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Monograph is devoted to studies of symmetrical properties in
quantum space realized with noncommutative algebra of canon-
ical type. In three-dimensional case of noncommutative algebra
the rotational symmetry is violated. Also, in noncommutative
phase space of canonical type we face a problem of time reversal
symmetry breaking. Algebra which is equivalent to noncommu-
tative algebra of canonical type and does not cause violation
of the rotational and time reversal symmetries is constructed.
Properties of physical systems in the frame of the algebra are
studied. Among them are spectra of hydrogen and exotic atoms,
systems of harmonic oscillators, particles with harmonic oscilla-
tor interaction. Also, the problem of violation of the weak equiv-
alence principle in the noncommutative phase space of canonical
type with preserved rotational and time reversal symmetries is
solved.
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Preface

In the monograph, the idea of description of features of space struc-
ture at the Planck scale is considered. Algebra with noncommuta-
tivity of coordinates and noncommutativity of momenta of canonical
type is examined. Rotational and time-reversal symmetries are stud-
ied in the quantum space. We construct algebra which is rotationally-
invariant equivalent to noncommutative algebra of canonical type and
does not lead to violation of the time-reversal symmetry. In the frame
of the algebra, various one and many-particle systems are exained.
Based on the obtained results upper bounds for the parameters of
coordinate and momentum noncommutativity are estimated.

In Chapter 2 effect of noncommutativity of coordinates and non-
commutativity of momenta on the spectrum of hydrogen atom is
studied. We find corrections to the energy levels of the atom up to
the second order in the parameter of noncommutativity. Based on
the obtained results with the experimental data for 1S − 2S transi-
tion frequency the upper bound for the minimal length is obtained.
Also, two-particle system with Coulomb interaction is examined and
hydrogen-like exotic atoms are studied in rotationally-invariant non-
commutative phase space.

In Chapter 3 a system of interacting harmonic oscillators in a uni-
form field is considered. We find energy levels of the system up to the
second order in the parameters of noncommutativity. It is obtained
that the noncommutativity of coordinates and noncommutativity of
momenta affect the mass and frequencies of the system. Also, partic-
ular cases of a system of particles with harmonic oscillator interaction
and a system of free particles are examined.

In Chapter 4 time-reversal symmetry is studied in noncommu-
tative phase space of canonical type. We construct noncommuta-
tive algebra which does not lead to violation of the rotational and
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6 Preface

time-reversal symmetries besides it is equivalent to noncommutative
algebra of canonical type. In the frame of the algebra composite
systems are studied. The motion of a system of free particles is ex-
amined. Also, the motion in a gravitational field is studied and the
weak equivalence principle is analyzed. We propose expressions for
tensors of noncommutativity which preserve the weak equivalence
in rotationally-invariant and time-reversal invariant noncommutative
phase space of canonical type.

Conclusions are presented in Chapter 5.
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Chapter 1

Noncommutative space of
canonical type with
preserved rotational
symmetry

1.1 Introduction

One of the important predictions of the String Theory and the Quan-
tum Gravity is the existence of the minimal length which is of the
order of the Planck length (see, for instance, [1–7]). This feature of
space structure can be described with modifications of the ordinary
commutation relations for operators of coordinates and operators of
momenta.

The first article in which the idea that coordinates may not com-
mute was published by Snyder [8]. Before Snyder the idea was sug-
gested by Heisenberg. The scientist proposed such a modification to
solve the problem of ultraviolet divergences in quantum field theory.

Many different modifications of the commutation relations were
proposed to describe features of space structure on the Planck scale.
The most simple and well-known is algebra with noncommutativity
of coordinates of canonical type. The algebra is characterized by the
modification of commutation relation for operators of coordinates. It
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8 Chapter 1. Noncommutative space of canonical type

reads

[Xi, Xj ] = i~θij , (1.1)

[Xi, Pj ] = i~δij , (1.2)

[Pi, Pj ] = 0, (1.3)

where θij are parameters of coordinates noncommutativity which are
elements of the constant antisymmetric matrix. The algebra de-
scribes a space with minimal length. Note, that the noncommuta-
tivity of coordinates can be used to describe motion of a particle in
a strong magnetic field (see, for instance, [9–13]). Various physical
problems have been examined in the frame of noncommutative alge-
bra of canonical type. Among the first papers on the subject it is
worth mention [14–18].

It is important to note that in 2D case the noncommutative al-
gebra of canonical type is rotationally invariant

[X1, X2] = −[X2, X1] = i~θ, (1.4)

[Xi, Pj ] = i~δij , (1.5)

[Pi, Pj ] = 0, (1.6)

where i, j = (1, 2), θ is a parameter of noncommutativity. But in
3D case of noncommutative algebra (1.1)-(1.3) one faces a problem
of rotational symmetry breaking [19,20].

It is evident that the same problem appears in more general case
when the noncommutativity of momenta is also considered. The non-
commutative phase space of canonical type is characterized by the
following commutation relations for coordinates and momenta

[Xi, Xj ] = i~θij , (1.7)

[Xi, Pj ] = i~(δij + γij), (1.8)

[Pi, Pj ] = i~ηij . (1.9)

Here θij , ηij , γij are parameters of the algebra which in the case
of noncommutative algebra of canonical type are considered to be
elements of constant matrixes, θij are parameters of coordinate non-
commutativity, ηij are parameters of momentum noncommutativity.

There are different ways of representation of the coordinates Xi

and momenta Pi which do not commute (1.7), (1.9) Symmetrical
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Chapter 1. Noncommutative space of canonical type 9

representation is well known. It reads

Xi = xi −
1

2

∑
j

θijpj , (1.10)

Pi = pi +
1

2

∑
j

ηijxj , (1.11)

here xi, pi are coordinates and momenta that satisfy the ordinary
algebra. We have

[xi, xj ] = 0, (1.12)

[xi, pj ] = i~δij , (1.13)

[pi, pj ] = 0. (1.14)

On the basis of expressions (1.10), (1.11), one find [21]

[Xi, Pj ] = i~δij + i~
∑
k

θikηjk
4

. (1.15)

So, from the symmetrical representation follows that parameters γij
read

γij =
∑
k

θikηjk
4

. (1.16)

New classes of noncommutative algebras were developed to pre-
serve the rotational symmetry. In paper, [22] the idea of foliating
the space with concentric fuzzy spheres was proposed to preserve the
rotational symmetry. Rotationally-invariant noncommutative space
was constructed as a sequence of fuzzy spheres in [23]. Author of pa-
per [24] introduced the curved noncommutative space. In [25] promo-
tion of the parameter of noncommutativity to an operator in Hilbert
space was implemented to construct rotationally-invariant noncom-
mutative algebra. Rotation invariance in N dimensional case was
studied in [26].

In the present chapter, we present noncommutative algebra which
is rotationally-invariant and besides it is equivalent to noncommuta-
tive algebra of canonical type. The algebra is constructed with the
help of generalization of the parameters of noncommutativity to ten-
sors. The tensors are defined by introducing additional coordinates
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10 Chapter 1. Noncommutative space of canonical type

and additional momenta governed by a system with rotational sym-
metry. The basis problems are studied in the frame of the algebra.
They are free particle, and harmonic oscillator.

The Chapter is organized as follows. In section 1.2 rotationally-
invariant algebra with noncommutativity of coordinates and noncom-
mutativity of momenta which is equivalent to algebra of canonical
type is introduced. The spectrum of free particle in rotationally-
invariant noncommutative phase space is examined in section 1.3.
The harmonic oscillator in noncommutative phase space with pre-
served rotational symmetry is studied in section 1.4. Section 1.5 is
devoted to studies of minimal length in coordinate and momentum
space based on expressions for eigenvalues of squared length operator.
Conclusions are presented in section 1.6.

1.2 Noncommutative phase space of canoni-
cal type with preserved rotational sym-
metry

To construct an algebra which is rotationally-invariant and describes
a noncommutative phase space we propose to generalize parameters
of noncommutativity θij , ηij to tensors. The tensors are considered to
be constructed with the help of additional coordinates and additional
momenta. Tensors of coordinate noncommutativity read

θij =
l0
~
εijkak. (1.17)

Hare l0 is a constant with the dimension of length and ai are addi-
tional coordinates. For tensors of momentum noncommutativity we
have the following expression

ηij =
p0
~
εijkp

b
k, (1.18)

here p0 is a constant, pbk are additional momenta.

We consider the additional coordinates ai, bi and momenta pai , p
b
i

10



Chapter 1. Noncommutative space of canonical type 11

to satisfy the ordinary commutation relations. Namely, we have

[ai, aj ] = [bi, bj ] = [ai, bj ] = 0, (1.19)

[ai, p
a
j ] = [bi, p

b
j ] = i~δij , (1.20)

[pai , p
a
j ] = [pbi , p

b
j ] = [pai , p

b
j ] = 0, (1.21)

[ai, p
b
j ] = [bi, p

a
j ] = 0. (1.22)

To preserve the rotational symmetry the additional coordinates
and additional momenta are assumed to be governed by spherically-
symmetric systems. For simplicity they are considered to be harmonic
oscillators

Ha
osc =

(pa)2

2mosc
+
moscω

2a2

2
, (1.23)

Hb
osc =

(pb)2

2mosc
+
moscω

2b2

2
. (1.24)

Parameters of the oscillators are assumed to be as follows√
~

moscω
= lP , (1.25)

where lP is the Planck’s length. We also consider the frequency ω to
be very large. In this case because of large distance between energy
levels ~ω the oscillators are in the ground state.

Taking into account (1.16), (1.17), (1.18), we can write

γij =
l0p0
4~2

(
(a · pb)δij − ajp

b
i

)
. (1.26)

As a result, the noncommutative algebra is characterized by the fol-
lowing relations

[Xi, Xj ] = iεijkl0ak, (1.27)

[Xi, Pj ] = i~
(
δij +

l0p0
4~2

(a · pb)δij −
l0p0
4~2

ajp
b
i

)
, (1.28)

[Pi, Pj ] = εijkp0p
b
k. (1.29)

Additional coordinates ai, bi can be treated as some internal co-
ordinates of a particle. Quantum fluctuations of ai, bi lead effectively

11



12 Chapter 1. Noncommutative space of canonical type

to a non-point-like particle. The size of the particle is of the order of
the Planck scale.

It is important to note that γij , θij , ηij commute with each other

[θij , ηij ] = [θij , γij ] = [γij , ηij ] = 0. (1.30)

Also, we have that the following commutation relations are satisfied

[θij , Xk] = [θij , Pk] = [ηij , Xk] =

= [ηij , Pk] = [γij , Xk] = [γij , Pk] = 0. (1.31)

So, similarly as in the case when θij , ηij , and γij are constants, tensors
θij , ηij and γij commute with coordinates and momenta. In this sense
we have that the constructed algebra (1.27)-(1.29) is equivalent to
noncommutative algebra of canonical type (1.7)-(1.9).

Commutation relations of algebra (1.27)-(1.29) remain the same
after rotation

[X ′
i, X

′
j ] = iεijkl0a

′
k, (1.32)

[X ′
i, P

′
j ] = i~

(
δij +

l0p0
4~2

(a′ · pb′)δij −
l0p0
4~2

a′jp
b′
i

)
, (1.33)

[P ′
i , P

′
j ] = εijkp0p

b′
k . (1.34)

Here we use the following notations

X ′
i = U(φ)XiU

+(φ), (1.35)

P ′
i = U(φ)PiU

+(φ), (1.36)

a′i = U(φ)aiU
+(φ), (1.37)

pb′i = U(φ)pbiU
+(φ). (1.38)

The rotation operator reads

U(φ) = e
i
~φ(n·L̃), (1.39)

where L̃ is the total angular momentum defined as

L̃ = [r× p] + [a× pa] + [b× pb], (1.40)

12



Chapter 1. Noncommutative space of canonical type 13

r = (x1, x2, x3). It is easy to show that L̃ satisfies the following rela-
tions

[L̃i, (a · p)] = [L̃i, (b · p)] = [L̃i, (a · b)] = 0, (1.41)

[L̃i, (r · a)] = [L̃i, (r · b)] = 0, (1.42)

[L̃i, (a · L)] = [L̃i, (b · L)] = [L̃i, (p
a · L)] = [L̃i, (p

b · L)] = 0, (1.43)

[L̃i, r
2] = [L̃i, p

2] = [L̃i, a
2] = [L̃i, b

2] = 0, (1.44)

[L̃i, (p
a)2] = [L̃i, (p

b)2] = 0.(1.45)

Here for convenience we introduce notation L = [r × p]. So, taking
these relations into account we have that

[L̃i, R] = 0, (1.46)

where R is the operator of distance. This operator on the basis of
(1.10), (1.11), (1.17), (1.18) can be rewritten as

R =

√∑
i

X2
i =

=

√
r2 +

l20
4~2

a2p2 − l0
4~2

(a · p)2 − l0
~
(a · L). (1.47)

So, after rotation, we obtain the same distance

R′ = U(φ)RU+(φ) = R. (1.48)

Also, the operator of the total angular momentum commutes with

momentum P =
√∑

i P
2
i . We have

[L̃i, P ] = 0, (1.49)

P =

√
p2 +

p20
4~2

r2(pb)2 − p20
4~2

(r · pb)2 +
p0
~
(pb · L). (1.50)

So, the absolute value of momentum does not change after rotation

P ′ = U(φ)PU+(φ) = P. (1.51)

13



14 Chapter 1. Noncommutative space of canonical type

Commutators for coordinates and total angular momentum are
the same as in the ordinary space (space with ordinary commutation
relations for operators of coordinates and momenta)

[Xi, L̃j ] = i~εijkXk, (1.52)

[Pi, L̃j ] = i~εijkPk, (1.53)

[ai, L̃j ] = i~εijkak, (1.54)

[pai , L̃j ] = i~εijkpak, (1.55)

[bi, L̃j ] = i~εijkbk, (1.56)

[pbi , L̃j ] = i~εijkpbk. (1.57)

Using (1.10), (1.11), (1.17), (1.18), for noncommutative coordi-
nates and noncommutative momenta we have the following represen-
tation

Xi = xi +
l0
2~

[a× p]i, (1.58)

Pi = pi −
p0
2~

[r× pb]i. (1.59)

The existence of such a representation guarantees that the Jacobi
identity is satisfied for all possible triplets of operators. Also, it
is important to note that from (1.58), (1.59) follows the following
relations

[Xi, p
a
j ] = iεijk

l0
2
pk, (1.60)

[Pi, bj ] = iεijk
l0
2
xk, (1.61)

[Xi, aj ] = [Xi, bj ] = [Xi, p
b
j ] = 0, (1.62)

[Pi, aj ] = [Pi, p
a
j ] = [Pi, p

b
j ] = 0. (1.63)

1.3 Free particle in rotationally-invariant quan-
tum phase space

Let us consider a free particle of mass m

Hp =
∑
i

P 2
i

2m
, (1.64)
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Chapter 1. Noncommutative space of canonical type 15

and study its energy levels in the frame of rotationally-invariant non-
commutative algebra (1.27)-(1.29). So, momenta in the Hamiltonian
do not commute, we have (1.29).

