Львівський національний університет імені Івана Франка Фізичний факультет Кафедра астрофізики

УДК 523.9, 523.9-7, 523.9-47

Магістерська робота на тему:

Розрахунок внутрішньої структури зорі з осьовим обертанням і неоднорідним хімічним складом

Виконав студент II курсу спеціальності 104 Фізика та астрономія групи ФЗФМ-21с Сергійчук Іван Керівник: професор Маркіян Ваврух Рецензент: професор Андрій Ровенчак

м. Львів – 2023р.

Анотація

У рамках узагальненої політропної моделі, запропонованої у роботі М. Вавруха і Д. Дзіковського, знайдено розвязок рівняння рівноваги зорі з неоднорідним хімічним складом. Розраховано характеристики Сонця у фазі закінчення його еволюції на головній послідовності: розподіл густини вздовж радіуса, момент інерції та кутову швидкість осьового обертання. Дослідженно роль обертання в еволюції зір типу Сонця до білого карлика, часову залежність швидкості обертання і його роль у механізмі переходу "зоря головної послідовності - білй карлик".

Abstract

Within the framework of the generalized polytropic model proposed in the work of M. Vavrukh and D. Dzipovsky, the solution of the equilibrium equation of a star with heterogeneous chemical composition is found. The characteristics of the Sun in the phase of the end of its evolution on the main sequence are calculated: density distribution along the radius, moment of inertia and angular velocity of axial rotation. The role of rotation in the evolution of stars such as the Sun to a white dwarf, the time dependence of the rotation velocity and its role in the transition mechanism "mainsequence star - white dwarf" are studied.

Зміст

Всту	/п	4
1.	Стандартна полінтропна модель в теорії зоряної структури	6
2.	Узагальнена політропна модель в теорії внутрішної будови Сонця	15
3.	Рівняння рівноваги моделі Сонця із заданою радіальною залежністю молекулярної маси	17
4.	Харакристики Сонця у фазі закінчення перебування на головній послідовності	27
Вис	новки:	32
Спи	сок літератури:	33

Вступ

Теорія рівноваги різ у моделі політропних газових куль сворена працями Г. Лена [1], А. Еддінгтона [2] та інших дослідників у другій половині 19-го та на почотку 20-го століття. Книга К. Емдена [3], опублікована у 1907р., стала підставою першого етапу розвитку теорії внутрішньої будови зір. При відсутності інформації про джерела енергії зір ця теорія використовувала модель зорі без осьового обертання та з однорідним хімічним складом. У роботах Е. Мілна [4], і С. Чандрасекара [5], Р. Джеймса [6], та інших авторів ця модель була узагальненою на випадок політропних моделей зір з осьовим обертанням. У 21му столітті опубліковано роботи, що стосуються побудови внутрішньої будови конкретних зір із заначним осьовим обертанням у рамках моделі з політроним індексом n = 1. Недоліком всіх згадених робіт є використання стандартого політропнорго рівняння стану

$$P(r) = K(\rho(r))^{1+\frac{1}{n}},$$
(1)

що відповідає однорідному хімічному складу і через те придатне лише для опису зір на головній послідовності. Зорі нульового віку з швидким обертанням, як α Егі, що знаходиться у кінці фази перебування на головній послідовності, неможливо адекватно описати у рамках загальної моделі. Тому результати робіти, виконані з високою математичною точністю, є сумнівні щодо їх астрофізичного змісту.

У роботі [9] побудовано рівняння політропи, що враховує газовий та світловий тиск, але на відміну від моделі Еддінгтона, враховує також радіальну залежність молекулярної маси(чи парціальних густин воню і гелію). У рамках стандартої політропи неможливо описати розподіл густини сучасного Сонця, а тим самим і всі інші характеристики його. Кутова швидкість осьового обертання Сонця дорівнює приблизно $3 \cdot 10^{-6}c^{-1}$, тому у роботі [1] знехтувано впливом обертання. Така ж задача у рамках системи рівнянь зоряної структури розв'язана чисельним методом у роботі. Автори роботи[9] використали розраховану у

роботі [7] радіальну залежність момекулярної маси $\mu(r)$. Згідно з методом Еддінгтона вони побудували узагальнене рівняння політропи у вигляді

$$P(r) = K \left(\frac{\rho(r)}{f(r)}\right)^{\frac{4}{3}}$$
(2)

де $\rho(r)$ - густина речовини, $f(r) = \frac{\mu(r)}{\mu}$, а $\overline{\mu}$ є середнім значення молекулярної маси за об'ємом зорі. У рамках узагальненої політропи (2) у роботі [9] на основі розв'язку рівняння рівноваги одержано характеристики сучасного Сонця такі ж, як і в роботі [7]. Зокрема показано, що момент інерції Сонця за час його еволюції зменшився більше, ніж у 2 рази. У зв'язку з цим виникла цікава задача про розрахунок характерискик Сонця у віці приблизно 9.10° років, зокрема визначення його кутової швиткості осьового обертання і порівняння її із швидкістю таких зір як α Егі, яка знаходиться на завершальному етапі перебування на головній послідовності.

Метою магістерської роботи є знаходження на основі рівняння політропи (2) характеристик Сонця у віці приблизно 9 · 10⁹ років, зокрема швидкості його осьового обертання.

У зв'язку цим необхідно було вирішити такі основні завдання:

- 1. Розв'язати рівняння рівноваги у рамках узагальненої політропної моделі із заданим модельним радіальним розподілом молекулярної маси для Сонця.
- 2. Розрахувати розподіл густини вздовж радіуса Сонця.
- Обчислити момент інерції майбутнього Сонця і визначити кутову швидкість його обертання, використовуючи закон збереження моменту імпульсу.
- 4. Проаналізувати роль осьового обертання зорі типу Сонця у її еволюції.

