Visnyk of the Lviv University. Series Physics 57 (2020) ñ. 101-113
DOI: https://doi.org/10.30970/vph.57.2020.101

Electronic band structures of Si1-xGex, Si1-xSnx and Ge1-xSnxsemiconductor alloys

P.M. Yakibchuk, O.V. Bovgyra, M.V. Kovalenko, I.V. Kutsa

We used the model pseudopotential calculations to investigate the band structures of group-IV semiconductor alloys, including Si1-xGex, Si1-xSnx and Ge1-xSnx. The calculations of electronic properties for Si1-xGex alloys demonstrate the reliability of the method we used. For Ge1-xSnx, the direct band gap optical bowing parameter we obtained is 2.74 eV and the indirect–direct band gap crossover is at x = 0.068, both consistent with the existing experimental data. The calculated indirect-direct band gap change point in Si1-xSnx alloys is found close to approximately tin content x = 0.6. The corresponding energy gap is 0.75 eV, which is suitable for the on-chip optoelectronical devices.

Full text (pdf)


References
  1. R.A. Soref, Journal of Vacuum Science \& Technology A: Vacuum, Surfaces, and Films 14, 913 (1996). doi:10.1116/1.580414.
  2. J. Kouvetakis, J. Menendez, and A.V.G. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006). doi:10.1146/annurev.matsci.36.090804.095159.
  3. A.M. Ionescu and H. Riel, Nature 479, 329 (2011). doi:10.1038/nature10679.
  4. C. Schulte-Braucks, S. Glass, E. Hofmann, D. Stange, N. von den Driesch, J.M. Hartmann, Z. Ikonic, Q.T. Zhao, D. Buca, and S. Mantl, Solid-State Electronics 128, 54 (2017). doi:10.1016/j.sse.2016.10.024.
  5. S. Wirths, D. Buca, and S. Mantl, Progress in Crystal Growth and Characterization of Materials 62, 1 (2016). doi:10.1016/j.pcrysgrow.2015.11.001.
  6. J. Shen, J. Zi, X. Xie, and P. Jiang, Phys. Rev. B 56, 12084 (1997). doi:10.1103/PhysRevB.56.12084.
  7. K. Alberi, J. Blacksberg, L.D. Bell, S. Nikzad, K.M. Yu, O.D. Dubon, and W. Walukiewicz, Phys. Rev. B 77, 073202 (2008). doi:10.1103/PhysRevB.77.073202.
  8. J.J. Pulikkotil, A. Chroneos, and U. Schwingenschogl, Journal of Applied Physics 110, 036105 (2011). doi:10.1063/1.3618671.
  9. K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, Journal of Applied Physics 112, 103715 (2012). doi:10.1063/1.4767381.
  10. M.-H. Lee, P.-L. Liu, Y.-A. Hong, Y.-T. Chou, J.-Y. Hong, and Y.-J. Siao, Journal of Applied Physics 113, 063517 (2013). doi:10.1063/1.4790362.
  11. X. Wang, C. Chen, S. Feng, X. Wei, and Y. Li, Chinese Phys. B 26, 127402 (2017). doi:10.1088/1674-1056/26/12/127402.
  12. M.P. Polak, P. Scharoch, and R. Kudrawiec, J. Phys. D: Appl. Phys. 50, 195103 (2017). doi:10.1088/1361-6463/aa67bf.
  13. Y. Cho, S. Cho, B.-G. Park, and J.S. Harris, JSTS 17, 675 (2017). doi:10.5573/JSTS.2017.17.5.675.
  14. T.D. Eales, I.P. Marko, S. Schulz, E. O’Halloran, S. Ghetmiri, W. Du, Y. Zhou, S.-Q. Yu, J. Margetis, J. Tolle, E.P. O’Reilly, and S.J. Sweeney, Sci Rep 9, 14077 (2019). doi:10.1038/s41598-019-50349-z.
  15. J. Tolle, A.V.G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V.R. D’Costa, C.-W. Hu, J. Menendez, and I.S.T. Tsong, Appl. Phys. Lett. 89, 231924 (2006). doi:10.1063/1.2403903.
  16. M. Oda, Y. Kuroda, A. Kishi, and Y. Shinozuka, Phys. Status Solidi B 254, 1600519 (2017). doi:10.1002/pssb.201600519.
  17. Y. Nagae, M. Kurosawa, S. Shibayama, M. Araidai, M. Sakashita, O. Nakatsuka, K. Shiraishi, and S. Zaima, Jpn. J. Appl. Phys. 55, 08PE04 (2016). doi: 10.7567/JJAP.55.08PE04.
  18. R.A. Soref and C.H. Perry, Journal of Applied Physics 69, 539 (1991). doi:10.1063/1.347704.
  19. P. Moontragoon, Z. Ikonic, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007). doi:10.1088/0268-1242/22/7/012.
  20. P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, Journal of Non-Crystalline Solids 358, 2096 (2012). doi:10.1016/j.jnoncrysol.2012.01.025.
  21. Z. Zhu, J. Xiao, H. Sun, Y. Hu, R. Cao, Y. Wang, L. Zhao, and J. Zhuang, Phys. Chem. Chem. Phys. 17, 21605 (2015). doi:10.1039/C5CP02558C.
  22. C.I. Ventura, J.D. Querales Flores, J.D. Fuhr, and R.A. Barrio, Prog. Photovolt: Res. Appl. 23, 112 (2015). doi:10.1002/pip.2405.
  23. N.S. Fernando, R.A. Carrasco, R. Hickey, J. Hart, R. Hazbun, S. Schoeche, J.N. Hilfiker, J. Kolodzey, and S. Zollner, Journal of Vacuum Science \& Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36, 021202 (2018). doi:10.1116/1.5001948.
  24. P. M. Yakibchuk, O. V. Bovgyra, I. V. Kutsa, J. Phys. Stud. 19, 1702 (2015).
  25. P.M. Yakibchuk, O.V. Bovgyra, L.R. Toporovska, I.V. Kutsa, J. Nano- Electron. Phys. 9, 02030 (2017). doi:10.21272/jnep.9(2).02030.
  26. P.M. Yakibchuk, O.V. Bovgyra, M.V. Kovalenko, and I.V. Kutsa, J. Phys. Stud. 23, 2703 (2019). doi:10.30970/jps.23.2703.
  27. J. Weber and M.I. Alonso, Phys. Rev. B 40, 5683 (1989). doi:10.1103/PhysRevB.40.5683.
  28. M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, and S. Zaima, Appl. Phys. Lett. 106, 171908 (2015). doi:10.1063/1.4919451.
  29. Z. Song, W. Fan, C.S. Tan, Q. Wang, D. Nam, D.H. Zhang, and G. Sun, New J. Phys. 22, 019502 (2020). doi:10.1088/1367-2630/ab6794.
  30. G. He and H.A. Atwater, Phys. Rev. Lett. 79, 1937 (1997). doi:10.1088/1367-2630/ab6794.