To construct algebra (1.27)-(1.29) we involve additional coordi-

nates and additional momenta ãi, b̃i, p̃
a
i , p̃

b
i , So, to find energy levels

of free particle in noncommutative phase space we have to consider
the total Hamiltonian as follows

H =
∑
i

P 2
i

2m
+Ha

osc +Hb
osc. (1.65)

Here Ha
osc, H

b
osc are Hamiltonians of harmonic oscillators, that are

given by (1.23), (1.24). For convenience, we introduce the following
operator

∆H = Hp − ⟨Hp⟩ab. (1.66)

Here ⟨...⟩ab denotes averaging over the eigenstates of oscillators
(1.23), (1.24) in the ground states ψa

0,0,0, ψ
b
0,0,0 .

⟨...⟩ab = ⟨ψa
0,0,0ψ

b
0,0,0|...|ψa

0,0,0ψ
b
0,0,0⟩. (1.67)

So, we can rewrite Hamiltonian (1.64) as follows

H = H0 +∆H, (1.68)

H0 = ⟨Hp⟩ab +Ha
osc +Hb

osc. (1.69)

Up to the second order in ∆H in the rotationally-invariant non-
commutative phase space we can study (1.69). To show this we find
corrections caused by the term ∆H to the energy levels of the total
Hamiltonian

H = Hs +Ha
osc +Hb

osc, (1.70)

here Hs is a Hamiltonian of a system. It is important that

[⟨Hs⟩ab,Ha
osc +Hb

osc] = 0. (1.71)

So, the eigenfunctions and the eigenvalues of Hamiltonian H0 read

ψ
(0)
{ns},{0},{0} = ψs

{ns}ψ
a
0,0,0ψ

b
0,0,0, (1.72)

E
(0)
{ns} = Es

{ns} + 3~ωosc, (1.73)
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16 Chapter 1. Noncommutative space of canonical type

Here for convenience we introduce the following notations ψs
{ns} are

eigenfunctions and Es
{ns} and eigenvalues of ⟨Hs⟩ab, {ns} are quantum

numbers. In the first order of the perturbation theory, the correction
reads

∆E(1) = ⟨ψs
{ns}ψ

a
0,0,0ψ

b
0,0,0|∆H|ψs

{ns}ψ
a
0,0,0ψ

b
0,0,0⟩ =

= ⟨ψs
{ns}|⟨Hs⟩ab − ⟨Hs⟩ab|ψs

{ns}⟩ = 0. (1.74)

Now, let us find corrections of the second order. We can write

∆E(2) =

=
∑

{n′
s},{na},{nb}

∣∣∣⟨ψ(0)

{n′
s},{na},{nb} |∆H|ψ(0)

{ns},{0},{0}

⟩∣∣∣2
Es

{n′
s}

− Es
{ns} − ~ωosc(na1 + na2 + na3 + nb1 + nb2 + nb3)

.

(1.75)

It is important to mention that the set {n′s}, {na}, {nb} does not
coincide with {ns},{0}, {0}. So, in the denominator of all terms in
the sum we have oscillator frequency ωosc. Mean values

⟨
ψ
(0)

{n′
s},{na},{nb} |∆H|ψ(0)

{ns},{0},{0}

⟩
, (1.76)

do not depend on ωosc This follows from the relation (1.25). In the
limit ωosc → ∞ the second order corrections are equal to zero

lim
ωosc→∞

∆E(2) = 0. (1.77)

This result will be used in our studies of energy levels of different
physical systems in the monograph.

So, let us apply the result for finding energy levels of free particle
in rotationally-invariant noncommutative phase space.

To find ⟨Hp⟩ab we use representation of noncommutative coordi-
nates and noncommutative momenta by xi, pi satisfying the ordinary

16



Chapter 1. Noncommutative space of canonical type 17

commutation relations

Xi = xi −
∑
j

1

2
θijpj = xi +

1

2
[θ × p]i, (1.78)

Pi = pi +
∑
j

1

2
ηijxj = pi −

1

2
[η × x]i, , (1.79)

θi =
∑
jk

εijk
θjk
2

=
cθl

2
P

~
ãi, (1.80)

ηi =
∑
jk

εijk
ηjk
2

=
cη~
l2P
p̃bi , (1.81)

here x = (x1, x2, x3), p = (p1, p2, p3). For convenience we introduce
dimensionless constants cθ, cη and dimensionless coordinates and mo-
menta

ãi =
ai
lP
, b̃i =

bi
lP
, (1.82)

p̃ai =
pai lP
~

, p̃bi =
pai lP
~

. (1.83)

So, the Hamiltonian of a particle reads

Hp =
p2

2m
− (η · [x× p])

2m
+

[η × x]2

8m
. (1.84)

Note that Hp does not depend on the ai, p
a
i . So, we have

⟨Hp⟩ab = ⟨ψb
0,0,0|Hp|ψb

0,0,0⟩. (1.85)

It is easy to calculate

⟨ψb
0,0,0|p̃bi |ψb

0,0,0⟩ = 0, (1.86)

⟨ψb
0,0,0|p̃bi p̃bj |ψb

0,0,0⟩ =
1

2
δij . (1.87)

So, for ⟨ηi⟩ab, and ⟨η2⟩ab we obtain

⟨ηi⟩ab = 0, (1.88)

⟨η2⟩ = ⟨η2⟩ab =
3(~cη)2

2l4P
. (1.89)
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18 Chapter 1. Noncommutative space of canonical type

Therefore after averaging Hp over the eigenfunctions of the harmonic
oscillators we obtain

⟨Hp⟩ab =
p2

2m
+

⟨η2⟩x2

12m
. (1.90)

On the basis of this result (1.90), we find

∆H = −(η · [x× p])

2m
+

[η × x]2

8m
− ⟨η2⟩x2

12m
. (1.91)

Hamiltonian ⟨Hp⟩ab corresponds to the Hamiltonian of harmonic os-
cillator with mass m and frequency

ω =

√
⟨η2⟩
6m2

, (1.92)

in the ordinary space (coordinates and momenta xi, pj satisfy the
ordinary commutation relations).

Expression for ∆H contains terms of the first and second orders
in the parameter of momentum noncommutativity. So, the energy
levels of free particle in rotationally-invariant noncommutative phase
space up to the second order in the parameter of momentum non-
commutativity are as follows

En1,n2,n3 =

√
~2⟨η2⟩
6m2

(
n1 + n2 + n3 +

3

2

)
, (1.93)

n1 = 0, 1, 2..., n2 = 0, 1, 2..., n3 = 0, 1, 2....

So, we can conclude that because of the noncommutativity of
momenta, the energy levels of free particles are quantized. They cor-
respond to the energy levels of a harmonic oscillator with frequency
determined by the parameter of momentum noncommutativity and
given by (1.93)

18



Chapter 1. Noncommutative space of canonical type 19

1.4 Harmonic oscillator in rotationally-invariant
space with noncommutativity of coordi-
nates and noncommutativity of momenta

We consider three-dimensional harmonic oscillator with mass m and
frequency ω in the frame of noncommutative algebra (1.27)-(1.29)

Hosc =
∑
i

P 2
i

2m
+
∑
i

mω2X2
i

2
. (1.94)

Similarly, as in the previous section let us write the total Hamiltonian

H = H0 +∆H, (1.95)

H0 = ⟨Hosc⟩ab +Ha
osc +Hb

osc, (1.96)

∆H = Hosc − ⟨Hosc⟩ab. (1.97)

To find ⟨Hosc⟩ab we use representation (2.145)-(2.146) and rewrite the
Hamiltonian as follows

Hosc =
p2

2m
+
mω2x2

2
− (η · [x× p])

2m
− mω2(θ · [x× p])

2
+

+
[η × x]2

8m
+
mω2[θ × p]2

8
, (1.98)

Using (4.27), (4.30), (1.86), (1.87) we obtain

⟨ψa
0,0,0|ãi|ψa

0,0,0⟩ = 0, (1.99)

⟨ψa
0,0,0|ãiãj |ψa

0,0,0⟩ =
1

2
δij . (1.100)

(1.101)

So, finally, we find

⟨Hosc⟩ab =
(

1

2m
+
mω2⟨θ2⟩

12

)
p2 +

(
mω2

2
+

⟨η2⟩
12m

)
x2, (1.102)

where we use the following notation

⟨η2⟩ = ⟨η2⟩ab =
3(~cη)2

2l4P
. (1.103)
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20 Chapter 1. Noncommutative space of canonical type

Note, that ∆H reads

∆H = −(η · [x× p])

2m
− mω2(θ · [x× p])

2
+

[η × x]2

8m
+

+
mω2[θ × x]2

8

mω2⟨θ2⟩
12

p2 − ⟨η2⟩
12m

x2, (1.104)

and it contains terms of the first and second orders in the parameters
of noncommutativity. So, up to the second order in the parameters
of coordinates and momentum noncommutativity, we obtain the fol-
lowing energy levels of the harmonic oscillator

En1,n2,n3 =

= ~

√(
mω2 +

⟨η2⟩
6m

)(
1

m
+
mω2⟨θ2⟩

6

)(
n1 + n2 + n3 +

3

2

)
(1.105)

n1, n2, n3 are quantum numbers, n1 = 0, 1, 2..., n2 = 0, 1, 2..., n3 =
0, 1, 2... .

Note that we have correspondence of the spectrum of harmonic
oscillators in the quantum space written up to the second order in
the parameters of noncommutativity and spectrum of harmonic os-
cillator in the ordinary space. Noncommutativity affects the mass
and the frequency of the oscillator and does not affect the form of its
spectrum. From (1.102), we have

meff =
6m

6 +m2ω2⟨θ2⟩
, (1.106)

ωeff =

√(
mω2 +

⟨η2⟩
6m

)(
1

m
+
mω2⟨θ2⟩

6

)
. (1.107)

Note, that in the limits ⟨θ2⟩ → 0, ⟨η2⟩ → 0 we obtain meff = m,
ωeff = ω. So, the limits expression (1.105) reduces to the spectrum
of the harmonic oscillator in the ordinary space.

Based on the results obtained in this section in the next section
we will study the length in quantum space with preserved rotational
symmetry.

20



Chapter 1. Noncommutative space of canonical type 21

1.5 Length in quantum space with preserved
rotational symmetry

We study squared length operator defined as

Q2 = α2
∑
i

P 2
i + β2

∑
i

X2
i , (1.108)

with α and β being constants. Let us find the eigenvalues of the
operator in noncommutative phase space with preserved rotational
symmetry. So, we consider Xi, Pi satisfying relations of algebra
(1.27)-(1.29).

OperatorQ2 can be considered as Hamiltonian of a tree-dimensional
harmonic oscillator with mass

m =
1

2α2
, (1.109)

and frequency

ω = 2αβ. (1.110)

So, we can use results presented in the previous section and write
eigenvalues of the operator Q2 up to the second order in the param-
eters of noncommutativity as follows

q2n1,n2,n3
=

= ~

√(
2β2 +

α2⟨η2⟩
3

)(
2α2 +

β2⟨θ2⟩
3

)(
n1 + n2 + n3 +

3

2

)
,

(1.111)

n1 = 0, 1, 2..., n2 = 0, 1, 2..., n3 = 0, 1, 2.... Let us analyze the mini-
mal length on the basis of result (1.111). We have

q2min =
√
q20,0,0 =

√
~ 4

√
2β2 +

α2⟨η2⟩
3

4

√
2α2 +

β2⟨θ2⟩
3

(1.112)

So, the expression for the minimal length depends on the parameters
of coordinate and momentum noncommutativity ⟨θ2⟩, ⟨η2⟩.
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22 Chapter 1. Noncommutative space of canonical type

Let us study particular cases. Namely, α = 0, β = 1. In this case
one has the squared length operator in the coordinate space

R2 =

3∑
i=1

X2
i . (1.113)

Using (1.111), the eigenvalues of the operator read

r2n1,n2,n3
=

√
2~2⟨θ2⟩

3

(
n1 + n2 + n3 +

3

2

)
, (1.114)

here n1 = 0, 1, 2..., n2 = 0, 1, 2..., n3 = 0, 1, 2.... From (1.114) ex-
pression follows that the squared length is quantized. This is caused
by the noncommutativity of coordinates. The minimal length in the
coordinate space reads

rmin =
√
r20,0,0 =

√
3~2⟨θ2⟩

2
. (1.115)

It is determined by the parameter of coordinate noncommutativity
⟨θ2⟩.

Let us also study another particular case when α = 1, β = 0. In
this case we have squared length operator in momentum space. It
reads

P2 =
3∑

i=1

P 2
i . (1.116)

p2n1,n2,n3
=

√
2~2⟨η2⟩

3

(
n1 + n2 + n3 +

3

2

)
, (1.117)

n1 = 0, 1, 2..., n2 = 0, 1, 2..., n3 = 0, 1, 2.... And the minimal length
in the momentum space is determined by parameter of momentum
noncommutativity. We have

pmin =
√
p20,0,0 =

4

√
3~2⟨η2⟩

2
. (1.118)
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1.6 Conclusions

A way to construct algebra with noncommutativity of coordinates
and noncommutativity of momenta which is rotationally-invariant
and equivalent to noncommutative algebra of canonical type has been
proposed. The idea of generalization of the parameters of noncom-
mutativity to tensors has been used to construct algebra (1.7)-(1.9).
The tensors have been defined with the help of additional coordinates
and conjugate momenta of them that are governed by harmonic os-
cillators. The length of the oscillators has been considered to be the
Planck length. The frequency of the oscillators is assumed to be very
large. Therefore harmonic oscillators that are in the ground state
remains in them.

The spectrum of free particle has been studied in the frame of
rotationally-invariant noncommutative algebra. Up to the second or-
der in the parameters of noncommutativity it is shown that the energy
levels of a free particle in noncommutative phase space correspond to
the energy levels of harmonic oscillator (1.93) with frequency defined
by the parameter of momentum noncommutativity (1.92).

Also, harmonic oscillator has been examined in rotationally-invariant
noncommutative phase space. We have found energy levels of the
oscillator up to the second order in the parameters of noncommuta-
tivity. We have concluded that noncommutativity of coordinates and
noncommutativity of momenta affect on the mass and the frequency
of the oscillator. The expression for the energy levels of the harmonic
oscillator in noncommutative phase space corresponds to that in the
ordinary space.

Based on the obtained results the minimal length has been stud-
ied in the frame of rotationally-invariant noncommutative algebra.
Squared length operator has been considered in coordinate, momen-
tum space, and phase space. The eigenvalues of the operators (1.111),
(1.114), (1.117) have been obtained up to the second order in the
parameters of coordinate and momentum noncommutativity. Based
on the results the minimal lengths in coordinate space, momentum
space, and phase space have been obtained (1.115), (1.118), (1.112).
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Chapter 2

Hydrogen and exotic
atoms in noncommutative
space with preserved
rotational symmetry

2.1 Introduction

Studies of a hydrogen atom in noncommutative space have received
much attention (see [27–37]). In paper [27] energy levels of hydrogen
atom were obtained up to the first order in the parameter of noncom-
mutativity. In the paper, the Lamb shift in noncommutative space
was studied. In paper [28] the case when particles of opposite charges
feel opposite noncommutativity was examined. In the frame of such
an algebra the hydrogen atom as a two-particle system was consid-
ered. In [30] the quadratic Stark effect was studied. In [31] shifts in
the spectrum of hydrogen atom caused by space quantization were
presented. In [32] the noncommutative Klein-Gordon equation was
studied and the hydrogen atom energy levels were calculated. The
influence of noncommutativity on the Dirac equation with a Coulomb
field was studied in [33,34].

Effect of noncommutativity of coordinates and noncommutativ-
ity of momenta on the energy levels of hydrogen atom was examined
in [35–37]. Hydrogen atom problem in the frame of space-time non-
commutativity was considered in [38–42].
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26 Chapter 2. Hydrogen and exotic atoms in noncommutative space

In the present chapter, we examine hydrogen atom and hydrogen-
like exotic atoms in the frame of rotationally-invariant noncommu-
tative algebra of canonical type. The energy levels of the hydrogen
atom are found up to the second order in the parameters of coor-
dinate and momentum noncommutativity. Based on the obtained
results the upper bounds for the parameters are estimated. Also, a
two-particle system with Coulomb interaction is studied in the frame
of rotationally-invariant noncommutative algebra. We examine the
influence of space quantization on the energy levels of the system.
Based on the obtained results the energy levels of muonic hydrogen
and antiprotonic helium are examined.

The chapter is organized as follows. In section 2.2 the Hamilto-
nian of a hydrogen atom is examined in the frame of rotationally-
invariant noncommutative algebra. In section 2.2 corrections to the
energy levels of hydrogen atom are found up to the second order
in the perturbation theory. Section 2.3 is devoted to studies of the
corrections to the ns energy levels of hydrogen atom. The effect of
noncommutaivity on energy levels of the hydrogen-like atoms is ex-
amined in section 2.5. Upper founds for the parameters of coordinate
and momentum noncommutativity are obtained in section 2.6. Sec-
tion 2.7 is devoted to conclusions. Results presented in this chapter
are published in [43–46].

2.2 Hamiltonian of hydrogen atom in non-
commutative phase space with preserved
rotational symmetry

Let us consider hydrogen atom and find corrections to the energy
levels of the atom in rotationally invariant noncommutative phase
space (1.27)-(1.29). So, we consider the total Hamiltonian

H = Hh +Ha
osc +Hb

osc, (2.1)

where

Hh =
P 2

2M
− e2

R
, (2.2)

is the Hamiltonian of the hydrogen atom. Here R =
√∑

iX
2
i , coor-

dinates Xi and momenta Pi satisfy relations of noncommutative al-
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Chapter 2. Hydrogen and exotic atoms in noncommutative space 27

gebra (1.27)-(1.29) Hamiltonians Ha
osc, H

b
osc correspond to harmonic

oscillators and are given by (1.23), (1.24).
Using representation for coordinates and momenta that satisfy

relations of noncommutative algebra by coordinates and momenta
satisfying the ordinary relations we can write

Hh =
p2

2M
+

(η · L)
2M

+
[η × r]2

8M
− e2√

r2 − (θ · L) + 1
4 [θ × p]2

. (2.3)

To find effect of noncommutativity of the energy levels of the
hydrogen atom we expand Hamiltonian of the hydrogen atom in the
series over θ. For 1/R we obtain

1

R
=

1√
r2 − (θ · L) + 1

4 [θ × p]2
=

=
1

r
+

1

2r3
(θ · L) + 3

8r5
(θ · L)2 −

− 1

16

(
1

r2
[θ × p]2

1

r
+

1

r
[θ × p]2

1

r2
+

~2

r7
[θ × r]2

)
. (2.4)

To find expansion for 1/R, firstly we solve problem of finding
the expansion of R up to the second order in θ. Expression for the
distance reads

R =

√
(r+

1

2
[θ × p])2 =

√
r2 − (θ · L) + 1

4
[θ × p]2. (2.5)

It is important to stress that the operators under the square root do
not commute. Therefore we introduce unknown function f(r) and
find the expansion in the following form

R = r − 1

2r
(θ · L)− 1

8r3
(θ · L)2 +

+
1

16

(
1

r
[θ × p]2 + [θ × p]2

1

r
+ θ2f(r)

)
. (2.6)

Then to obtain f(r) we square left- and right-hand sides of equation
(2.6). Up to the second order in θ we can write

r2 − (θ · L) + 1

4
[θ × p]2 = r2 − (θ · L) +

+
1

16

(
2[θ × p]2 + r[θ × p]2

1

r
+

1

r
[θ × p]2r + 2rθ2f(r)

)
. (2.7)
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28 Chapter 2. Hydrogen and exotic atoms in noncommutative space

From (2.7) we have

~2

r4
[θ × r]2 − rθ2f(r) = 0. (2.8)

And finally, function f(r) reads

θ2f(r) =
~2

r5
[θ × r]2. (2.9)

So, expansion for the distance is as follows

R = r − 1

2r
(θ · L)− 1

8r3
(θ · L)2 +

+
1

16

(
1

r
[θ × p]2 + [θ × p]2

1

r
+

~2

r5
[θ × r]2

)
. (2.10)

Then on the basis of this result we can easily write (2.4). As a result
the total Hamiltonian reads

H = H0 + V. (2.11)

Here V is the perturbation operator

V =
(η · L)
2M

+
[η × r]2

8M
− e2

2r3
(θ · L)− 3e2

8r5
(θ · L)2 +

+
e2

16

(
1

r2
[θ × p]2

1

r
+

1

r
[θ × p]2

1

r2
+

~2

r7
[θ × r]2

)
, (2.12)

and H0 contains Hamiltonian of the hydrogen atom in the ordinary
space and terms corresponding to harmonic oscillators

H0 =
p2

2M
− e2

r
+Ha

osc +Hb
osc. (2.13)

2.3 Effect of noncommutativity of the energy
levels of the hydrogen atom

Let us calculate corrections to the energy levels of hydrogen atom
caused by noncommutativity of coordinates and noncommutativity
of momenta. It is important that[

p2

2M
− e2

r
,Ha

osc

]
=

[
p2

2M
− e2

r
,Hb

osc

]
=
[
Ha

osc,H
b
osc

]
= 0. (2.14)
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So, the eigenvalues and eigenstates of Hamiltonian H0 can be written
as follows

E
(0)

n,{na},{nb} = − e2

2aBn2
+

+~ω(na1 + na2 + na3 + nb1 + nb2 + nb3 + 3), (2.15)

ψ
(0)

n,l,m,{na},{nb} = ψn,l,mψ
a
na
1 ,n

a
2 ,n

a
3
ψb
nb
1,n

b
2,n

b
3
. (2.16)

Here aB is the Bohr radius, ψn,l,m are well known eigenfunctions of the
hydrogen atom in the ordinary space (θij = ηij = 0) and ψa

na
1 ,n

a
2 ,n

a
3
,

ψb
nb
1,n

b
2,n

b
3
are eigenfunctions of three-dimensional harmonic oscillators

Ha
osc, H

b
osc. Using perturbation theory and taking into account that

the frequency of the oscillators is large and they are in the ground
states we can write

∆E
(1)
n,l = ⟨ψ(0)

n,l,m,{0},{0}|V |ψ(0)
n,l,m,{0},{0}⟩. (2.17)

Note, that

⟨ψa
0,0,0|θi|ψa

0,0,0⟩ = 0, (2.18)

⟨ψb
0,0,0|ηi|ψb

0,0,0⟩ = 0. (2.19)

So, we can write⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣(η · L)
2M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
= 0, (2.20)⟨

ψ
(0)
n,l,m,{0},{0}

∣∣∣∣ e22r3
(θ · L)

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
= 0. (2.21)

Effect of momentum noncommutativity is represented by the terms
[η × r]2/8M . The corrections caused by the term reads⟨

ψ
(0)
n,l,m,{0},{0}

∣∣∣∣ [η × r]2

8M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
=

=

⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣η2r28M
− (η · r)2

8M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
=

=
a2Bn

2

24M
(5n2 + 1− 3l(l + 1))⟨η2⟩. (2.22)
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To write the expression we use

⟨ψb
0,0,0|ηiηj |ψb

0,0,0⟩ =
moscωp

2
o

2~
δij =

1

3
⟨η2⟩δij , (2.23)

where ⟨η2⟩ is given by

⟨η2⟩ = p2o
~2

⟨ψb
0,0,0|(pb)2|ψb

0,0,0⟩ =
3moscωp

2
o

2~
=

3p2o
2l2P

. (2.24)

We also take into account the following result for the mean value (see,
for example, [47])

⟨
ψn,l,m

∣∣r2∣∣ψn,l,m

⟩
= a2B

n2

2
(5n2 + 1− 3l(l + 1)). (2.25)

To find correction caused by term 3e2(θ · L)2/8r5 we take into
account the following result for the mean value (see for instance [47])⟨

ψn,l,m

∣∣∣∣ 1r5
∣∣∣∣ψn,l,m

⟩
=

=
4(5n2 − 3l(l + 1) + 1)

a5Bn
5l(l + 1)(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

. (2.26)

We also calculate

⟨ψa
0,0,0ψ

b
0,0,0|θiθj |ψa

0,0,0ψ
b
0,0,0⟩ =

1

2

( α

mω

)2
δij =

1

3
⟨θ2⟩δij . (2.27)

As a result, on the basis of (2.26), (2.27), we find⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣3e28r5
(θ · L)2

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
=

=
~2e2(5n2 − 3l(l + 1) + 1)⟨θ2⟩

2a5Bn
5(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

. (2.28)

Then, let us rewrite last terms in the perturbation as follows

1

r2
[θ × p]2

1

r
+

1

r
[θ × p]2

1

r2
+

~2

r7
[θ × r]2 = θ2

1

r2
p2

1

r
+

+θ2
1

r
p2

1

r2
+ θ2

~2

r5
− 1

r2
(θ · p)2 1

r
− 1

r
(θ · p)2 1

r2
− ~2

r7
(θ · r)2. (2.29)
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So, after averaging over the eigenfunctions of the harmonic oscillators
we find⟨
ψa
0,0,0ψ

b
0,0,0

∣∣∣∣ 1r2 (θ · p)2 1
r
+

1

r
(θ · p)2 1

r2
+

~2

r7
(θ · r)2

∣∣∣∣ψa
0,0,0ψ

b
0,0,0

⟩
=

=
1

3

(
1

r2
p2

1

r
+

1

r
p2

1

r2
+

~2

r5

)
⟨θ2⟩.

(2.30)

So, we can write⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣ 1r2 [θ × p]2
1

r
+

1

r
[θ × p]2

1

r2

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
+

+

⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣~2r7 [θ × r]2
∣∣∣∣ψ(0)

n,l,m,{0},{0}

⟩
=

=
2

3

⟨
ψn,l,m

∣∣∣∣ 1r2 p2 1r +
1

r
p2

1

r2
+

~2

r5

∣∣∣∣ψn,l,m

⟩
⟨θ2⟩.

(2.31)

We represent 1
r2
p2 1r +

1
rp

2 1
r2

+ ~2
r5

as follows

1

r2
p2

1

r
+

1

r
p2

1

r2
+

~2

r5
=

1

r3
p2 + p2

1

r3
+

5~2

r5
. (2.32)

So, the correction reads⟨
ψn,l,m

∣∣∣∣ 1r2 p2 1r +
1

r
p2

1

r2
+

~2

r5

∣∣∣∣ψn,l,m

⟩
=

= − 2~2

a2Bn
2

⟨
ψn,l,m

∣∣∣∣ 1r3
∣∣∣∣ψn,l,m

⟩
+

+
4~2

aB

⟨
ψn,l,m

∣∣∣∣ 1r4
∣∣∣∣ψn,l,m

⟩
+ 5~2

⟨
ψn,l,m

∣∣∣∣ 1r5
∣∣∣∣ψn,l,m

⟩
. (2.33)

Taking into account well-known results for the mean values (see for
instance [47]) ⟨

ψn,l,m

∣∣∣∣ 1r3
∣∣∣∣ψn,l,m

⟩
=

2

a3Bn
3l(l + 1)(2l + 1)

, (2.34)⟨
ψn,l,m

∣∣∣∣ 1r4
∣∣∣∣ψn,l,m

⟩
=

4(3n2 − l(l + 1))

a4Bn
5l(l + 1)(2l + 1)(2l + 3)(2l − 1)

, (2.35)
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and all the obtained results we can write explicit expression for the
corrections to the energy levels caused by coordinates noncommuta-
tivity. It reads

⟨
ψ
(0)
n,l,m,{0},{0}

∣∣∣∣−3e2

8r5
(θ · L)2 + e2

16r2
[θ × p]2

1

r

∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
+⟨

ψ
(0)
n,l,m,{0},{0}

∣∣∣∣ e216
(
+
1

r
[θ × p]2

1

r2
+

~2

r7
[θ × r]2

)∣∣∣∣ψ(0)
n,l,m,{0},{0}

⟩
=

−~2e2⟨θ2⟩
a5Bn

5

(
1

6l(l + 1)(2l + 1)
− 6n2 − 2l(l + 1)

3l(l + 1)(2l + 1)(2l + 3)(2l − 1)
+

5n2 − 3l(l + 1) + 1

2(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)
−

5

6

5n2 − 3l(l + 1) + 1

l(l + 1)(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

)
,

(2.36)

where ⟨θ2⟩ is given by

⟨θ2⟩ = l20
~2

⟨ψa
0,0,0|a2|ψa

0,0,0⟩ =
3l20
2~

(
1

moscω

)
=

3l20l
2
P

2~2
. (2.37)

So, using (2.20), (2.21), (2.22) and (2.36) in the first order of
perturbation theory effect of noncommutativity on the energy levels
of hydrogen atom is as follows

∆E
(1)
n,l = ∆E

(η)
n,l +∆E

(θ)
n,l , (2.38)

where

∆E
(η)
n,l =

a2Bn
2⟨η2⟩

24M
(5n2 + 1− 3l(l + 1)), (2.39)

are corrections to the spectrum caused by the noncommutativity of
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momenta and

∆E
(θ)
n,l = −~2e2⟨θ2⟩

a5Bn
5

(
− 6n2 − 2l(l + 1)

3l(l + 1)(2l + 1)(2l + 3)(2l − 1)
+

+
1

6l(l + 1)(2l + 1)
+

5n2 − 3l(l + 1) + 1

2(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)
−

−5

6

5n2 − 3l(l + 1) + 1

l(l + 1)(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

)
,

(2.40)

being corrections caused by coordinates noncommutativity.
Note that in the second order of the perturbation theory we have

∆E
(2)
n,l,m,{0} =

∑
n′,l′,m′,{na},{nb}

∣∣∣⟨ψ(0)

n′,l′,m′,{na},{nb} |V |ψ(0)
n,l,m,{0},{0}

⟩∣∣∣2
E

(0)
n − E

(0)
n′ − ~ω(na1 + na2 + na3 + nb1 + nb2 + nb3)

,

(2.41)

E(0)
n = − e2

2aBn2
.

(2.42)

In the limit ω → ∞ this correction vanish

lim
ω→∞

∆E
(2)
n,l,m,{0} = 0. (2.43)

So, up to the second order in the parameters of coordinates non-
commutativity and parameters of momentum noncommutativity the
corrections to the energy levels of the hydrogen atom are as follows

∆En,l = ∆E
(1)
n,l . (2.44)

It is important to stress that the obtained corrections to the en-
ergy levels of the hydrogen atom (2.44) are divergent for l = 0 and
l = 1. From this follows that we can not use expansion of hamiltonian
into the series over the parameter of coordinate noncommutativity. In
the next section we find finite result for corrections to the ns energy
levels of the hydrogen atom. We are interested in the corrections
because on the basis of the results, stringent upper bound for the
minimal length can be found.
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2.4 Corrections to the ns energy levels of the
hydrogen atom in noncommutative phase
space

To calculate corrections to the ns energy levels we rewrite perturba-
tion V caused by noncommutativity of coordinates and noncommu-
tativity of momenta as follows

V =
(η · L)
2M

+
[η × r]2

2M
− e2

R
+
e2

r
=

= − e2√
r2 − (θ · L) + 1

4 [θ × p]2
+
e2

r
. (2.45)

So, the corrections read

∆Ens =

=

⟨
ψ
(0)
n,0,0,{0},{0}

∣∣∣∣(η · L)
2M

+
[η × r]2

8M

∣∣∣∣ψ(0)
n,0,0,{0},{0}

⟩
+

+

⟨
ψ
(0)
n,0,0,{0},{0}

∣∣∣∣∣∣−e
2

r
− e2√

r2 − (θ · L) + 1
4 [θ × p]2

∣∣∣∣∣∣ψ(0)
n,0,0,{0},{0}

⟩
.

(2.46)

It is important to note that

[(θ · L), [θ × p]2] = [(θ · L), r2] = 0. (2.47)

Also, we have

(θ · L)ψ(0)
n,0,0,{0},{0}(r,a,b) = 0. (2.48)

So, we can write

∆Ens =
a2Bn

2⟨η2⟩
24M

(5n2 + 1) +⟨
ψ
(0)
n,0,0,{0},{0}(r,a,b)

∣∣∣∣∣∣e
2

r
− e2√

r2 + 1
4 [θ × p]2

∣∣∣∣∣∣ψ(0)
n,0,0,{0},{0}(r,a,b)

⟩
.

(2.49)
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We introduce a′ = a/lp, b
′ = b/lp,

r′ =

√
2

α

r

lp
, (2.50)

with lp being the Planck length. So, we can rewrite θ as

θ =
αl2p
~

θ′, (2.51)

θ′ = [a′ × b′]. (2.52)

So, the corrections caused by noncommutativity of coordinates ∆E
(θ)
ns

reads

∆E(θ)
ns =

χ2e2

aB
Ins(χ), (2.53)

where

Ins(χ) =

∫
da′ψ̃a

0,0,0(a
′)

∫
db′ψ̃b

0,0,0(b
′)

∫
dr′ψ̃n,0,0(χr

′)(
1

r′
− 1√

(r′)2 + [θ′ × p′]2

)
ψ̃n,0,0(χr

′)ψ̃a
0,0,0(a

′)ψ̃b
0,0,0(b

′), (2.54)

and

χ =

√
α

2

lp
aB

. (2.55)

Eigenfunctions of harmonic oscillators and hydrogen atom read

ψ̃a
0,0,0(a

′) = π−
3
4 e−

(a′)2
2 , (2.56)

ψ̃b
0,0,0(b

′) = π−
3
4 e−

(b′)2
2 , (2.57)

ψ̃n,0,0(χr
′) =

√
1

πn5
e−

χr′
n L1

n−1

(
2χr′

n

)
, (2.58)

L1
n−1

(
2χr′

n

)
are the generalized Laguerre polynomials.
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Integral (2.54) is finite for χ = 0. So, the asymptotic of ∆E
(θ)
ns for

χ→ 0 reads

∆E(θ)
ns =

χ2e2

aB
Ins(0). (2.59)

So, to obtain the asymptotic of ∆E
(θ)
ns we have to calculate integral

Ins(0). As the firs step we consider the integral over r′. We have

Ins(χ,θ
′) =

=

∫
dr′ψ̃n,0,0(χr

′)

(
1

r′
− 1√

(r′)2 + [θ′ × p′]2

)
ψ̃n,0,0(χr

′). (2.60)

In the momentum representation the integral reads

Ins(χ,θ
′) =

=
1

χ6

∫
dp′ψ̃n,0,0

(
p′

χ

)
×

×

 1√
−∇2

p′

− 1√
−∇2

p′ + [θ′ × p′]2

 ψ̃n,0,0

(
p′

χ

)
, (2.61)

here

∇2
p′ =

∑
i

∂2

(∂p′i)
2
. (2.62)

Integral Ins(χ,θ
′) does not depend on the direction of the vector θ′.

36



Chapter 2. Hydrogen and exotic atoms in noncommutative space 37

So, we can rewrite the integral as

Ins(χ,θ
′) = Ins(χ, θ

′) =
1

4πχ6

∫
dΩ

∫
dp′ψ̃n,0,0

(
p′

χ

)
×

×

 1√
−∇2

p′

− 1√
−∇2

p′ + [θ′ × p′]2

 ψ̃n,0,0

(
p′

χ

)
=

=
1

4πχ6

∫
dΩ

∫
dp′ψ̃n,0,0

(
p′

χ

)
×

×

 1√
−∇2

p′

− 1√
−∇2

p′ + (θ′)2(p′)2 sin2Θ

 ψ̃n,0,0

(
p′

χ

)
,

(2.63)

here Θ is an angle between vectors θ′ and p′, θ′ = |θ′|, and dΩ =
sinΘdΘdΦ.

Let us use substitution

p̃ = κp′, (2.64)

κ =
√
θ′ sinΘ, (2.65)

and return to the coordinate representation. So, we have

Ins(χ, θ
′) =

θ′

2

∫ π

0
dΘsin2Θ

∫
dr̃ψ̃n,0,0(κχr̃)×

×

(
1

r̃
− 1√

r̃2 + p̃2

)
ψ̃n,0,0(κχr̃) =

θ′

2

∫ π

0
dΘsin2Θ

∫ ∞

0
dr̃ ×

×r̃2R̃n,0(κχr̃)

1

r̃
− 1√

r̃2 + p2r̃

 R̃n,0(κχr̃),

(2.66)

with R̃n,0(κχr̃) being radial wave function of the hydrogen atom

R̃n,0(κχr̃) =

√
4

n5
e−

κχr̃
n L1

n−1

(
2κχr̃

n

)
, (2.67)
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and

pr̃ = −i1
r̃

∂

∂r̃
r̃. (2.68)

Then for convenience we use notation

Sns(κχ) =

= 4

∫ ∞

0
dr̃r̃2e−

κχr̃
n L1

n−1

(
2κχr̃

n

)
×

×

1

r̃
− 1√

r̃2 + p2r̃

 e−
κχr̃
n L1

n−1

(
2κχr̃

n

)
. (2.69)

So, for Ins(χ, θ
′) we obtain

Ins(χ, θ
′) =

θ′

2n5

∫ π

0
dΘsin2ΘSns(κχ). (2.70)

Taking into account

Ins(0) = ⟨Ins(0, θ′)⟩a′,b′ , (2.71)

Ins(0, θ
′) =

θ′

2n5

∫ π

0
dΘsin2ΘSns(0) =

πθ′

4n5
Sns(0), (2.72)

we have

∆E(θ)
ns =

π⟨θ′⟩χ2e2

4aBn5
Sns(0), (2.73)

⟨θ′⟩ = ⟨ψ̃a
0,0,0(a

′)ψ̃b
0,0,0(b

′)|
√∑

i

(θ′i)
2|ψ̃a

0,0,0(a
′)ψ̃b

0,0,0(b
′)⟩ = 1.(2.74)

Note, that

Sns(0) = S1s(0)n
2. (2.75)

On the basis of (2.74), (2.75), we find expression for the leading term
in the asymptotic expansion of the corrections to the ns energy levels

∆Ens =
πχ2e2

4aBn3
S1s(0). (2.76)
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So, we have to calculate the integral

S1s(0) = 4

∫ ∞

0
dr̃r̃2

1

r̃
− 1√

r̃2 + p2r̃

 . (2.77)

We expand 1 over the eigenfunctions of operator r̃2 + p2r̃. They read

ϕk =

√
2k!

Γ(k + 3
2)
e−

r̃2

2 L
1
2
k (r̃

2). (2.78)

We have

1 =
∞∑
k=0

Ckϕk, (2.79)

Ck are the expansion coefficients, which are as follows

Ck =

√
2k!

Γ(k + 3
2)

∫ ∞

0
dr̃r̃2e−

r̃2

2 L
1
2
k

(
r̃2
)
= (−1)k

√
4Γ(k + 3

2)

k!
.(2.80)

So, for the second term in (2.77) we obtain∫ ∞

0
dr̃r̃2

1√
r̃2 + p2r̃

=

∞∑
k=0

C2
k√
λk
, (2.81)

where

λk = 2

(
2k +

3

2

)
, (2.82)

are the eigenvalues of operator r̃2 + p2r̃.
Let us represent the first term in (2.77) as follows∫ ∞

0
dr̃r̃ =

∞∑
k=0

CkIk, (2.83)

Ik =

√
2k!

Γ(k + 3
2)

∫ ∞

0
dr̃r̃e−

r̃2

2 L
1
2
k

(
r̃2
)
=

= (−1)k

√
8k!

πΓ(k + 3
2)

2F1

(
−k, 1

2
;
3

2
; 2

)
, (2.84)
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where 2F1

(
−k, 12 ;

3
2 ; 2
)
is the hypergeometric function. Using (2.81),

(2.83), we obtain

S1s(0) = 4

∞∑
k=0

(
CkIk −

C2
k√
λk

)
=

= 16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!

(
2F1

(
−k, 1

2
;
3

2
; 2

)
−
√

π

8k + 6

)
. (2.85)

It is important to mention that the two sums in S1s(0)

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!
2F1

(
−k, 1

2
;
3

2
; 2

)
, (2.86)

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!

√
π

8k + 6
, (2.87)

are divergent. But the value of S1s(0) is finite. To study the sums
(2.86), (2.87) separately we consider additional multiplier ηk (η < 1)

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!
2F1

(
−k, 1

2
;
3

2
; 2

)
ηk, (2.88)

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!

√
π

8k + 6
ηk. (2.89)

In the case of η = 1 we find (2.86), (2.87).