1. Стандартна полінтропна модель в теорії зоряної структури

В основі механіки неперервного середовища лежать рівняння збереження маси

$$\frac{\partial \rho}{\partial t} + (\nabla, \rho v) = 0 \tag{1.1}$$

I рівняння збереження імпульсу

$$\frac{\partial v}{\partial t} + (v, \nabla)v = -\frac{1}{\rho(r)} \nabla P(r) - \nabla \Phi(r)$$
(1.2)

де $\rho(r)$ - густина середовища, $v \equiv v(r)$ - швидкість, P(r) - тиск, $\Phi(r)$ - потенціал у точці, що задається радіус-вектором \vec{r} . Умова рівноваги одержується з рівнянь (1.1) і (1.2) при v = 0: у цьому випадку густина явно не залежить від часу і задовольняє рівняння

$$\nabla P(r) = -\rho(r) \nabla \Phi(r). \tag{1.3}$$

У випадку зорі без осьового обертання є сферична симетрія, а $\Phi(r)$ є гравітаційним потенціалом

$$\Phi_{grav}(r) = -G \int \frac{\rho(r)dr'}{|r-r'|},\tag{1.4}$$

де інтегрування виконується за об'ємом зорі. Гравітаційний потенціал і густина середовищя пов'язані рівнянням Пуассона

$$\nabla^2 \Phi_{grav}(r) = 4\pi G \rho(r). \tag{1.5}$$

У теорії Лена-Емдена-Фаулера розглядаються моделі зір без обертання, що мають сферичну симетрію. Згідно з формулами (1.3), (1.5) густина середовища $\rho(r)$ визначається рівнянням

$$\nabla\left\{\frac{\nabla P(r)}{\rho(r)}\right\} = -4\pi G\rho(r) \tag{1.6}$$

Моделюючи зв'язок між тиском і густиною політропною залежністю

$$P(r) = K\rho^{\nu}(r) = K(\rho(r))^{1+\frac{1}{n}}$$
(1.7)

де К $v \in$ сталими ($n = [v - 1]^{-1}$), а також враховуючи, що

$$\left(1 + \frac{1}{n}\right) \left(\rho(r)\right)^{\frac{1}{n} - 1} \nabla \rho(r) = (1 + n) \nabla \left(\rho(r)\right)^{\frac{1}{n}},\tag{1.8}$$

рівнянню (1.6) надамо такого вигляду

$$K(1+n)\Delta_r \rho^{\frac{1}{n}}(r) = -4\pi G \rho(r).$$
(1.9)

Тут

$$\Delta_r = \frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) \tag{1.10}$$

є радіальною складовою оператора Лапласа, *v* має назву показника політропи, а *n* – індекса політропи.

Для зручності дослідження і розв'язування рівняння (1.8) введемо безрозмірну координату $\xi = \frac{r}{\lambda}$ і зробимо підстановку

$$\rho(r) = \rho_c y^n(\xi) \tag{1.11}$$

де ρ_c - густина у центрі зорі.

Визначаючи масштаб довжини λ умовою

$$K(1+n) = 4\pi G \lambda^2 \rho_c^{1-\frac{1}{n}},$$
(1.12)

одержуємо рівняння Емдена для політропи з індексом п у безрозмірній формі

$$\Delta_{\xi} y(\xi) = -y^n(\xi), \qquad (1.13)$$
$$\Delta_{\xi} = \frac{d^2}{d\xi^2} + \frac{2}{\xi} \cdot \frac{d}{d\xi}$$

з очевидною граничною умовою

$$y(0) = 1.$$
 (1.14)

Крім того, регулярним в нулі розв'язкам відповідає умова $\frac{dy(\xi)}{d\xi} = 0$ при $\xi = 0$. Згідно з означенням функції $y(\xi)$ маємо також фізичну умову $y(\xi) \ge 0$, а рівність $y(\xi_1) = 0$ визначає безрозмірний радіус зорі ($R = \lambda \xi_1$).

На жаль, рівняння (1.3) не є універсальним – у ньому фігурує індекс політропи n як параметр теорії. Значення індексу політропи n = 5 є критичним: при n < 5 розв'язки є знакозмінними функціями ξ , а при $n \ge 5$ вони є додатними в усій області $0 \le \xi \le \infty$ і гранична умова на краю зорі не може реалізуватися ($\xi_1(5) = \infty$, що відповідає зорі без зовнішньої границі). Надалі розглядатимемо лише модель з n < 5(v > 6/5). Особливості $y(\xi)$ добре ілюструються відомими точними аналітичними розв'язками при n = 0,1,5, а саме

$$y_{0}(\xi) = 1 - \frac{\xi^{2}}{6}; \ \xi_{1}(0) = \sqrt{6}$$

$$y_{1}(\xi) = \frac{\sin \xi}{\xi}; \ \xi_{1}(1) = \pi$$

$$y_{5}(\xi) = \left\{1 + \frac{\xi^{2}}{3}\right\}^{-\frac{1}{2}}; \ \xi_{1}(5) = \infty,$$
(1.15)

де $y_n(\xi) \equiv y(\xi)$ за заданого значення індексу політропи. На рис. 1.1, 1.2 відображено розв'язки рівняння (1.3), знайдені числовим інтегруванням. У табл. 1.1 наведено значення величин $\xi_1, \alpha_n = \xi_1^2 |y'(\xi_1)|$, а також $(5 - n)\xi_1$ як функцій n в області $n \leq 5$. Як бачимо з табл. 1.1, $\xi_1(n)$ є монотонно зростаючою функцією n і має асимптотику $32\sqrt{3}\pi(5 - n) - 1$ у границі $n \rightarrow 5$. Величина $\xi_1^2 |y'(\xi_1)|$ є монотонно спадною функцією n, а величина $(5 - n)\xi_1$ – монотонно зростаючою.

Таблиця 1.1

Параметри політропних моделей зір

n	0	1	1.5	2	3	4	5
ξ_1	$\sqrt{6}$	π	3.654	4.35	6.896	14.97	œ
$\alpha_n \equiv \xi_1^2 y'(\xi_1) $	2√6	π	2.714	2.41	2.018	1.80	$\sqrt{3}$
(5-n)	5√6	12.566	12.79	13.05	13.792	14.97	$32\sqrt{3}\pi^{-1}$

Оскільки в околі точки $\xi = \xi_1(n)$ функція $y_n(\xi)$ близька до нуля, то рівняння (15) при $2 \le n < 5$ у цій області можна "лінеаризувати", нехтуючи членом . Розв'язком рівняння $\Delta \xi y_n(\xi) = 0 \in функція$

$$\widetilde{y_n}(\xi) = \alpha_n \left(\frac{1}{\xi} - \frac{1}{\xi_1(n)}\right) \tag{1.16}$$

яка визначає асимптотику розв'язку рівняння (1.13) в околі $\xi_1(n)$

Функції Емдена *y*(ξ) мають такі розклади в області малих значень змінної ξ[13]

$$y(\xi) = 1 - \frac{1}{3!}\xi^2 + \frac{n}{5!}\xi^4 - \frac{n(8n-5)}{3\cdot7!}\xi^6$$
(1.17)

звідки випливає, що асимптотика $y(\xi)$ в області $\xi \ll 1$ не залежить від індекса n, що є наслідком граничної умови (1.14).

Рис. 1.1. Розв'язки рівняння (1.13) при *n* ≤ 3.

Рис. 1.2. Розв'язки рівняння (1.13) при *n* ≥ 3.

Система рівнянь

$$\frac{dP(r)}{dr} = -\rho(r)\frac{d}{dr}\Phi_{grav}(r), \quad \frac{dM(r)}{dr} = 4\pi r^2\rho(r)$$
(1.18)

описує механічну рівновагу зорі без осьового обертання. Тут використано такі позначення: $P(r) = K(\rho(r))^{1+\frac{1}{n}}$, M(r) – маса речовини у сфері радіуса r,

$$\Phi_{grav}(r) = -G \int \frac{\rho(r')dr'}{|r-r'|} \tag{1.19}$$

є гравітаційним потенціалом на поверхні сфери. Враховуючи, що $\frac{d\Phi_{grav}(r)}{dr} = \frac{GM(r)}{r^2}$, систему (1.18) зведемо до диференціального рівняння другого порядку

$$4K\Delta_r \rho^{\frac{1}{3}}(r) = -4\pi G \rho(r), \qquad (1.20)$$

де

$$\Delta_r = \frac{1}{r^2} \cdot \frac{d}{dr} \left\{ r^2 \frac{d}{dr} \right\}$$
(1.21)

є радіальною складовою оператора Лапласа. Для зручності числових розрахунків вводяться безрозмірні змінні за співвідношеннями

$$\xi = \frac{r}{\lambda}, \quad y(\xi) = \left(\frac{\rho(r)}{\rho_c}\right)^{\frac{1}{3}}.$$
 (1.22)

Вибираючи масштаб λ з умови

$$K = \pi G \rho_c^{\frac{2}{3}} \lambda^2, \qquad (1.23)$$

де *ρ_c* – густина у центрі зорі, представимо рівняння (1.20) у безрозмірній формі рівняння Емдена з індексом політропи n=3,

$$\Delta_{\xi} y(\xi) = -y^3(\xi) . \tag{1.24}$$

Рис. 1.3: Розв'язок рівняння рівноваги у різних наближеннях. Крива 1 відповідає наближенню (1.24).

Згідно з означенням y(0) = 1, а регулярному розв'язку відповідає гранична умова $\frac{dy(\xi)}{d\xi} = 0$ при $\xi = 0$. У випадку n = 3 функція $y(\xi)$ є монотонно спадною в області $0 \le \xi \le \xi_1$, де ξ_1 є коренем рівняння $y(\xi) = 0$ і визначає безрозмірний радіус політропи ($\xi_1 = 6.896$...). Розрахований чисельним інтегруванням розв'язок $y(\xi)$ зображає крива 1 на рис. 1.3. Згідно з означеннями (1.22) повна маса Сонця

asdaasd
$$M_{\odot} = 4\pi\rho_c\lambda^{3\int y^{3}(\xi)d\xi} = 4\pi\rho_c\lambda^{3}\alpha$$
 (1.25)

$$\alpha = -\left\{\xi^2 \frac{dy(\xi)}{d\xi}\right\}_{\xi=\xi_1} = 2.01824\dots$$
(1.26)

У моделі Сонця, яку ми розглядаємо, фігурують параметри *к*, λ і ρ_c , які можна визначити у рамках оберненої задачі, використовуючи спостережувані дані для маси і радіуса сучасного Сонця. Згідно з формулами (1.22)- (1.26) одержуємо систему рівнянь

$$R_{\odot} = \xi_1 \lambda, \quad M_{\odot} = 4\pi \lambda^3 \rho_c \alpha, \quad K = \pi G \lambda^2 \rho_c^{\frac{2}{3}}. \tag{1.27}$$

Зі спостережень добре відомі значення маси і радіуса Сонця, тому

$$\lambda = R_{\odot}\xi_{1}^{-1} = 1.0098 \cdot 10^{10} \text{ cm},$$

$$\rho_{c} = M_{\odot}\xi_{1}^{3} \left\{ 4\pi\alpha R_{\odot}^{3} \right\}^{-1} = 76.1731 \frac{\Gamma}{\text{cm}^{3}}$$

$$K = \pi^{\frac{1}{3}} G \left\{ M_{\odot} (4\alpha)^{-1} \right\}^{\frac{2}{3}} = 3.8416 \cdot 10^{14} \frac{\text{cm}^{3}}{\frac{1}{\Gamma^{3}c^{2}}}.$$
(1.28)

Розподіл густини речовини вздовж радіуса у розглянутому наближенні визначається співвідношенням

$$\rho(r) = \rho_c y^3\left(\frac{r}{\lambda}\right) = \rho_c y^3(x\xi_1), \qquad (1.29)$$

де $x \equiv \frac{r}{R_{\odot}}$. Крива 1 рис. 1.5 зображає розподіл густини у шкалі змінної х. Якщо замість спостережуваного радіуса сучасного Сонця $R_{\odot} = 6.9634 \cdot 10^{10}$ см використати радіус Сонця нульового віку $R \odot = 6.646 \cdot 10^{10}$ см (розрахований у роботі [2]), то в цьому випадку з рівнянь (1.27) знаходимо, що

$$\lambda = 0.9571 \cdot 10^{10} \text{ cm}, \ \rho_c = 89.4610 \ \frac{\Gamma}{\text{cm}^3}, \ K = 3.8416 \cdot 10^{14} \ \frac{\text{cm}^3}{\frac{1}{\Gamma^3 \text{c}^2}}.$$
(1.30)

Рис. 1.5: Розподіл густини вздовж радіуса у різних наближеннях. Крива 1 відповідає формулі (1.29).

Одержане значення центральної густини співпадає зі значенням, одержаним у роботі [8]. Це означає, що стандартна політропна модель з індексом n = 3 цілком застосовна для Сонця нульового віку, у якому просторовий розподіл хімічних елементів є однорідним і тому відповідає наближенню Еддінгтона. Але ця модель не застосовна для сучасного Сонця, у якому значення центральної густини $\rho_c = 158 \frac{\Gamma}{CM^3}$ [19].

2. Узагальнена політропна модель в теорії внутрішної будови Сонця

Рівняння стану у вигляді (1) - це емпірична залежність між тиском і густиною речовини, а точніше - рівняння газових термодинамічних процесів що відповідають різним індексан п. На першому етапі розвитку теорії будови зір використовувалась саме така модель. Для встановлення залежності між масою зорі і її світністю Еддінгтон побудував політропну модель, яка враховує як газовий тиск, так і світловий. Для моделі зорі без осьового обертання, при наявності сферичної симетрії ці внески визначаються добре відомими співвідношеннями. На сфері радіуса г

$$P_{gas}(r) = \frac{k_B}{m_u \,\mu(r)} \rho(r) T(r), \ P_{ph}(r) = \frac{a}{3} T^4(r)$$
(2.1)

де $\rho(r)$ - густина газу, T(r) - локальна температура, $\mu(r)$ -локальне значення безрозмірної в атомних одиницях маси m_u) молекулярної маси, а $a = k_B (\hbar c)^{-3} \frac{\pi^2}{15}$, k_B - стала Больцмана, с - швидкість світла.

Еддінгтон припустив, що у кожній точці зорі виконується співвідношення

$$P_{gas}(r) = \beta P(r)$$
, $P_{ph}(r) = (1 - \beta)P(r)$, (2.2)

де P(r) - повний тиск на сфері радіуса r, а параметр β є сталою величиною, незалежною від координат.

Визначаючи температуру із першого рівняння (2.1)фівфів

$$T(r) = \frac{P_{gas}(r)}{\kappa_B} \cdot \frac{m_u \mu(r)}{\rho(r)} \qquad , \qquad (2.3)$$

підставляючи цей вираз у друге рівняння(2.3) і використовуючи рівності(2.2), одержемо вираз для повного тиску у вигляді

$$P(r) = \left\{ \frac{1-\beta}{a\beta^4} \cdot \frac{3}{(m_u\mu(r))^4} \right\}^{\frac{1}{3}} \cdot \rho^{\frac{4}{3}}(r).$$
(2.4)

Це співвідношення є політропною залежністю між тиском і густиною, що відповідає індексу n = 3. У стандарній політропній теорії при n = 3 одержується співдношення

$$K = \pi^{\frac{1}{3}} G \left(\frac{M}{4a_3}\right)^{\frac{2}{3}}.$$
 (2.5)

Це дозволяє визначити параметр β , якщо використати наближення $\mu(r) \Rightarrow \overline{\mu}$ у формулі(2.4). Тоді

$$K = \left(\frac{1-\beta}{a\beta^4} \cdot \frac{3}{\left(m_u - \mu\right)^4}\right)^{\frac{1}{3}}$$
(2.6)

Прирівнявши праві сторони співвідношень(2.4) і (2.6), одержуємо рівняння

$$\frac{1-\beta}{a} \cdot \frac{3}{(m_u\mu)^4} = \pi G^3 \left(\frac{M}{4\alpha_3}\right)^2 \beta^4 \tag{2.7}$$

для знаходження параметра β. .Для зір дуже малих мас β, близьце до одиниці(переважає газовий тиск), для зір великих мас параметр β є малою величиною,

$$\beta \simeq \left(\frac{M}{4\alpha_3}\right)^{-\frac{1}{3}} \pi^{-\frac{1}{4}} G^{-\frac{3}{4}} \left(\frac{3}{\alpha}\right)^{\frac{1}{4}} \frac{K_B}{\overline{\mu}m_u}.$$
 (2.8)

За відомим коренем рівняння (2.7) параметр к визначається формолою (2.6). Однак можливий інший підхід, коли наближення µ(r) ⇒ µ не використовується. Згідно з формулою (2.4)

$$P(r) = K \left(\frac{\rho(r)}{f(r)}\right)^{\frac{4}{3}},$$
(2.9)

параметр К визначається виразом Еддінгтона(2.6), а

$$f(r) = \frac{\mu(r)}{\overline{\mu}}.$$
 (2.10)

Така модель описує зорю із радіально залежною молекулярною масою $\mu(r)$. При цьому параметр *к* можна визначити за спостережуваними даними(масою і радіусом) окремої зорі.

Саме даний варіант політропної залежності запропоновано у роботі [9] з метою розрахунку характеристик сучасного Сонця, хімічний склад якого далекий від однорідного і є результатом термоядерних процесів у ядрі Сонця за 4.5 · 10⁹ років.

3. Рівняння рівноваги моделі Сонця із заданою радіальною залежністю молекулярної маси

У цьому розділі ми розлянемо рівняння механічної рівоваги газової зорі у моделі з рівнянням стану (2.9), де $K \in$ невідомим параметром, який знайдемо пізніше у рамках зворотної задачі. Безрозмірну молемулярну масу будемо вважати відомою функцією зміної $x = \frac{r}{R}$, де R - радіус зорі, а r - віддаль точки від центру зорі.

Підставимо вираз (2.9) у рівняння рівноваги

$$\nabla P(r) = -\rho(r) \nabla \Phi_{gas}(r), \qquad (3.1)$$

де $\rho(r)$ - густина на сфері радіуса r,

$$\Phi_{gas}(r) = -G \int \frac{dr'\rho(r')}{|r-r'|}$$
(3.2)

є гравітаційний потенціал всередені зорі.

Оскільки

$$\nabla P(r) = K \cdot \frac{4}{3} \left(\frac{\rho(r)}{f(r)} \right)^{\frac{1}{3}} \cdot \nabla \left(\frac{\rho(r)}{f(r)} \right), \tag{3.3}$$

то рівняння(3.1) набуває вигляду

$$\frac{4}{3}K\left(\frac{\rho(r)}{f(r)}\right)^{-\frac{2}{3}} \cdot \nabla\left(\frac{\rho(r)}{f(r)}\right) = -f(r)\nabla\Phi_{gas}(r), \qquad (3.4)$$

або ж

$$4K \nabla^2 \left(\frac{\rho(r)}{f(r)}\right)^{\frac{1}{3}} = -f(r) \nabla \Phi_{gas}(r).$$
(3.5)

Діючи оператором ⊽ на це рівняння, зведемо його до такого вигляду:

$$4K \nabla^2 \left(\frac{\rho(r)}{f(r)}\right)^{\frac{1}{3}} = -\left(f(r) \cdot \nabla \Phi_{gas}(r)\right) - f(r) \nabla^2 \Phi_{gas}(r).$$
(3.6)

Як відомо

$$\nabla^2 \Phi_{gas}(r) = 4\pi r^2 G \rho(r). \tag{3.7}$$

За означенням градієнта

$$\nabla \Phi_{gas}(r) = \frac{d}{dr} \Phi_{gas}(r) \cdot \nabla r , \qquad (3.8)$$
$$\nabla f(r) = \frac{d}{dr} f(r) \cdot \nabla r ; \quad \nabla r = \frac{\vec{r}}{r} = \vec{e_r},$$

де $\vec{e_r}$ є одиничним вектором, паралельним до вектора $\vec{r} = r\vec{e_r}$. Це дає можливість переписати рівняння (3.4) у такій формі:

$$4K\Delta_r \left(\frac{\rho(r)}{f(r)}\right)^{\frac{1}{3}} = -f(r)4\pi r^2 \rho(r)G - \frac{df(r)}{dr} \cdot \frac{d}{dr} \Phi_{gras}(r), \qquad (3.9)$$

де Δ_r - радіальна складова оператора Лапласа. Для розрахунку похідної $\frac{d}{dr} \Phi_{gas}(r)$ проінтегруємо за змінною $\vec{r'}$ вираз (3.1) у сферичній системі координат, вибравши вісь *ог* у напрямі вектора \vec{r} :

$$\Phi_{gas}(r) = -G \cdot 2\pi \int_0^R dr' \cdot (r')^2 \rho(r') \int_0^\theta \frac{d\theta \sin\theta}{[r^2 + (r' - 2rr' \cos\theta)]^{\frac{1}{2}}} = = -4\pi G \left\{ \int_0^r dr'(r')^2 \rho(r') \cdot \frac{1}{r} + \int_r^R dr' \cdot r' \rho(r') \right\} = = -G \left\{ \frac{M(r)}{r} + \int_r^R dr' \cdot r' \rho(r') \right\},$$
(3.10)

де

$$M(r) = 4\pi \int_0^r dr'(r')\rho(r')$$
(3.11)

є масою зорі у сфері радіуса r. Неважко переконатися, що

$$\frac{d}{dr}\Phi_{gas}(r) = -\frac{GM(r)}{r^2}.$$
(3.12)

Тому рівняння (3.9) набуває такого остаточного зображення:

$$4K\Delta_r \left(\frac{\rho(r)}{f(r)}\right)^{\frac{1}{3}} = -4\pi G\rho(r)f(r) - G\frac{M(r)}{r^2} \cdot \frac{d}{dr}f(r).$$
(3.13)

Оскільки *M*(*r*) визначається виразом (3.11), то одержане рівняння є інтегродиференціальним рівнянням, розв'язок якого визначає радіальний розподіл густини речовини Сонця.

Для зручності знаходження розв'язку рівняння(3.11) введемо безрозмірні змінні

$$\tilde{\lambda} = \frac{r}{\tilde{\xi_1}}; \quad \tilde{y}(\xi) = \left\{ \frac{\rho(r)}{f(r)} \cdot \frac{f_c}{\rho_c} \right\}, \tag{3.14}$$

визначаючи при цьому маштабний множник λ умовою

$$K = \pi G \left(\frac{\rho_c}{f_c}\right)^{\frac{2}{3}} \cdot \widetilde{\lambda^2},\tag{3.15}$$

де $\rho_c \equiv \rho(0)$, $f_c \equiv f(0)$. Згідно з рівністю(3.11)

$$M(r) = 4\pi\rho_c \widetilde{\lambda^3} \int_0^{\tilde{\xi}} d\xi' \ (\xi')^2 \tilde{y}(\xi') \frac{\mu\left(\frac{\tilde{\xi}}{\tilde{\xi_1}}\right)}{\mu(0)}.$$
(3.16)

Тут використано умову, що $\mu\left(\frac{r}{R}\right) = \mu\left(\frac{\tilde{\xi}}{\tilde{\xi}_1}\right)$, де $\tilde{\xi}_1$ - безрозмірний радіус зорі у змінних $\tilde{\xi}$, тобто корінь рівняння $\tilde{y}(\tilde{\xi}_1) = 0$.

У безрозмірній формі рівняння(3.13) набуває вигляду

$$\Delta_{\tilde{\xi}}\tilde{y}(\tilde{\xi}) = -\tilde{y}^{3}(\tilde{\xi})f^{2}\left(\frac{\tilde{\xi}}{\tilde{\xi}_{1}}\right) - \frac{f_{c}}{\tilde{\xi}_{1}\xi^{2}} \cdot \frac{df\left(\frac{\tilde{\xi}}{\tilde{\xi}_{1}}\right)}{d\left(\frac{\tilde{\xi}}{\tilde{\xi}_{1}}\right)} \int_{0}^{\xi} d\tilde{\xi}'(\tilde{\xi})^{2} \tilde{y}(\tilde{\xi}') \cdot \frac{\mu\left(\frac{\tilde{\xi}}{\tilde{\xi}_{1}}\right)}{\mu(0)}.$$
 (3.17)

Цьому рівнянню відповідають такі граничні умови:

$$\tilde{y}(0) = 1, \quad \frac{d}{d\tilde{\xi}} \tilde{y}(\tilde{\xi}) = 0$$
 при $\tilde{\xi} = 0.$
(3.18)

Рівняння (3.17) узагальноє рівняння стандартної полінтропної теорії для індекса n = 3 і співпадає з цим рівнянням при $f\left(\frac{\tilde{\xi}}{\tilde{\xi_1}}\right) = 1$.

Очевидно, що перший доданок у правій стороні рівняння(3.17) є визначальним, а другій відіграє роль поправки. Це дозволяє використати метод послідовних наближень для знаходження розв'язку чисельним методом. При цьому параметр $\tilde{\xi_1}$ необхідно визначати самоузгодженно.

У роботі [9] використано результат розрахунків характеристик сучасного Сонця у рамках системи рівнянь Шваршильда:

$$\frac{dP}{dr} = -G \frac{M(r)}{r^2} \rho(r); \quad \frac{dM(r)}{dr} = 4\pi r^2 \rho(r);$$

$$P(r) = \frac{K_B}{m_u \mu(r)} \rho(r) T(r) + \frac{a}{3} T^4(r);$$

$$\frac{dL}{dr} = 4\pi \rho(r) \varepsilon(r) r^2; \quad \frac{dT}{dr} = -\frac{3\rho(r)L(r)\kappa(r)}{64\gamma r^2 T^3(r)},$$

$$\left(\frac{dT}{dr} = \frac{\gamma - 1}{\gamma} \cdot \frac{dP}{P(r)} \quad i \ \gamma = \frac{c_p}{c_v}\right).$$
(3.18)

Тут використаннол такі позначення:

 $\varepsilon(r)$ - функція енерговиділення термоядерних процесів; $\kappa(r)$ - коефіціент поглинання фотонів на сфері радіуса r; L(r) - світність сфери радіуса r.

Чисельне розв'язання системи рівнять (3.18) дає можливість розрахувати всі характеристики зорі при заданій залежності $\kappa(r)$ і $\varepsilon(r)$ від термодинамічних параметрів. Автори роботи [М. Вавруха, Д. Дзіковського] використали результати чисельного розрахунку безрозмірної молекулярної маси $\mu(r)$ і апроксимували її виразом

$$\mu(x) = \frac{a_0 + a_1 x + a_2 x^2 + a_3 x^3}{b_0 + b_1 x + b_2 x^2 + b_3 x^3},$$
(3.19)

де

$$x=\frac{r}{R_{\odot}}$$
,

 $a_0 = 0.0149173, a_1 = -0.0868327, a_2 = 0.730856, a_3 = 1.7342,$ (3.20)

$$b_0 = 0.0172646, b_1 = -0.0893741, b_2 = 1.0339, b_3 = 2.96529.$$

Для розрахунку характеристик Сонця у віці $t \approx 9 \cdot 10^9$ років у цій магістерській роботі використано модель парціальної долі водню $X\left(\frac{r}{R}\right)$ у вигляді

$$X(x) = \overline{X} \cdot \frac{a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4}{b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4}$$
(3.21)

Радіальна залежність функції *X*(*x*) для сучасного Сонця забраженна синьою кривою на рис. 3.1, а змодельована крива червоним кольором.

Відповідно парціальна доля гелію дорівнює

$$Y(x) = 1 - X(x) - Z; Z = 0.020.$$
(3.22)

Безрозмірна молекулярна маса

$$\mu(x) = \frac{1}{2X(x) + \frac{3}{4}Y(x) + \frac{1}{2}Z(x)},$$
(3.23)

зображена зеленою кривою на рис 3.1. Усереднена за об'ємом зорі величина *µ* дорівнює

$$\overline{\mu} = \frac{3}{R^3} \int_0^R dr \cdot r^2 \mu\left(\frac{r}{R}\right) = 3 \int_0^1 dx \cdot x^2 \mu(x).$$
(3.24)

Функція

$$f\left(\frac{r}{R}\right) = \frac{\mu\left(\frac{r}{R}\right)}{\overline{\mu}} = \frac{\mu(x)}{\overline{\mu}},\tag{3.25}$$

зображена фіолетовою кривою на рис. 3.1

Рис. 3.1 : Координатна залежність безрозмірної молекулярної маси $\mu(x)$, парціальної густини водню X(x) та функції f(x)

Рис. 3.2 : Розвязок рівняння $\tilde{y}(\tilde{\xi})$ синя крива відповідає сучасному Сонцю, а червона змодельована

Розподіл густини зорі визначається розв'язком рівняння

$$\rho\left(\frac{\tilde{\xi}}{\tilde{\xi_1}}\right) = \tilde{\rho_c} \frac{f\left(\frac{\tilde{\xi}}{\tilde{\xi_1}}\right)}{f_c} \tilde{y^3}(\tilde{\xi})$$
(3.26)

Маса Сонця дорівнює

$$\widetilde{M_{\odot}} = \int_{V}^{\rho} (r) dr = 4\pi \int_{0}^{R_{\odot}} dr \cdot r^{2} \rho(r) =$$

$$= 4\pi \tilde{\lambda} \rho_{c} \cdot \int_{0}^{\widetilde{\xi_{1}}} d\xi \cdot \xi^{2} \widetilde{y^{3}}(\xi) \cdot \frac{\widetilde{\mu}\left(\frac{\xi}{\widetilde{\xi_{1}}}\right)}{\widetilde{\mu}(0)} =$$

$$= 4\pi \widetilde{\lambda^{3}} \rho_{c} \cdot \widetilde{\alpha}.$$
(3.27)

Невідомі параметри $\tilde{\lambda}$, $\tilde{\rho_c}$ і \tilde{K} визначаються із системи рівнянь

$$\widetilde{R_{\odot}} = \widetilde{\xi_1} \cdot \widetilde{\lambda}, \qquad \widetilde{K} = \pi G \widetilde{\lambda^2} \left(\frac{\widetilde{\rho_c}}{f_c} \right)^{\frac{2}{3}}, \qquad M_{\odot} = \widetilde{\rho_c} 4 \widetilde{\alpha} \pi \widetilde{\lambda^3}.$$
(3.28)

Визначивши з оснанього рівняння ρ_c за співвідношеням

$$\widetilde{\rho_c} = \frac{M_{\odot}}{4\pi\widetilde{\alpha}} \cdot \frac{1}{\widetilde{\alpha^3}}, \qquad (3.29)$$

знаходими, що

$$\widetilde{K} = \pi G \left(\frac{M_{\odot}}{4\pi \widetilde{\alpha} f_c} \right). \tag{3.30}$$

3 першого рівняння (3.29)знаходимо

$$\tilde{\lambda} = \frac{\widetilde{R_{O}}}{\xi_{1}}.$$
 (3.31)

Як відомо з результатів роботи[7], радіус Сонця у віці 9 · 10⁹ років повинен мало відрізнятися від радіуса сучасного Сонця $\widetilde{R_{\odot}}(t) = R_{\odot}(0) \cdot (1 + \gamma t^2)$, , де *t* - вік Сонця, а γ - сталий коефіціент.

У такому налижені

$$\widetilde{\rho_c} \cong \rho_c \frac{\alpha}{\widetilde{\alpha}} \tag{3.32}$$

Де центральна густина для сучасного Сонця. Як випливає з таких розрахунків, перевищує приблизно у 4 рази.

Моделювання радіального розподілу молекулярної маси вимагає оцінки віку Сонця, який відповідає такій моделі це можна зробити, розрахувавши зміну маси водню за час, що відрізняє модель сучасного Сонця від моделі майбутьного:

$$\Delta M_{H} = 4\pi \int_{0}^{R_{\odot}} r^{2} \rho\left(\frac{r}{R_{\odot}}\right) X\left(\frac{r}{R_{\odot}}\right) - 4\pi \int_{0}^{\widetilde{R_{\odot}}} r^{2} \tilde{\rho}\left(\frac{r}{R_{\odot}}\right) X\left(\frac{r}{R_{\odot}}\right)$$
(3.33)

В результаті термоядерних реакцій ця зміна водню призводить до виділення енергії.

$$\Delta E = \Delta M_H \cdot 0.007 \cdot c^2 \tag{3.34}$$

Де с - швидкість світла.

Приймаючи, що світність Сонця з часом змінюватиметься мало, знаходимо час еволюції Сонця від сучасного стану,

$$t = \frac{\Delta M_H \cdot 0.007 \cdot c^2}{L_{\odot}} \tag{3.35}$$

На основі цих даних можна розрахувати кутову швидківсть обертання Сонця в різні епохи на основі закону збереження моменту кількості руху

$$I\,\omega = \tilde{I}\,\tilde{\omega} \tag{3.36}$$

$$I = \int_V^d dv \rho(r) r^2 \sin^2 \quad \theta =$$

$$=\frac{8\pi}{3}\int_{0}^{R}r^{4}\rho(r)dr =$$
(3.37)

$$=\frac{8\pi}{3}\int_0^R r^4 dr \rho_c \widetilde{y^2}(\xi) \frac{f\left(\frac{\xi}{\xi_1}\right)}{f_c}$$

За умовою $r = \lambda \xi$

$$I = \frac{8\pi}{3} \widetilde{\lambda^2} \frac{M_{\odot}}{4\pi \widetilde{\alpha}} \int_0^{\xi_1} \xi^4 d\xi \widetilde{y^3}(\xi) \frac{\mu(\frac{\xi}{\xi_1})}{\mu(0)} =$$
(3.38)

$$=\frac{8\pi}{3}\frac{M_{\odot}}{4\pi\widetilde{\alpha}}\cdot\left(\frac{\widetilde{R_{\odot}}}{\widetilde{\xi_{1}}}\right)^{2}\int_{0}^{\xi_{1}}\xi^{4}\,d\widetilde{\xi}\widetilde{y^{3}}(\xi)\,\frac{\mu\left(\frac{\xi}{\xi_{1}}\right)}{\mu(0)}$$

$$\widetilde{\omega} = \omega \frac{I}{\widetilde{I}} = \omega \cdot \frac{\alpha}{\widetilde{\alpha}} \cdot \frac{\int_{0}^{\widetilde{\xi}_{1}} d\xi \cdot \xi^{4} y^{3}(\xi) \cdot \frac{\mu\left(\frac{\xi}{\xi_{1}}\right)}{\mu(0)}}{\int_{0}^{\widetilde{\xi}_{1}} d\xi \cdot \xi^{4} \widetilde{y^{3}}(\xi) \cdot \frac{\mu\left(\frac{\xi}{(\overline{\xi})1}\right)}{\widetilde{\mu}(0)}}$$
(3.39)

4. Харакристики Сонця у фазі закінчення перебування на головній послідовності

Отже для виконня поставлених задач було розроблено програму в якій можна змоделювати на графіку поведінку парціальної густини водню яка відповідала б майбутньому Сонцю. Також графічний розвязок рівняння рівноваги використовуючи узагальнену політропну модель та розподілу густини речовини.

a0	b0
0.00016	0.00045
a1	b1
-0.0004	-0.0045
a2	b2
0.038	0.088
a3	b3
-0.536	-0.8
a4	b4
4.974	7.085
Calculate save	

Рис. 4.1 Панель для введення коефіціентів для моделювання парціальної густини водню

За дпомогою цієї панелі можна міняти коефіціенти і спостерігати як міняється крива на графіку (рис.4.2) в динаміці

Рис. 4.2 графік для безрозмірної молекулярної маси, парціальної густини водню та функції

Після натискання кнопки "Calculate" програма розрахує рівняння рівноваги та виведе графіки та запише всі інші параметри в таблицю як наведено на рис. 4.3- рис.4.5. А кнопка "Save" зберігає дані з таблиці в ехсеl файл.

Рис. 4.3 графік для безрозмірної молекулярної маси, парціальної густини водню та функції f

Рис. 4.4 Графік для розподілу густини

t	R	м	omega	1	lambda	rho_c	alpha
8.197255251155156	6.860259833821357	1.902016512433195e+33	1.135382990387211	6.775730084852963	0.7965006192756098	292.13513471031047	1.025326715678952
11.692593756435333	7.456873221213764	2.4426591317829386e+33	1.2350751131456865	6.240062720905592	0.831776154067303	356.2699401115475	0.948100607421204
5.376191860143818	6.65803317751078	1.7387232150554946e+33	0.9925991196405206	7.299981978350331	0.8980352276112831	146.58086215506205	1.30335642504961
4.993315980052217	6.649814452951601	1.7322922822502426e+33	0.9807918903372194	7.46128397457082	0.9078244986963675	136.6336740000593	1.34849041716

Рис. 4.5 Таблиця з даними

Отже за допомогою програми були розраховані характеристики Сонця на фазі закінчення перебування на головній послідовності в період з 6 · 10⁹ до9 · 10⁹. Результати наведенів в таблиці(4.1) та на рисунках(4.6)-(4.9).

Таблиця 4.1

t	R _☉	M _☉	ω	Ι	λ	$ ho_c$	α
6,002945	6,981405	1,9971E+33	1,2320233	6,692742	0,872587868	280,6798262	1,164793668
7,971204	7,234860	2,1197E+33	1,4857900	6,115718	0,858758761	420,3703019	1,053398913
9,139156	7,883333	2,20623E+33	1,559545	5,902533	0,846157023	673,1554811	0,964735678

Рис 4.6 Залежність радіуса від часу

Рис 4.7 Залежність радіуса від часу

Рис 4.8 Залежність кутової швидкості від часу

Рис 4.9 Залежність кутової швидкості від часу

Висновки:

- Встановлено що термоядерні реакції призводять до суттєвого перерозподілу густини вздовж радіуса Сонця і за час від нульового віку до сучасного стану центральна густина змінилася від 89.46 ^г/_{см³} до 164.5 ^г/_{см³}, а у віці 9 · 10⁹ років вона дорівнює приблизно 670 ^г/_{см³}.
- При цьому у віці 9 · 10⁹ радіус Сонця приймає значення приблизно 7.883 10¹⁰ ст.
- 3. Момент інерції Сонця також змінюється з віком: на початку еволюції дорівнює 7.93 і на кінцевій фазі перебування на головній послідовності приймає значення 5.90 (в одиницях $\frac{1}{2}M_{\odot}R_{\odot}^{2}$).
- Згідно з законом збереження моменту імпульсу кутова швидкість осьового обертання змінилась від 1.13 до 1.59(в одиницях 3 · 10⁻⁵c⁻¹)
- 5. Як відомо, циклічна активність Сонця зумовлена його осьовим обертаням. Як і зміна всіх інших характеристик зорі, сонячна активність є прпорційною ω². .Тому можна передбачати, що активність Сонця зростатимме з часом згідно зі зростанням кутової швидкості пропорційно ω².

Список літератури:

- 1. Homer Lane J. One the Theoretical Temperature of the Sun under the Hypo
- 2. Eddington A. S. The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1988).
- 3. Emden K. Gaskugeln: Anwendungen der mechanischen W[°]armetheorie / K. Emden. Leipzig; Berlin, 1907. 497 p.
- 4. Milne E. A. The equilibrium of a rotating star. MNRAS 83, 118-147 (1923)
- 5. Schwarzschild M. Structure and Evolution of the Stars (Princeton University Press, Princeton, 1958).
- 6. James R. A. The Structure and Stability of Rotating Gas Masses. ApJ. 140, 552-582 (1964).
- 7. Eddington A. S. The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1988).
- 8. Sears R. L. Helium Content and Neutrino Fluxes in Solar Models. Astrophysical Journal 140, 477-484, (1964).
- 9. Lamers H. J. G. L. M., Levesque E. M. Understanding Stellar Evolution (IOP Publishing, Bristol, UK, 2017).
- 10. Vavrukh M., Dzikovskyi D. The generalized polytropic model for the Sun-like stars(MATHEMATICAL MODELING AND COMPUTING Vol. 10, No. 1, pp. 1–9 (2023))
- 11.James R. A. The Structure and Stability of Rotating Gas Masses. ApJ. 140, 552-582 (1964).