Visnyk of the Lviv University. Series Physics 59 (2022) с. 61-77
DOI: https://doi.org/10.30970/vph.59.2022.61

Crystal structure and optical properties of Al-doped ZnO thin films: first-principle modelling and experiment

V. Dzikovskyi, O. Bovgyra, M. Kovalenko, A. Kashuba, I. Semkiv, N. Pokladok

(не менше 1800 знаків) Al-doped ZnO (ZnO: Al) thin films are composed of a high-frequency magnetron sputtering method. The phase analysis and crystal structure refinement are carried out using X-ray diffraction data. The film thickness was obtained by analyzing the optical interference transmission spectra of ZnO: Al films. The average grain size of the films was established using the Scherrer formula. The strain and the dislocation density are also calculated. The optical transmittance of the received sample in the visible and near-infrared regions is investigated at room temperature. The integral optical transmittance and the bandgap value of Al-doped ZnO films are determined. The value of the optical bandgap is 3.26 eV. Based on our experimental results, the refractive index and the high-frequency dielectric constant were evaluated using the different ratios in particular Tripathy, Moss, Ravindra, and Herve-Vandamme. Comparing the results obtained by us with other experimental data, we can conclude that the Herve-Vandamme ratio most accurately allows us to establish the value of the refractive index. In addition, the structural, electronic, and optical properties of zinc oxide thin films with Al-doping have been investigated with density functional theory (DFT) calculations. Describing the electronic structure of ZnO: Al used the DFT method with Hubbard U corrections. We found that the position of the Fermi level of the Al-doped sample was shifted to a higher energy level compared with the undoped material. The calculated results show that the optical bandgap of ZnO: Al is good agreement with experimental one. Also should be noted, that around the Fermi level of Al-doped ZnO emerged the shallow donor states from mainly 3s-Al states. Transmission spectra for ZnO doped with Al atoms in the visible and ultraviolet regions were calculated. The results of the calculations showed that in the visible region of the spectrum, the optical transmittance is 85\%, while in the ultraviolet region -- 77\%, which correlates well with experimental data. In general, all our theoretical results explain well the trend of changes in the corresponding experimental results.

Full text (pdf)


References
  1. A. A. Al-Ghamdi, O. A. Al-Hartomy and M. El Okr, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131, 512 (2014) doi:10.1016/j.saa.2014.04.020
  2. O. Dobrozhan, O. Diachenko, M. Kolesnyk, A. Stepanenko, S. Vorobiov, P. Bal\'a\v{z}, S. Plotnikov, A. Opanasyuk. Materials Science in Semiconductor Processing, 102, 104595 (2019). doi:10.1016/j.mssp.2019.104595
  3. V. M. Zhyrovetsky, D. I. Popovych, S. S. Savka and A. S. Serednytski,Nanoscale Res. Lett. 12, 132 (2017). doi:10.1186/s11671-017-1891-5
  4. R. V. Bovhyra, S. I. Mudry, D. I. Popovych, S. S. Savka, A. S. Serednytski and Yu. I. Venhryn, Appl. Nanosci. 9, 775-780 (2019). doi:10.1007/s13204-018-0697-9
  5. N. Bouchenak Khelladi and N. E. Chabane Sari, Advances in Materials Science 13, 21-29 (2013). doi:10.2478/adms-2013-0003
  6. A. Samavati, Z. Samavati, A. F. Ismail, M. H. D. Othman, Mukhlis A. Rahman, A. K. Zulhairun, and I. S. Amiri, RSC Adv. 7, 35858-35868 (2017). doi:10.1039/C7RA04963C
  7. D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, R. W. Gao, H. L. Ma, Appl. Surf. Sci. 158, 43-48 (2000). doi:10.1016/S0169-4332(99)00591-7
  8. E. P. da Silva, M. Chaves, G. J. da Silva, L. Baldo de Arruda, P. Lisboa-Filho, S. Durrant and J. Bortoleto, Materials Sciences and Applications 4, 761-767 (2013). doi:10.4236/msa.2013.412096
  9. C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian and P. Dhamodharan, Appl. Nanosci. 6, 815-825 (2016). doi:10.1007/s13204-015-0493-8
  10. R. K. Jamal, M. A. Hameed, and K. A. Adem, Mater. Lett. 132, 31-33 (2014). doi:10.1016/j.matlet.2014.06.047
  11. Z. N. Ng, K. Y. Chan, C. Y. Low, S. A. Kamaruddin, M. Z. Sahdan, Ceram. Int. 41, 254–258 (2015). doi:10.1016/j.ceramint.2015.03.183
  12. S. Kuprenaite, T. Murauskas, A. Abrutis, V. Kubilius, Z. Saltyte, V. Plausinaitiene, Surf. Coat. Technol. 271, 156–164 (2015). doi:10.1016/j.surfcoat.2014.12.052
  13. V. B. Kapustianyk, B. I. Turko, V. P. Rudyk, B. Y. Kulyk and M. S. Rudko, J. Appl. Spectrosc. 82, 153-156 (2015). doi:10.1007/s10812-015-0079-y
  14. H. I. Berrezoug, A. E. Merad, M. Aillerie, A. Zerga, Mater. Res. Express 4, 035901 (2017). doi: 10.1088/2053-1591/aa6076
  15. H.-Ch. Wu, H.-H. Chen and Yu Zhu, Materials 9, 647 (2016). doi:10.3390/ma9080647
  16. Q. Hou, D. Xi, W. Li, X. Jia, Z. Xu, Physica B: Condens. Matter. 537, 258 (2018). doi:10.1016/j.physb.2018.02.026
  17. О. Бовгира, М. Коваленко, Р. Бовгира, В. Дзіковський, Журнал фізичних досліджень 23(4), 4301 (2019). doi:10.30970/jps.23.4301
  18. R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, F. Honchar, R. Lys, J. Nano Electron. Phys. 11, 03020 (2019). doi:10.21272/jnep.11(3).03020
  19. A. B. Danylov, H. A. Ilchuk, R. Yu. Petrus, V. G. Haiduchok, J. Nano Electron. Phys. 10, 05011 (2018). doi:10.21272/jnep.10(5).05011
  20. R. Y. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska, Opt. Spectrosc. 126, 220-225 (2019).doi:10.1134/S0030400X19030160
  21. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys. Condens. Matter 29, 465901 (2017). doi: 10.1088/1361-648X/aa8f79
  22. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). doi:10.1103/PhysRevB.41.7892
  23. X. Qu, S. Lu, D. Jia, S. Zhou, Q. Meng, Materials Science in Semiconductor Processing 16, 1057-1062 (2013). doi:10.1016/j.mssp.2013.04.002
  24. M. Sheetz, I. Ponomareva E. Richter, A. N. Andriotis, M. Menon, Phys. Rev. B 80, 195314 (2009). doi:10.1103/PhysRevB.80.195314
  25. H.-Ch. Wu, H.-H. Chen and Yu Zhu, Materials 9, 647 (2016). doi:10.3390/ma9080647.
  26. O. V. Bovgyra, M. V. Kovalenko, V. Ye. Dzikovskyi, A. P. Vaskiv, M. Ya. Sheremeta, J. Nano-Electron. Phys. 12, 05003 (2020). doi:10.21272/jnep.12(5).05003
  27. M. Kovalenko, O. Bovgyra, A. Franiv, V. Dzikovskyi, Materials Today: Proceeding. 35, 604-608 (2021). doi:10.1016/j.matpr.2019.11.274
  28. A. Mang, K. Reimann, St. Rubenacke, Solid State Commun. 94, 251–254 (1995). doi:10.1016/0038-1098(95)00054-2
  29. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu G\"ottingen, Mathematisch-Physikalische Klasse 1918, 98-100 (1918).
  30. S. Prabahar, and M. Dhanam, J. Cryst. Growth. 285, 41-48 (2005). doi:10.1016/j.jcrysgro.2005.08.008
  31. R. E. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo and D. Lane, J. Phys: Conf. Ser. 286, 012038 (2011). doi:10.1088/1742-6596/286/1/012038
  32. T. Ganesh, S. Rajesh, F. P. Xavier, Mater. Sci. Semiconduct. Process. 16, 295–302 (2013). doi:10.1016/j.mssp.2012.10.008
  33. M. Gab\'as, A. Landa-C\'anovas, J. L. Costa-Kr\"amer, F. Agull\'o-Rueda, A. R. Gonz\'alez-Elipe, P. D\'iaz-Carrasco, J. Hern\'andez-Moro, I. Lorite, P. Herrero, P. Castillero, A. Barranco, and J. R. Ramos-Barrado, J. Appl. Phys. 113, 163709 (2013). doi:10.1063/1.4803063
  34. M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Physica B. 403, 3326 (2008). doi: 10.1016/j.physb.2008.04.045
  35. T. Moss, Proc. Phys. Soc. B. 63(3), 167 (1950). doi:10.1088/0370-1301/63/3/302
  36. N. M. Ravindra, S. Auluck, and V. K. Srivastava, Phys. Stat. Sol. (B) 93, K155 (1979). doi:10.1002/pssb.2220930257
  37. P. J. L. Herve, and L. K. J. Vandamme, Infrared Phys. 35, 609 (1994). doi:10.1016/1350-4495(94)90026-4
  38. P. J. L. Herve, and L. K. J. Vandamme, J. Appl. Phys. 77, 5476 (1995). doi:10.1063/1.359248
  39. S. K. Tripathy, Optical materials 46, 240-246 (2015). doi:10.1016/j.optmat.2015.04.026
  40. E. Burstein, Phys. Rev. 93, 632 (1954). doi:10.1103/PhysRev.93.632
  41. T. S. Moss, Proc. Phys. Soc. Lond. B 67, 77 (1954). doi:10.1088/0370-1301/67/10/306