First let us calculate (2.89). It is easy to show that√
π

k + 3
4

= 2

∫ ∞

0
dze−(k+ 3

4
)z2 . (2.90)

Also, we can write

∞∑
k=0

Γ(k + 3
2)

k!
tk =

√
π

2(1− t)
3
2

. (2.91)
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As a result, using (2.90), (2.91), we find

16
√
2

∞∑
k=0

Γ(k + 3
2)

k!
√
8k + 6

ηk =

= 16

∞∑
k=0

Γ(k + 3
2)

k!
√
π

ηk
∫ ∞

0
dze−(k+ 3

4
)z2 =

= 8

∫ ∞

0
dz

e−
3
4
z2

(1− ηe−z2 )
3
2

. (2.92)

To calculate (2.88) we represent the hypergeometric function as

2F1

(
−k, 1

2
;
3

2
; 2

)
=

k∑
q=0

(−1)qCq
k2

q

2q + 1
, (2.93)

here Cq
k are the binomial coefficients. We can write

1

2q + 1
=

∫ 1

0
dzz2q. (2.94)

So, taking into account (2.93), (2.94), we find

2F1

(
−k, 1

2
,
3

2
, 2

)
=

k∑
q=0

∫ 1

0
dzCq

k(−2)qz2q =

∫ 1

0
dz(1− 2z2)k.(2.95)

Then, using (2.91) and (2.95), we rewrite (2.88) as

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!
2F1

(
−k, 1

2
,
3

2
, 2

)
ηk =

= 16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!
ηk
∫ 1

0
dz(1− 2z2)k =

= 8
√
2

∫ 1

0

dz

(1− η(1− 2z2))
3
2

. (2.96)
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We split the integral (2.96) into two integrals as∫ 1

0

dz

(1− η(1− 2z2))
3
2

= I1(η) + I2(η), (2.97)

I1(η) =

∫ 1√
2

0

dz

(1− η(1− 2z2))
3
2

, (2.98)

I2(η) =

∫ 1

1√
2

dz

(1− η(1− 2z2))
3
2

. (2.99)

The integral I2(η) has a finite value even for η = 1, we find

I2(1) =

√
2

8
. (2.100)

Let us represent (2.98) in the form close to (2.92). We use sub-

stitution e−t2 = 1− 2z2, and obtain

I1(η) =

√
2

2

∫ ∞

0
dt

te−t2

(1− e−t2)
1
2 (1− ηe−t2)

3
2

. (2.101)

Using (2.92), (2.96), (2.100), (2.101), we can write

16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!
2F1

(
−k, 1

2
;
3

2
; 2

)
ηk −

−16

√
2

π

∞∑
k=0

Γ(k + 3
2)

k!

√
π

8k + 6
ηk =

= 8
√
2I2(η) + 8

∫ ∞

0
dt
te−t2 − e−

3
4
t2(1− e−t2)

1
2

(1− e−t2)
1
2 (1− ηe−t2)

3
2

.

(2.102)

The integral (2.102) is finite for η = 1. So, substituting η = 1 into
(2.102), and using (2.85), (2.100), we obtain

S1s(0) = 2 + 8

∫ ∞

0
dt
te−t2 − e−

3
4
t2
√

1− e−t2

(1− e−t2)2
= 1.72006 . . .(2.103)
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Taking into account (2.76), we find

∆E(θ)
ns ≃ 1.72

πχ2e2

4aBn3
. (2.104)

So, on the basis of (2.51) and (2.55), we can write

∆E(θ)
ns ≃ 1.72

~⟨θ⟩πe2

8a3Bn
3
, (2.105)

⟨θ⟩ = ⟨ψa
0,0,0(a)ψ

b
0,0,0(b)|

√∑
i

θ2i |ψ
a
0,0,0(a)ψ

b
0,0,0(b)⟩ =

αl2p
~
.(2.106)

Finally, corrections to the ns energy levels of the hydrogen atom
caused by noncommutativity of coordinates and noncommutativity
of momenta read

∆Ens =
a2Bn

2⟨η2⟩
24M

(5n2 + 1) + 1.72
~⟨θ⟩πe2

8a3Bn
3
.

(2.107)

Let us analyze the corrections (2.44), (2.107). There is an im-
portant difference between the influences of coordinates noncommu-
tativity and momentum noncommutativity on the spectrum of the
hydrogen atom. In the case of large quantum numbers n , correc-

tions caused by noncommutativity of momenta ∆E
(η)
n,l (2.165) are

proportional to n4, and corrections caused by noncommutativity of

coordinates ∆E
(θ)
n,l (2.164) are proportional to 1/n3. So, we can con-

clude that the energy levels with large quantum numbers n are more
sensitive to the momentum noncommutativity than noncommutativ-
ity of coordinates. Energy levels with small quantum numbers n are
more sensitive to the coordinates noncommutativity

Note also that ns energy levels are more sensitive to the noncom-
mutativity of coordinates (1.27) Namely corrections to the ns energy
levels (2.107) contain terms with ⟨θ⟩ and ⟨η2⟩. Corrections to other
energy levels (l > 1) include terms proportional to ⟨θ2⟩ and ⟨η2⟩.
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2.5 Energy levels of hydrogen-like exotic atoms
in quantum space

We examine two particles with masses m1, m2 with Coulomb inter-
action in the frame of rotationally-invariant noncommutative algebra
of canonical type (1.27)-(1.29). In this case the total Hamiltonian
reads

H =
(P(1))2

2m1
+

(P(2))2

2m2
− κ

|X(1) −X(2)|
+Ha

osc +Hb
osc. (2.108)

Hare κ is a constant.
In general case coordinates of different particles may satisfy com-

mutation relations of noncommutative algebra with different tensors

of noncommutativity θ
(n)
ij , η

(n)
ij (n labels the particles, n = (1, 2)). So,

in this case the relations of the algebra read

[X
(n)
i , X

(m)
j ] = i~δmnθ

(n)
ij , (2.109)

[X
(n)
i , P

(m)
j ] = i~δmn

δij +∑
k

θ
(n)
ik η

(m)
jk

4

 , (2.110)

[P
(n)
i , P

(m)
j ] = i~δmnη

(n)
ij , (2.111)

n,m = (1, 2). Note that we also suppose that commutators for coor-
dinates and the momenta of different particles equal zero.

Let us introduce coordinates and momenta of the center-of-mass
and coordinates and momenta of the relative motion as in ordinary
space

Xc = µ1X
(1) + µ2X

(2), (2.112)

Pc = P(1) +P(2), (2.113)

Xr = ∆X(1) −∆X(2) = X(1) −X(2), (2.114)

Pr =
1

2
(∆P(1) −∆P(2)) = µ2P

(1) − µ1P
(2). (2.115)

So, we can rewrite the Hamiltonian of the system as

Hs =
(Pc)2

2M
+

(Pr)2

2µ
− κ

|Xr|
, (2.116)
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where M = m1 +m2, µ = m1m2/M are the total and the reduced
masses respectively, µi = mi/M .

Coordinates and momenta of the center-of mass Xc
i , P

c
i satisfy

the following relations

[Xc
i , X

c
j ] = i~

2∑
n=1

µ2nθ
(n)
ij = i~θcij , (2.117)

[P c
i , P

c
j ] = i~

2∑
n=1

η
(n)
ij = i~ηcij , (2.118)

[Xc
i , P

c
j ] = i~(δij +

2∑
n=1

2∑
k=1

µn
θ
(n)
ik η

(n)
jk

4
). (2.119)

where

θcij = µ21θ
(1)
ij + µ22θ

(2)
ij , (2.120)

ηcij = η
(1)
ij + η

(2)
ij . (2.121)

It is important to stress that

i~(δij +
∑
n

∑
k

µn
θ
(n)
ik η

(n)
jk

4
) ̸= i~(δij +

∑
k

θcikη
c
jk

4
). (2.122)

So, commutators (2.117)-(2.119) do not correspond to noncommuta-
tive algebra (1.27)-(1.29).

It is worth mentioning that in the case when parameters of non-
commutativity depend on mass as

c
(n)
θ =

γ̃

mn
, (2.123)

c(n)η = α̃mn, (2.124)

the tensors of noncommutativity can be rewritten as

θ
(n)
ij =

γ̃l2P
~mn

∑
k

εijkãk, (2.125)

η
(n)
ij =

α̃~mn

l2P

∑
k

εijkp̃
b
k, (2.126)
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and the effective tensors of noncommutativity do not depend on the
masses of particles in the system. They read

θcij =
γ̃l2P
~M

∑
k

εijkãk, (2.127)

ηcij =
α̃~M
l2P

∑
k

εijkp̃
b
k. (2.128)

Also, due to conditions (2.123), (2.124) we can write

[Xc
i , P

c
j ] = i~(δij + γ̃α̃

∑
k,l,m

εiklεjkmãlp̃
b
m

4
) =

= i~(δij +
∑
k

θcikη
c
jk

4
). (2.129)

In the case when conditions (2.123), (2.124) hold, for coordinates
and momenta of the relative motion satisfy the following relations

[Xr
i , X

r
j ] = i~θrij , (2.130)

[P r
i , P

r
j ] = i~ηrij , (2.131)

[Xr
i , P

r
j ] = i~(δij +

1

4

∑
k

θrikη
r
jk), (2.132)

where

θrij = θ
(1)
ij + θ

(2)
ij , (2.133)

ηrij = µ22η
(1)
ij + µ21η

(2)
ij . (2.134)

It is also important to stress that coordinates and momenta of the
center-of-mass commute with coordinates and momenta of the rela-
tive motion due to conditions (2.123), (2.124)

[Xc
i , X

r
j ] = [P c

i , P
r
j ] = 0. (2.135)

Taking into account (2.125), (2.126), (2.133), (2.134) we can write

θrij =
crθl

2
P

~
εijkãk =

γ̃l2P
µ~

εijkãk, (2.136)

ηrij =
crη~
l2P
εijkp̃

b
k =

α̃µ~
l2P

εijkp̃
b
k, (2.137)
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where

crθ = c
(1)
θ + c

(2)
θ , crη = µ22c

(1)
η + µ21c

(2)
η . (2.138)

We also have

θcij =
ccθl

2
P

~
εijkãk =

γ̃l2P
M~

εijkãk, (2.139)

ηcij =
ccη~
l2P
εijkp̃

b
k =

α̃M~
l2P

εijkp̃
b
k, (2.140)

with

ccθ = µ21c
(1)
θ + µ22c

(2)
θ , (2.141)

ccη = c(1)η + c(2)η . (2.142)

So, from (2.136)-(2.140) we can conclude that in the case when con-
ditions (2.123), (2.124) are satisfied the tensors of noncommutativity
describing of the center-of-mass θcij , η

c
ij and relative motion θrij , η

r
ij

depend on the total and reduced masses, respectively.
Note also that conditions (2.123), (2.124) are also satisfied for

constants ccθ, c
c
η, c

r
θ, c

r
η. Namely, we can write

ccθM = crθµ = c
(1)
θ m1 = c

(2)
θ m2 = γ̃ = const, (2.143)

ccη
M

=
crη
µ

=
c
(1)
η

m1
=
c
(2)
η

m2
= α̃ = const. (2.144)

For noncommutative coordinates and noncommutative momenta
of the center-of-mass and noncommutative coordinates and noncom-
mutative momenta of the relative motion can be represented as

Xc
i = xci −

1

2
θijp

c
j = xci +

1

2
[θc × pc]i, (2.145)

P c
i = pci +

1

2
ηcijx

c
j = pci −

1

2
[ηc × xc]i, (2.146)

Xr
i = xri −

1

2
θrijp

r
j = xri +

1

2
[θr × pr]i, (2.147)

P r
i = pri +

1

2
ηrijx

r
j = pri −

1

2
[ηr × xr]i. (2.148)
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For coordinates xri , x
c
i and momenta pri , p

c
i we have the ordinary

commutation relations

[xci , x
c
j ] = [pci , p

c
j ] = [xri , x

r
j ] = [pri , p

r
j ] = 0, (2.149)

[xci , x
r
j ] = [pci , p

r
j ] = [xri , p

c
j ] = [pri , x

c
j ] = 0, (2.150)

[xci , p
c
j ] = [xri , p

r
j ] = i~δij . (2.151)

So, the Hamiltonian in the representation (2.145)-(2.148) reads

Hs =
(pc)2

2M
+

(pr)2

2µ
+

(ηc · Lc)

2M
+

[ηc × xc]2

8M
+

+
(ηr · Lr)

2µ
+

[ηr × xr]2

8µ
−

− κ√
(xr)2 − (θr · Lr) + 1

4 [θ
r × pr]2

. (2.152)

Here we consider notation

Lc = [xc × pc], (2.153)

Lr = [xr × pr]. (2.154)

Up to the second order in the parameters of noncommutativity the
Hamiltonian of the system reads

Hs =
(pc)2

2M
+

(pr)2

2µ
− κ

xr
+

+
(ηc · Lc)

2M
+

[ηc × xc]2

8M
+

(ηr · Lr)

2µ
+

[ηr × xr]2

8µ
−

− κ

2(xr)3
(θr · Lr)− 3κ

8(xr)5
(θr · Lr)2 +

+
κ

16

(
1

(xr)2
[θr × pr]2

1

xr
+

1

xr
[θr × pr]2

1

(xr)2
+

~2

(xr)7
[θr × xr]2

)
.

(2.155)

After averaging over the eigenfunctions of the harmonic oscillators
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ψa
0,0,0, ψ

b
0,0,0 we find

⟨Hs⟩ab =
(pc)2

2M
+

(xc)2⟨(ηc)2⟩
12M

+

+
(pr)2

2µ
− κ

xr
+

(xr)2⟨(ηr)2⟩
12µ

− κ(Lr)2⟨(θr)2⟩
8(xr)5

+

+
κ

24

(
1

(xr)2
(pr)2

1

xr
+

1

xr
(pr)2

1

(xr)2
+

~2

(xr)5

)
⟨(θr)2⟩. (2.156)

Up to the second order in the parameters of noncommutativity we
can examine H0

H0 = ⟨Hc⟩ab + ⟨Hr⟩ab +Ha
osc +Hb

osc, (2.157)

⟨Hc⟩ab =
(pc)2

2M
+

(xc)2⟨(ηc)2⟩
12M

, (2.158)

⟨Hr⟩ab =
(pr)2

2µ
− κ

xr
+

(xr)2⟨(ηr)2⟩
12µ

− κ(Lr)2⟨(θr)2⟩
8(xr)5

+

+
κ

24

(
1

(xr)2
(pr)2

1

xr
+

1

xr
(pr)2

1

(xr)2
+

~2

(xr)5

)
⟨(θr)2⟩. (2.159)

Operators ⟨Hc⟩ab, ⟨Hr⟩ab describe the motion of the center-of-mass
and the relative motion.

It is important that

[⟨Hc⟩ab, ⟨Hr⟩ab] = [⟨Hc⟩ab,Ha
osc +Hb

osc] = 0. (2.160)

So, we can study ⟨Hc⟩ab independently. Operator ⟨Hc⟩ab corresponds
to the Hamiltonian of three-dimensional harmonic oscillator of mass
M and frequency

ω =

√
2⟨(ηc)2⟩√
3M

(2.161)

The spectrum of the oscillator is well known

Enc
1,n

c
2,n

c
3
=

~
√
2⟨(ηc)2⟩√
3M

(
nc1 + nc2 + nc3 +

3

2

)
, (2.162)

here nc1, n
c
2, n

c
3 are quantum numbers.
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According to the perturbation theory we have the following cor-
rections to the energy levels caused by noncommutativity of coordi-
nates and noncommutativity of momenta

∆E
(θη)
n,l = ⟨ψ(0)

n,l,m|V |ψ(0)
n,l,m⟩ = ∆E

(η)
n,l +∆E

(θ)
n,l ,(2.163)

∆E
(η)
n,l = ⟨ψ(0)

n,l,m|V η|ψ(0)
n,l,m⟩ =

=
κa3n2⟨(ηr)2⟩

24~2
(5n2 + 1− 3l(l + 1)),(2.164)

∆E
(θ)
n,l = ⟨ψ(0)

n,l,m|V θ|ψ(0)
n,l,m⟩ =

= −~2κ⟨(θr)2⟩
a5n5

(
− 6n2 − 2l(l + 1)

3l(l + 1)(2l + 1)(2l + 3)(2l − 1)
+

1

6l(l + 1)(2l + 1)
+

5n2 − 3l(l + 1) + 1

2(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)
−

−5

6

5n2 − 3l(l + 1) + 1

l(l + 1)(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

)
,

(2.165)

where

a =
~2

µκ
. (2.166)

Corrections to the energy levels with l = 0 reads

∆E
(θη)
n,0 =

a3κ⟨(ηr)2⟩
24~2

n2(5n2 + 1) + 1.72
~⟨θr⟩πκ
8a3n3

. (2.167)

Let us examine effect of noncommutativity on hydrogen-like atoms.
Corrections caused by noncommutativity of momenta (2.164) are pro-
portional to ⟨(ηr)2⟩a3. From (2.137) follows that

⟨(ηr)2⟩a3 ∼ 1

µ
. (2.168)

In corrections to the energy levels caused by noncommutativity of co-
ordinates we have proportionality to ⟨θr⟩/a3 in the case of ns energy
levels, or proportionality to ⟨(θr)2⟩/a5 for energy levels with l > 1,
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(2.165). From (2.136), we can write

⟨θr⟩
a3

∼ µ2, (2.169)

⟨θr⟩
a5

∼ µ3. (2.170)

So, the effect of coordinate noncommutativity can be better exam-
ined in the spectrum of atoms with large reduced masses, especially
for energy levels with l = 0 and small quantum numbers n. The ef-
fect of momentum noncommutativity better appears in energy levels
with large quantum numbers of atoms with small reduced masses.
Also, it is worth mentioning that in the case of atoms with large re-
duced masses the differences in effects of momentum and coordinates
noncommutativity appear better.

Let us examine the muonic hydrogen which is a system of proton
and muon. We have that

µµp
µH

≃ mµ

me
= 206.8 (2.171)

where µµp, µH are reduced mass of muonic hydrogen and hydro-
gen atoms, me, mµ are the mass of electron and the mass of muon.
Because of this ratio the corrections to the energy levels of muonic
hydrogen in the case of l > 1 (2.165) are (mµ/me)

3 = 8.8 · 106 times
larger than that for the hydrogen atom. So, noncommutativity of
coordinates can be better examined in the case of muonic hydrogen.
Corrections (2.164) are 206.8 times smaller in the case of muonic
hydrogen than in the case of hydrogen atom.

2.6 Upper bounds on the parameters of coor-
dinates and momentum noncommutativ-
ity obtained based on studies of hydrogen
atom and antiprotonic helium

To find upper bounds for the parameters of coordinate and momen-
tum noncommutativity we assume that corrections to the hydrogen
atom transition energies in quantum space do not exceed the accu-
racy of the transitions measurements. In paper [48] the authors pre-
sented experimental result for 1s − 2s transition frequency f1s−2s =
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2466061413187018(11)Hz with relative uncertainty of 4.5×10−15. So,
we can write the following inequality∣∣∣∣∣∆θ

1,2 +∆η
1,2

E
(0)
2 − E

(0)
1

∣∣∣∣∣ ≤ 4.5× 10−15, (2.172)

here E
(0)
n are well known energy levels of the hydrogen atom in the

ordinary space. To estimate the order of the upper bounds for the
parameters of noncommutativity, we consider∣∣∣∣∣ ∆θ

1,2

E
(0)
2 − E

(0)
1

∣∣∣∣∣ ≤ 2.25× 10−15, (2.173)∣∣∣∣∣ ∆η
1,2

E
(0)
2 − E

(0)
1

∣∣∣∣∣ ≤ 2.25× 10−15. (2.174)

Using (2.107) we have

∆θ
1,2 = −3~⟨θ⟩πe2

16a3B
, (2.175)

∆η
1,2 =

13a2B⟨η2⟩
4M

. (2.176)

So, the upper bounds read

~⟨θ⟩ ≤ 10−36m2, (2.177)

~
√

⟨η2⟩ ≤ 10−61 kg2m2/s2. (2.178)

The obtained results are in agreement with that obtained on the basis
of studies of the spectrum of gravitation quantum well [49]. Also
they are in agreement with the results obtained from the spectrum
of hydrogen atom considered in noncommutative space of canonical
type [50], and examining the Lamb shift [27]. Note the ratiomp/me =
1836, therefore µ ≃ me. Therefore the orders of the upper bounds do
not change if we take into account the effect of reduced mass of the
hydrogen atom.

Let us examine exotic atom known as antiprotonic helium p̄4He+.
It is composed of an antiproton, an electron and a helium nucleus. In
papers [51,52] it was shown that the transition frequency of the atom
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can be approximately written as transitions of the hydrogen atom ef-
fective nuclear charge Zeff < 2. The charge describes the shielding of
the nuclear charge by the electron. Of course the difference of mass-
esees of hydrogen and antiprotonic helium atoms has to be taken into
consideration. So, the obtained results for effect of noncommutativ-
ity of coordinate and noncommutativity of momenta (2.164), (2.165)
can be used for estimation of the upper bounds. Atom p̄4He+ has
a large reduced mass. So, effect of coordinate noncommutativity on
the spectrum of the exotic atom is larger than on the hydrogen atom.
So, the antiprotonic helium is an attractive candidate for studies of
noncommutativity of coordinates

Experimental results for transition frequency (n, l) = (36, 34) →
(34, 32) of antiprotonic helium reads f = 1522107062 MHz. The
result is obtained with the total experimental error 3.5 MHz [53].
Assuming that effect of noncommutativity on the energy levels is
smaller than the accuracy of measurements we have

|∆(θ) +∆(η)| ≤ 3.5MHz, (2.179)

∆θ = ∆E
(θ)
36,34 −∆E

(θ)
34,32, (2.180)

∆η = ∆E
(η)
36,34 −∆E

(η)
34,32, (2.181)

and ∆E
(θ)
n,l , ∆E

(η)
n,l read (2.164), (2.165). To estimate the upper

bounds we write

|∆θ| ≤ 1.75MHz, (2.182)

|∆η| ≤ 1.75MHz. (2.183)

We also consider Z = 2, a = meaB/mp̄, where mp̄ is the mass of
antiproton, aB is the Bohr radius of the hydrogen atom in (2.164),
(2.165). As a result we find

~⟨θr⟩ ≤ 10−27m2, (2.184)

~
√

⟨(ηr)2⟩ ≤ 10−50 kg2m2/s2. (2.185)

Because of not hight precision of the measurements of the spectrum
of p̄4He+ the obtained upper bound do not lead to strong restriction
on the values of parameters of noncommutativity. But, it is worth
stressing that effect of coordinates noncommutativity on p̄4He+ is
three orders larger than that on hydrogen atom. So, improvement of
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precision of measurements of the spectrum of the exotic atom opens
a possibility to find stringent upper bound for the parameter of co-
ordinates noncomutativity.

2.7 Conclusions

Hydrogen atom spectrum has been examined noncommutative phase
space with preserver rotational symmetry (1.27)-(1.29). Effect of non-
commutativity of coordinates and noncommutativity of moment on
the energy levels of the atom has been obtained (2.44). We conclude
that the effect of momentum noncommutativity is larger in the case
of energy levels with large principal quantum numbers.

Effect of coordinates noncommutativity can be better studied on
the basis of energy levels of the hydrogen atom with small quantum
numbers n. We have also found that corrections to the ns-energy
levels (2.107) are proportional to ⟨θ⟩. For energy levels with l > 1
(2.44) we have proportionality to ⟨θ2⟩. So, ns energy levels of hydro-
gen atom are more sensitive to the coordinates noncommutativity.

We have also studied effect of noncommutativity of coordinates
and noncommutativity of momenta on the spectrum of hydrogen-like
atoms.

We have examined a general case when different particles feel
effects of space quantization with different tensors of noncommu-
tativity. The problem of description of a system of particles in
rotationally-invariant noncommutative phase space has been consid-
ered.

It has been shown that in the case when tensors of noncommu-
tativity corresponding to different particles are determined by their
masses for coordinates and momenta of the center-of-mass of a system
we have noncommutative algebra with effective tensors of noncom-
mutativity. Also, in the case when the conditions hold the effective
tensors of noncommutativity no do not depend on the composition of
the system and are determined by their total mass (2.127), (2.128).

It is important to stress that idea of relation of parameters of
noncommutativity with mass opens a possibility to solve fundamen-
tal principles in noncommutative space of canonical type [54, 55],
noncommutative phase phase of canonical type [56, 57], deformed
space with minimal length [58–60]. The proposed conditions on
the tensors of noncommutativity (2.123), (2.124) are similar to that
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θm = γ = const, η/m = α = const proposed in the noncommutative
phase space of canonical type [56, 57]. They lead to solving of prob-
lem of violation of the properties of the kinetic energy, and violation
of the weak equivalence principle in the space.

We have obtained corrections to the spectrum of two-particle sys-
tem with Colomb interaction caused by noncommutativity of coor-
dinates and noncommutativity of momenta. It has been obtained
that the corrections caused by noncommutativity of coordinates and
corrections caused by noncommutativity of momenta have different
dependencies on the reduced mass µ and parameter of interaction κ.
So, one can choose system with good sensitivity to the particular type
of noncommutativity. We have found that the effect of momentum
noncommutativity can be better examined for the ns energy levels
with large quantum numbers of atoms with small reduced masses.
Studies ns energy levels with small quantum numbers of atoms with
large reduced masses are important for finding the effect of coordinate
noncommutativity. We have also shown that antiprotonic helium is
an attractive candidate for studies of the effect of coordinate non-
commutativity.

Upper bounds for parameters of noncommutativity have been
found on the basis of studies of hydrogen atom and antiprotonic he-
lium The upper bounds obtained based on studies of the hydrogen
atom are in agreement with those presented in the literature.
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Chapter 3

System of harmonic
oscillators in
rotationally-invariant
noncommutative phase
space

To find new effects of noncommutativity of coordinates and noncom-
mutativity of momenta in the properties of a wide class of physical
systems it is important to examine many-particle systems Studies
of harmonic oscillator in noncommutative space have received much
attention (see, for instance, [35, 61–74]). Two coupled harmonic os-
cillators were studied in noncommutative space [75, 76], noncommu-
tative phase space [77, 78]. System of free particles was examined
in [79, 80] in noncommutative phase space of canonical type. Classi-
cal problems of many particles were examined in [81] in the case of
space-time noncommutativity.

It is worth noting that system of harmonic oscillators has various
applications. Such studies have importance in nuclei physics [82–
84], in quantum chemistry and molecular spectroscopy [85–88]. Also
networks of harmonic oscillators are used in quantum information
[89–91].

In this chapter we study a system of interacting oscillators in
uniform field in the frame of rotationally-invariant noncommutative
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algebra. Hamiltonian of the system in rotationally-invariant non-
commutative phase space is analyzed. The spectrum of a system of
harmonic oscillators is obtained up to the second order in the param-
eters of coordinate and momentum noncommutativity.

The chapter is organized as follows. In section Hamiltonian of
a system of interacting harmonic oscillators is analyzed in noncom-
mutative phase space. Section is devoted to studies of the energy
levels of a system of interacting harmonic oscillators in uniform field
in the frame of noncommutative algebra. Particular cases of a sys-
tem of particles with harmonic oscillator interaction and a system of
free particles are analyzed. A system of two interacting oscillators
and three interacting oscillators are examined in section and section
respectively. The effect of noncommutativity of coordinates and non-
commutativity of momenta on the harmonic oscillator chain is studied
in section . Conclusions are presented in section . Results presented
in this chapter are published in [43,92,93].

3.1 Hamiltonian of a system of oscillators in
rotationally-invariant noncommutative phase
space

We consider a system of N interacting harmonic oscillators of masses
m and frequencies ω in uniform field in the frame of rotationally-
invariant noncommutatove algebra of canonical type (1.27)-(1.29).
The system is described with the following Hamiltonian

Hs =
∑
n

(P(n))2

2m
+
∑
n

mω2(X(n))2

2
+
k

2

∑
m,n

m̸=n

(X(n) −X(m))2 +

+κ
∑
n

X
(n)
1 ,(3.1)

where κ, k are constants. For convenience, we choose the direction
of the field to coincide with the X1 axis direction. In the vase of
κ = 0, Hamiltonian (3.1) describes nondissipative symmetric network
of coupled harmonic oscillators [90].

