Visnyk of the Lviv University. Series Physics 59 (2022) . 3-14

Pressure effect on the electronic spectra of CdTe crystal calculated by DFT

A.I. Kashuba, I.V. Semkiv, H.A. Ilchuk, R.Yu. Petrus

( 1800 ) The effect of pressure on the electronic band structure of CdTe crystal has been investigated using the density functional theory. In this approach, the generalized gradient approximation (GGA) and the PurdueBurkeErnzerhof (PBEsol) parameterization were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials of CdTe in zinc-blende phase. Structure and electronic properties are studied in the range of hydrostatic pressures between 0 and 50 GPa. The electron band-energy structure and density of states were calculated at different pressures. The equilibrium structural parameters, bulk modules and band gaps are calculated and compared with the available experimental data and other theoretical results. The shift in the energy gap, refractive index, high-frequency dielectric constant, bulk module and lattice parameters of CdTe crystal with pressure is determined and compared with other known data.

Full text (pdf)

  1. H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, Nanosistemi, Nanomateriali, Nanotehnologii. 16(3), 519533 (2018). doi:
  2. R. Yavorskyi, L. Nykyruy, G. Wisz, P. Potera, S. Adamiak, Sz. Gorny, Applied Nanoscience. 9, 715724 (2019). doi:
  3. Y. P. Saliy, L. I. Nykyruy, R. S. Yavorskyi, S. Adamiak, Journal of Nano - and Electronic Physics. 9(5), 05016(5) (2017). doi: 10.21272/jnep.9(5).05016
  4. S. Ouendadji, S. Ghemid, H. Meradji, F. El Haj Hassan, Computational Materials Science. 50, 1460 (2011). doi: 10.1016/j.commatsci.2010.11.035
  5. N. Bouarissa, H. Algarni, O. A. Al-Hagan, M. Ajmal Khan, T. F. Alhuwaymel, Optik. 170, 37 (2018). doi:
  6. D. Vanderbilt, Physical Review B. 41, 7892(R) (1990). doi:
  7. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Physical Review Letter. 100, 136406 (2008). doi:
  8. H. J. Monkhorst, J.D. Pack, Physical Review B. 13, 5188 (1976). doi:
  9. A. I. Kashuba, B. Andriyevsky, I. V. Semkiv, H. A. Ilchuk, M. Ya. Rudysh, P. A. Shchepanskyi, M. S. Karkulovska, R. Y. Petrus, Journal of Physical Studies. 26(1), 1701(6p) (2022). doi:
  10. W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, J. Wu, E. E. Haller, Applied Physics Letters. 84, 67 (2004). doi:
  11. J. Jesse Pius, A. Lekshmi, C. Nirmala Louis, Chemical and Materials Engineering. 5(1), 8 (2017). doi: 10.13189/cme.2017.050102
  12. R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Functional Materials. 27, 342-347 (2020). doi:10.15407/fm27.02.342.
  13. O. Madelung, M. Schlz, H. Weiss (Eds.), Numerical Data and Functional Relationships in Science and Technology, Landolt-Borstein, vol. 17, Springer, Berlin, 1982.
  14. C. M. I. Okoye, Solid State Communications. 129, 69 (2004). doi: 10.1016/j.ssc.2003.09.014
  15. T. A. Moss, Proceedings of the Physical Society. Section B. 63, 167-176 (1950). doi:10.1088/0370-1301/63/3/302
  16. N. M. Ravindra, S. Auluck, V. K. Srivastava, Physica status solidi (b). 93, K155-K160 (1979). doi:10.1002/pssb.222093025710.1002/pssb.2220930257
  17. P. J. L. Herve, L. K. J. Vandamme, Journal of Applied Physics. 77, 5476-5477 (1995). doi:10.1063/1.359248
  18. S. K. Tripathy, Optical Materials. 46, 240-246 (2015). doi:10.1016/j.optmat.2015.04.026.
  19. H. A. Ilchuk, B. Andriyevsky, O. S. Kushnir, A. I. Kashuba, I. V. Semkiv, R. Yu. Petrus, Ukr. J. Phys. Opt. 22(2), 101 (2021). doi: 10.3116/16091833/22/2/101/2021
  20. R. E. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, D. Lane, J. Phys.: Conf. Ser. 286, 012038 (2011). doi: