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In the design of electromechanical systems, discrete physical models in the 

form of elementary springs and electrical resistances are widely used. By 

concurrently and sequentially interconnecting them, blocks are formed with 

subsequent synthesis of structures, which allows to apply mathematical models 

equivalent to chain fractions. This approach allows to apply the laws of 

mechanics and electricity in differential form and thus successfully solve both the 

design problems [1] and the optimization problems [2] of systems, including the 

methods of gold seсtion (GS) and Fibonacci recurrence relations [3-4]. Both 

mathematical approaches are based on quadratic irrationalities - properties of the 

roots 
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of the consolidated quadratic equations (QE) 
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that fulfills the theorem of Viete`s.  

Irrational numbers, like rational numbers, are represented as finite chain 

fractions [5,6]. Therefore, the question arises whether it is possible to construct 

an element with a parameter 
q

p . The answer to the question is: why, for any 

fraction 
q

p  must first connect q  elements (springs) in parallel, obtain the 

characteristic (for example, for the stiffness of the springs) 
q

1  , and then multiply 
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this р  times, and connect them together successively. The mathematical model 

of such a compound of 



n
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),( elements looks like a chain fraction. 
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),(  was justified by G. Lame [7], using for this property the 

Fibonacci numbers 
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with initial conditions 1,0 10  FF  and golden numbers ..618.1  and ..618.0   
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Lame found that the number of elements does not exceed nqp  ),(  
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Currently, the regularities of numbers ,   and Fibonacci numbers nF  have 

been sufficiently studied [3-4, 8-18]. Generalized models of the relation between 

numbers ,   and Fibonacci numbers nF  [19-20],  the model of metallic averages 

[21-23] and other extensions have been developed [24-26]. The largest 

contribution to the development of the theory of proportional GS and recurrence 

numbers was made in 1963 by the Fibonacci Association. From 1963 she began 

publishing the quarterly mathematical journal The Fibonacci Quarterly, co-

founded by V. Hoggatt. R. Knott created the WEB Resourse "Fibonacci Numbers 

and the Golden Section" [27] and later appeared sites [28-31]. 
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 The study of the regularities of the generalization of recurrence 

sequences ),,,( qpbaFF nn   and other forms on the basis of square equations was 

initiated in [34], the characteristic equation  (1.2) had a form with the initial 

conditions ),(),( 10 baFF  . However, in terms of the task of research of our work, 

the closest in essence are models of generalization of linear functions of the main 

sequence of Fibonacci in the form of a recurrence 

ratio ),2()1()(  nbFnaFnF with 2n  [35-36], but without numerical analysis.  

 On the phase direction   

kqp  ,         (7) 

the division model (1) as  
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which has not investigated recently in the literature, and introduce the coefficient 
of relative changes [38-39]   
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The graphs of dependency (9) for positive solutions for positive solutions of 

)()( kk    and  )()( kk    are indicate on the fact that the graphs of 

both solutions converge to a common point indicates the correctness of the 

proposed model of generalization of the proportional division of the whole into 

two unequal parts in the phase direction (8). On these phases the point with 

coordinates  NN kkqp ,),(   is localized as the known point 1,1  qp  of the 

"golden" division with quantitative characteristics 618.1,168.0  . It was 

the idea that allowed us to propose the physical principle of binary structuring of 

systems [40] and a new approach to the application of the "golden" division and 

recurrent Fibonacci relations for one-dimensional optimization of target 

functions. One of the options for implementing this approach is shown in the 

figure. 
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