Coordinates and momenta of harmonic oscillators satisfy relations
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of rotationally-invariant noncommutative algebra

[X
(n)
i , X

(m)
j ] = i~δmnθ

(n)
ij , (3.2)

[X
(n)
i , P

(m)
j ] = i~δmn

δij +∑
k

θ
(n)
ik η

(m)
jk

4

 , (3.3)

[P
(n)
i , P

(m)
j ] = i~δmnη

(n)
ij , (3.4)

θ
(n)
ij =

c
(n)
θ l2P
~

∑
k

εijkãk, (3.5)

η
(n)
ij =

c
(n)
η ~
l2P

∑
k

εijkp̃
b
k. (3.6)

Here indexes m,n = (1...N) label the oscillators.
If masses of harmonic oscillators are equal m. Using (3.5), (3.6),

(2.124), we can write

θ
(n)
ij = θij =

cθl
2
P

~
∑
k

εijkãk, (3.7)

η
(n)
ij = ηij =

cη~
l2P

∑
k

εijkp̃
b
k, (3.8)

cθ =
γ̃

m
, (3.9)

cη = α̃m. (3.10)

Using representation of noncommutative coordinates and non-
commutative momenta over coordinates and momenta satisfying the
ordinary commutation relations, one has

Hs =

+
∑
n

(
(p(n))2

2m
+
mω2(x(n))2

2
+ κx

(n)
1

)
+
k

2

∑
m,n

m̸=n

(x(n) − x(m))2 +

+
∑
n

(
−(η · L(n))

2m
− mω2(θ · L(n))

2
+
κ

2
[θ × p(n)]1+
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+
mω2

8
[θ × p(n)]2 +

[η × x(n)]2

8m

)
− k

2

∑
m,n

m̸=n

θ ·

·[(x(n) − x(m))× (p(n) − p(m))] +
∑
m,n

m̸=n

k

8
[θ × (p(n) − p(m))]2,

(3.11)

The total Hamiltonian reads

H = Hs +Ha
osc +Hb

osc = H0 +∆H. (3.12)

We have

⟨[η × x(n)]2⟩ab =
2

3
⟨η2⟩(x(n))2, (3.13)

⟨[θ × p(n)]2⟩ab =
2

3
⟨θ2⟩(p(n))2, (3.14)

⟨[θ × (p(n) − p(m))]2⟩ab =
2

3
⟨θ2⟩(p(n) − p(m))2. (3.15)

So, for ∆H we can write

∆H =
∑
n

(
−(η · L(n))

2m
− mω2(θ · L(n))

2
+
κ

2
[θ × p(n)]1+

+
mω2

8
[θ × p(n)]2 +

[η × x(n)]2

8m

)
−

−k
2

∑
m,n

m̸=n

θ · [(x(n) − x(m))× (p(n) − p(m))]+

+
∑
m,n

m̸=n

k

8
[θ × (p(n) − p(m))]2 −

∑
n

(
⟨η2⟩(x(n))2

12m
+

+
⟨θ2⟩mω2(p(n))2

12

)
− k

12

∑
m,n

m̸=n

⟨θ2⟩(p(n) − p(m))2.

(3.16)
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So, up to the second order in ∆H (or up to the second order in
the parameters of noncommutativity) the Hamiltonian of a system of
interacting harmonic oscillators in uniform field reads

H0 =
∑
n

(
(p(n))2

2m
+
mω2(x(n))2

2
+ κx

(n)
1

)
+
k

2

∑
m,n

m̸=n

(x(n) − x(m))2 +

+
∑
n

(
⟨η2⟩(x(n))2

12m
+

⟨θ2⟩mω2(p(n))2

12

)
+

+
k

12

∑
m,n

m̸=n

⟨θ2⟩(p(n) − p(m))2 +Ha
osc +Hb

osc.

(3.17)

3.2 Effect of noncommutativity on spectrum
of interacting oscillators

For convenience, let us introduce

meff = m

(
1 +

m2ω2⟨θ2⟩
6

)−1

, (3.18)

ωeff =

(
ω2 +

⟨η2⟩
6m2

) 1
2
(
1 +

m2ω2⟨θ2⟩
6

) 1
2

. (3.19)

So, Hamiltonian (4.198) can be rewritten as

H0 =
∑
n

(
(p(n))2

2meff
+
meffω

2
eff (x̃

(n))2

2

)
− Nκ2

2meffω
2
eff

+

+
k

2

∑
m,n

m̸=n

(x̃(n) − x̃(m))2 +
k

12

∑
m,n

m̸=n

⟨θ2⟩(p(n) − p(m))2 +

+Ha
osc +Hb

osc. (3.20)

Here x̃(n) is defined as

x̃(n) =

(
x
(n)
1 +

κ

meffω
2
eff

, x
(n)
2 , x

(n)
3

)
. (3.21)
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For operators x̃(n), p(n) we have the ordinary commutation relations

[x̃
(n)
i , x̃

(m)
j ] = 0, (3.22)

[x̃
(n)
i , p

(m)
j ] = i~δnmδij , (3.23)

[p
(n)
i , p

(m)
j ] = 0. (3.24)

It is also important to mention that

[H0,H
a
osc] = [H0,H

b
osc] = 0. (3.25)

So, the energy levels of H0 are

E{n1},{n2},{n3} =
N∑
a=1

~ωa

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
−

− Nκ2

2meffω
2
eff

+ 3~ωosc. (3.26)

Here n
(a)
i are quantum numbers (n

(a)
i = 0, 1, 2...) and

ω1 = ωeff , (3.27)

ω2 = ω3 = ... = ωN =

=

(
ω2
eff +

2kN

meff
+
kN⟨θ2⟩meffω

2
eff

3
+

2k2⟨θ2⟩N2

3

) 1
2

. (3.28)

The spectrum of the center-of-mass of the system of the harmonic
oscillators is represented by the first term in (3.26). The spectrum
of the relative motion is described by the terms with a = 2..N . To
show this let us introduce coordinates and moments of the center of
mass

xc =

∑
n x

(n)

N
, (3.29)

pc =
∑
n

p(n), (3.30)

coordinates and momenta of he relative motion

∆x(n) = x(n) − xc, (3.31)

∆p(n) =
p(n) − pc

N
. (3.32)
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Taking into account (3.80), we have

H0 = Hc +Hrel +Ha
osc +Hb

osc, (3.33)

Hc =
(pc)2

2Nmeff
+
Nmeffω

2
eff (x̃

c)2

2
− Nκ2

2meffω
2
eff

, (3.34)

Hrel =
∑
n

(
(∆p(n))2

2meff
+
meffω

2
eff (∆x(n))2

2

)
+

+
k

2

∑
m,n

m̸=n

(∆x(n) −∆x(m))2 +
k

12

∑
m,n

m̸=n

⟨θ2⟩(∆p(n) −∆p(m))2, (3.35)

[Hc,Hrel] = [Hc,Ha
osc +Hb

osc] = [Hrel,H
a
osc +Hb

osc] = 0. (3.36)

Here x̃c reads

x̃c =
(
xc1 + κ/(meffω

2
eff ), x

c
2, x

c
3

)
. (3.37)

Let us analyze the obtained result. From (3.26) follows that fre-
quencies in the spectra of the center-of-mass and relative motion of
the system of interacting oscillators are affected by the noncommu-
tativity of coordinates and noncommutativity of momenta. The uni-
form field causes to the shift of the spectrum of the system on a
constant.

Considering limit ⟨θ2⟩ → 0, ⟨η2⟩ → 0 form E{n1},{n2},{n3} one
obtains well known expression

E{n1},{n2},{n3} = ~ω
(
n
(1)
1 + n

(1)
2 + n

(1)
3 +

3

2

)
+

+

N∑
a=2

~
(
ω2 +

2Nk

m

) 1
2
(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
− Nκ2

2mω2
. (3.38)

On the basis of (3.26) we can write the spectrum of a system of N
particles of mass m with harmonic oscillator interaction. Considering
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ω = 0, we have

E{n1},{n2},{n3} =
~⟨η2⟩
6m2

(
n
(1)
1 + n

(1)
2 + n

(1)
3 +

3

2

)
+

+~
(
2kN

m
+

⟨η2⟩
6m2

+
2k2⟨θ2⟩N2

3

) 1
2

N∑
a=2

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
− 3Nκ2m

⟨η2⟩
+ 3~ωosc. (3.39)

The spectrum of the center-of-mass of the system is described by
(3.39). It is important to note that this spectrum is discreet, that
is caused by momentum noncommutativity. The spectrum of the
center-of-mass of the system if the spectrum of harmonic oscillator
with a frequency determined by the parameter of momentum non-
commutativity ~⟨η2⟩/6m2. The spectrum of the relative motion of
the system is affected by noncommutativity of coordinates and non-
commutativity of momenta (see second term in (3.39)).

It is important to stress that from (3.26) and (3.39) follows that
the influence of noncommutativity on the spectrum increases with
increasing of the number of particles N .

In the case of k = 0 we obtain energy levels of a system of N
free particles in uniform field in a space with noncommutativity of
coordinates and noncommutativity of momenta

E{n1},{n2},{n3} =

N∑
a=1

~⟨η2⟩
6m2

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
−

−3Nκ2m

⟨η2⟩
+ 3~ωosc. (3.40)

The expression corresponds to the spectrum of N oscillators with
frequencies ~⟨η2⟩/6m2. Noncommutativity of coordinates does not
affect on the energy levels of free particle system
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3.3 Energy levels of two interacting oscilla-
tors

We consider a system of two oscillators with masses m1, m2 and
frequencies ω1, ω2. The Hamiltonian of the system reads

Hs =
(P(1))2

2m1
+

(P(2))2

2m2
+
m1ω

2
1(X

(1))2

2
+
m2ω

2
2(X

(2))2

2
+

+k(X(1) −X(2))2. (3.41)

Coordinates and momenta X(n), P(n) satisfy relations of noncommu-
tative algebra (3.2)-(3.4).

It is worth noting that system of two coupled harmonic oscillators
is considered as a model in molecular physics [85, 86]. It is also is
used for description of states of light in the framework of two-photon
quantum optics [94,95].

In the case of two interacting oscillators we can write

H0 =
(p(1))2

2m
(1)
eff

+
(p(2))2

2m
(2)
eff

+

+
m

(1)
eff (ω

(1)
eff )

2(x(1))2

2
+
m

(2)
eff (ω

(2)
eff )

2(x(2))2

2
+

+k(x(1) − x(2))2 +
k

6

(
⟨(θ(1))2⟩(p(1))2 + ⟨(θ(2))2⟩(p(2))2−

−2⟨θ(1)θ(2)⟩(p(1) · p(2))
)
+Ha

osc +Hb
osc. (3.42)

Here

m
(n)
eff = mn

(
1 +

m2
nω

2
n⟨(θ(n))2⟩
6

)−1

, (3.43)

ω
(n)
eff =

(
ω2
n +

⟨(ηn)2⟩
6m2

n

) 1
2

(
1 +

m2
nω

2
n⟨(θ(n))2⟩
6

) 1
2

, (3.44)

⟨θ(n)θ(m)⟩ =
c
(n)
θ c

(m)
θ l4P
~2

⟨ψa
0,0,0|ã2|ψa

0,0,0⟩ =
3c

(n)
θ c

(m)
θ l4P

2~2
, (3.45)

⟨(η(n))2⟩ = ~2(c(n)η )2

l4P
⟨ψb

0,0,0|(p̃b)2|ψb
0,0,0⟩ =

3~2(c(n)η )2

2l4P
. (3.46)
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For coordinates and momenta x
(n)
i , p

(n)
i we have the ordinary com-

mutation relations. Therefore, the energy levels of H0 are

E{n1},{n2},{n3} = ~ω+

(
n
(1)
1 + n

(1)
2 + n

(1)
3 +

3

2

)
+

+~ω−

(
n
(2)
1 + n

(2)
2 + n

(2)
3 +

3

2

)
+ 3~ωosc, (3.47)

with

ω2
± =

1

2

∑
n

(ω
(n)
eff )

2 +
2k

m
(n)
eff

+
km

(n)
eff (ω

(n)
eff )

2⟨(θ(n))2⟩
3

+

+
2k2

3

(
⟨(θ(n))2⟩+ ⟨θ(1)θ(2)⟩

))
± 1

2

√
D, (3.48)

D =

∑
n

(ω
(n)
eff )

2 +
∑
n

2k

m
(n)
eff

+
∑
n

km
(n)
eff (ω

(n)
eff )

2⟨(θ(n))2⟩
3

+

+
∑
n

2k2

3

(
⟨(θ(n))2⟩+ ⟨θ(1)θ(2)⟩

))2

− 4
∏
n

(ω
(n)
eff )

2 +
2k

m
(n)
eff

+

+
km

(n)
eff (ω

(n)
eff )

2⟨(θ(n))2⟩
3

+
2k2

3

(
⟨(θ(n))2⟩+ ⟨θ(1)θ(2)⟩

)+

+4

 2k

m
(2)
eff

+
km

(1)
eff (ω

(1)
eff )

2⟨θ(1)θ(2)⟩
3

+
2k2

3

(
⟨(θ(2))2⟩+ ⟨θ(1)θ(2)⟩

)×

 2k

m
(1)
eff

+
km

(2)
eff (ω

(2)
eff )

2⟨θ(1)θ(2)⟩
3

+
2k2

3

(
⟨(θ(1))2⟩+ ⟨θ(1)θ(2)⟩

) .

(3.49)

If the masse of the oscillators are the same m1 = m2, we obtain

m
(n)
eff = meff , (3.50)

ω
(n)
eff = ωeff , (3.51)
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and

ω− = ωeff , (3.52)

ω+ =

(
ω2
eff +

4k

meff
+

2k⟨θ2⟩meffω
2
eff

3
+

8k2⟨θ2⟩
3

) 1
2

, (3.53)

which is in agreement with the results presented in the previous sec-
tion (3.27), (3.28) with N = 2.

