 54-1–54-7 (2013). doi:10.1186/2193-8865-3-54.
  17. M.R. Panasyuk, B.I. Turko, V.B. Kapustianyk, G.A. Lobochkova, V.P. Rudyk, A.P. Vaskiv, V.M. Davydov, Functional Mater. 12, 746–749 (2005). http://functmaterials.org.ua/contents/12-4/fm124-26.pdf.
  18. V.B. Kapustianyk, B.I. Turko, V.P. Rudyk, B.Y. Kulyk, M.S. Rudko, Journal of Applied Spectroscopy. 82, 153–156 (2015). doi:10.1007/s10812-015-0079-y