3.4 Effect of noncommutativity on the energy
levels of system of three interacting oscil-
lators

We study three interacting oscillators with masses m1, m2 = m3 =
m, and frequencies ω1, ω2 = ω3 = ω descried with the following
Hamiltonian

Hs =
(P(1))2

2m1
+

(P(2))2

2m
+

(P(3))2

2m
+

+
m1ω

2
1(X

(1))2

2
+
mω2(X(2))2

2
+
mω2(X(3))2

2
+

+k(X(1) −X(2))2 + k(X(2) −X(3))2 + k(X(3) −X(3))2. (3.54)

If ωn = 0 the model (3.54) is used for the description of confining
forces between quarks [82–84]. Up to the second order in the param-
eters of noncommutativity we can study Hamiltonian

H0 =

=
∑
n

(p(n))2

2m
(n)
eff

+
∑
n

m
(n)
eff (ω

(n)
eff )

2(x(n))2

2
+ +

k

2

∑
m,n

m̸=n

(x(n) − x(m))2 +

+
k

12

∑
m,n

m̸=n

(
⟨(θ(n))2⟩(p(n))2 + ⟨(θ(m))2⟩(p(m))2−

−2⟨θ(n)θ(m)⟩(p(n) · p(m))
)
+Ha

osc +Hb
osc,

(3.55)
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with m
(n)
eff , ω

(n)
eff , ⟨θ

(n)θ(m)⟩ given by (3.43)-(3.45).

The energy levels of Hamiltonian (3.55) are the following

E{n1},{n2},{n3} =
3∑

a=1

~ω̃a

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
+ 3~ωosc, (3.56)

ω̃1 =
1√
2

ω2
eff + (ω

(1)
eff )

2 +
2k

meff
+

4k

m
(1)
eff

+A1 −
√
D

 1
2

, (3.57)

ω̃2 =
1√
2

ω2
eff + (ω

(1)
eff )

2 +
2k

meff
+

4k

m
(1)
eff

+A1 +
√
D

 1
2

, (3.58)

ω̃3 =

(
ω2
eff +

6k

meff

) 1
2 (

1 + kmeff ⟨θ2⟩
) 1

2 , (3.59)

where

D =

ω2
eff − (ω

(1)
eff )

2 +
4k

meff
− 4k

m
(1)
eff

+A2

2

+

+

(
2k

m
+A3

)2(ω
(1)
eff )

2 − 2ω2
eff − 6k

m
+

8k

m
(1)
eff

+

+8

(
2k

m
+A4

)(
2k

m1
+A5

)(
2k

m
+A3

)−1

+A6

)
, (3.60)

A1 =

(
kmeffω

2
eff

3
+

2k2

3

)
⟨θ2⟩+

+

2km
(1)
eff (ω

(1)
eff )

2

3
+

8k2

3

 ⟨(θ(1))2⟩+ 8k2

3
⟨θθ(1)⟩, (3.61)
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A2 =

(
2kmeffω

2
eff

3
+

10k2

3

)
⟨θ2⟩ −

−

2km
(1)
eff (ω

(1)
eff )

2

3
+

8k2

3

 ⟨(θ(1))2⟩ − 2k2

3
⟨θθ(1)⟩, (3.62)

A3 =

(
8k2

3
+
kmeffω

2
eff

3

)
⟨θ2⟩ − 2k2

3
⟨θθ(1)⟩, (3.63)

A4 =

km(1)
eff (ω

(1)
eff )

2

3
+

4k2

3

 ⟨θθ(1)⟩+ 2k2

3
⟨, θ2⟩, (3.64)

A5 =

(
kmeff (ω

2
eff )

3
+

2k2

3

)
⟨θθ(1)⟩+ 4k2

3
⟨(θ(1))2⟩, (3.65)

A6 = −
(
kmeffω

2
eff + 4k2

)
⟨θ2⟩+

+

4km
(1)
eff (ω

(1)
eff )

2

3
+

16k2

3

 ⟨(θ(1))2⟩+ 2k2

3
⟨θθ(1)⟩. (3.66)

For convenience we introduce notations

meff = m
(2)
eff = m

(3)
eff , ωeff = ω

(2)
eff = ω

(3)
eff , (3.67)

θ = θ(2) = θ(3). (3.68)

Considering m1 = m, ω1 = ω, on the basis of (3.56) we obtain (3.26)
with N = 3. Namely, we can write

ω̃1 = ωeff , (3.69)

ω̃2 = ω̃3 =

(
ω2
eff +

6k

meff
+ k⟨θ2⟩meffω

2
eff + 6k2⟨θ2⟩

) 1
2

. (3.70)
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If ωn = 0 in Hamiltonian (3.54) the spectrum is given by (3.56)

with (3.57), (3.58), (3.59) and m
(1)
eff = m1, meff = m,

ω
(1)
eff =

√
⟨(η1)2⟩√
6m2

1

, (3.71)

ωeff =

√
⟨(η)2⟩√
6m2

. (3.72)

It is worth mentioning that spectrum of the center-of-mass of the
system is discrete. It has the form of the spectrum of harmonic
oscillator with frequency ω̃1 (3.57).

If we consider algebra with commutation relations (3.2), (3.3) and

commutative momenta [P
(n)
i , P

(m)
j ] = 0), the spectrum of a system

(3.54) with ωn = 0 reads (3.56) where ω̃i are given by

ω̃1 = 0, (3.73)

ω̃2 =
1√
2

(
2k

m
+

4k

m(1)
+

2k2

3
⟨θ2⟩+

+
8k2

3
⟨(θ(1))2⟩+ 8k2

3
⟨θθ(1)⟩+

√
D

) 1
2

, (3.74)

ω̃3 =

(
6k

m
+ 6k2⟨θ2⟩

) 1
2

. (3.75)

Here we have

D =

(
4k

m
− 4k

m(1)
+

10k2

3
⟨θ2⟩ − 8k2

3
⟨(θ(1))2⟩ − 2k2

3
⟨θθ(1)⟩

)2

+

+

(
2k

m
+

8k2

3
⟨θ2⟩ − 2k2

3
⟨θθ(1)⟩

)
×

×
(
−6k

m
+

8k

m(1)
+ 8

(
2k

m
+

4k2

3
⟨θθ(1)⟩+ 2k2

3
⟨θ2⟩

)
×

×
(
2k

m1
+

2k2

3
⟨θθ(1)⟩+ 4k2

3
⟨(θ(1))2⟩

)
×

×
(
2k

m
+

8k2

3
⟨θ2⟩ − 2k2

3
⟨θθ(1)⟩

)−1

−
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−4k2⟨θ2⟩+ 16k2

3
⟨(θ(1))2⟩+ 2k2

3
⟨θθ(1)⟩

)
.

(3.76)

It is worth mentioning that noncommutativity of coordinates does not
affect the spectrum of the center-of-mass of the system (3.73). Space
quantization affects the frequencies of the relative motion (3.74),
(3.75).

3.5 Harmonic oscillator chain in noncommu-
tative phase space with preserved rota-
tional symmetry

Let us study Hamiltonian as follows

Hs =
N∑

n=1

(P(n))2

2m
+

N∑
n=1

mω2(X(n))2

2
+

+k

N∑
n=1

(X(n+1) −X(n))2 (3.77)

with periodic boundary conditions X(N+1) = X(1), k is a constant.
The Hamiltonian corresponds to N interacting harmonic oscillator
chain, m are the masses of oscillators and ω are frequencies

The Hamiltonian Hs can be represented as

Hs =

N∑
n=1

(
(p(n))2

2m
+
mω2(x(n))2

2
+

+k(x(n+1) − x(n))2 − (η · [x(n) × p(n)])

2m
−

−mω
2(θ · [x(n) × p(n)])

2
−

−k(θ · [(x(n+1) − x(n))× (p(n+1) − p(n))])+

+
[η × x(n)]2

8m
+
mω2

8
[θ × p(n)]2+

+
k

4
[θ × (p(n+1) − p(n))]2

)
. (3.78)
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Also, for the harmonic oscillator chain we can write

∆H =

N∑
n=1

(
[η × x(n)]2

8m
+
mω2

8
[θ × p(n)]2−

−mω
2(θ · [x(n) × p(n)])

2
− (η · [x(n) × p(n)])

2m
−

−kθ · [(x(n+1) − x(n))× (p(n+1) − p(n+1))]+

+
k

4
[θ × (p(n+1) − p(n))]2 − ⟨η2⟩(x(n))2

12m
−

−⟨θ2⟩mω2(p(n))2

12
− k

6
⟨θ2⟩(p(n+1) − p(n))2

)
.

(3.79)

So, up to the second order in the parameters of noncommutativity
one can study Hamiltonian H0 as follows

H0 =

N∑
n=1

(
(p(n))2

2meff
+
meffω

2
eff (x

(n))2

2
+

+k(x(n+1) − x(n))2+

+
k

6
⟨θ2⟩(p(n+1) − p(n))2 +Ha

osc +Hb
osc

)
, (3.80)

where

meff = m

(
1 +

m2ω2⟨θ2⟩
6

)−1

, (3.81)

ωeff =

(
ω2 +

⟨η2⟩
6m2

) 1
2
(
1 +

m2ω2⟨θ2⟩
6

) 1
2

. (3.82)

Note that [Ha
osc + Hb

osc,H0] = 0. Coordinates and momenta x(n),

p(n) satisfy the ordinary commutation relations. It is convenient to
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rewrite the Hamiltonian as follows

H0 =

~ωeff

2

∑
n

(
1 +

4kmeff ⟨θ2⟩
3

sin2
πn

N

)
p̃(n)(p̃(n))† +

+
~ω2

eff

2

∑
n

(
1 +

8k

meffω
2
eff

sin2
πn

N

)
x̃(n)(x̃(n))†,

(3.83)

where

x(n) =

√
~

Nmeffωeff

N∑
l=1

exp

(
2πinl

N

)
x̃(l), (3.84)

p(n) =

√
~meffωeff

N

N∑
l=1

exp

(
−2πinl

N

)
p̃(l), (3.85)

(see, for example, [91]). Introducing

a
(n)
j =

1√
2wn

(
wnx̃

(n)
j + ip̃

(n)
j

)
, (3.86)

wn =

(
1 +

8k

meffω
2
eff

sin2
πn

N

) 1
2

×

×
(
1 +

4kmeff ⟨θ2⟩
3

sin2
πn

N

)− 1
2

, (3.87)

we obtain

H0 = ~ωeff

N∑
n=1

3∑
j=1

(
1 +

4kmeff ⟨θ2⟩
3

sin2
πn

N

) 1
2

×

×

(
1 +

8k

meffω
2
eff

sin2
πn

N

) 1
2 (

(a
(n)
j )†a

(n)
j +

1

2

)
.

(3.88)
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So, the energy levels of H0 are given by

E{n1},{n2},{n3} = ~
N∑
a=1

(
ω2
eff +

8k

meff
sin2

πa

N

) 1
2

×

×
(
1 +

4kmeff ⟨θ2⟩
3

sin2
πa

N

) 1
2 (
n
(a)
1 + n

(a)
2 +

+n
(a)
3 +

3

2

)
=

N∑
a=1

~ωa

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
.

(3.89)

Here n
(a)
i are quantum numbers (n

(a)
i = 0, 1, 2...). Using (3.81),

(3.82), we have the following expressions for the frequencies

ω2
a =

(
ω2 +

⟨η2⟩
6m2

)(
1 +

m2ω2⟨θ2⟩
6

+

+
4k2m⟨θ2⟩

3
sin2

πa

N

)
+

8k

m
sin2

πa

N
+

+
32k2⟨θ2⟩

3
sin4

πa

N
. (3.90)

Let us also study a particular case of ω = 0. So, up to the second
order in the parameters of noncommutativity for a system of particles
with harmonic oscillator interaction we have

E{n1},{n2},{n3} =

=

N∑
a=1

~ωa

(
n
(a)
1 + n

(a)
2 + n

(a)
3 +

3

2

)
, (3.91)

where

ω2
a =

8k

m
sin2

πa

N
+

⟨η2⟩
6m2

+
32k2⟨θ2⟩

3
sin4

πa

N
. (3.92)

If momenta commutes ηij = 0 the spectrum of a chain of particles
with harmonic oscillator interaction in a space with noncommutativ-
ity of coordinates has the form (3.91) with frequencies

ω2
a =

8k

m
sin2

πa

N
+

32k2⟨θ2⟩
3

sin4
πa

N
. (3.93)
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From (3.91), (3.92) we have that the spectrum of the center-of-mass
of the system is the spectrum of harmonic oscillator with frequency

ω2
N =

⟨η2⟩
6m2

. (3.94)

Note that in the limit ⟨θ2⟩ → 0, ⟨η2⟩ → 0 on the basis of (3.90)
we have

ω2
a = ω2 +

8k

m
sin2

πa

N
. (3.95)

that is well known result in ordinary space.

3.6 Conclusions

We have examined energy levels of a system of N harmonic oscillators
with harmonic oscillator interaction in uniform field in rotationally-
invariant noncommutative phase space of canonical type.

Up to the second order in the parameters of noncommutativity
we have obtained influence of noncommutativity of coordinates and
noncommutativity of momenta on the energy levels of the system. We
have concluded that space quantization affects on the frequencies of
the system (3.26). Uniform field shifts of the spectrum of the system
on a constant (3.26). Particular case of a system of two interacting
oscillators and a system of three interacting oscillators have been
examined. We have found energy levels of the systems in rotationally-
invariant noncommutative phase space (3.47), (3.56).

On the basis of the obtained results a system of particles with har-
monic oscillator interaction and a system of free particles in uniform
field have been examined. We have concluded that up to the second
orders in the parameters of noncommutativity, the noncommutativ-
ity of coordinates does not affect the spectrum of free particle system
in uniform field. The spectrum of free particles in uniform field has
the form of the spectrum of a system of N harmonic oscillators with
frequencies determined by parameters of momentum noncommuta-
tivity a s ~⟨η2⟩/6m2 (3.40). We have also shown that a spectrum of
the center-of-mass of a system of particles with harmonic oscillator
interaction in uniform field corresponds to the spectrum of harmonic
oscillator (see first term in (3.39)) and is affected only by noncommu-
tativity of momenta. We have also found that the spectrum of the
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relative motion of the system of interacting harmonic oscillators corre-
sponds to the spectrum of harmonic oscillators with frequencies that
depends on the parameters of noncommutativity (see second term in
(3.39)). We have also showed that effect of coordinates noncommuta-
tivity on the spectra of systems with harmonic oscillator interaction
increases with increasing of the number of particles (3.26), (3.39).

Also, the harmonic oscillator chain has been studied. We have ob-
tained that noncommutativity of coordinates and noncommutativity
of momenta does not change the form of the spectrum of the sys-
tem (3.89). The frequencies of the system are affected by the space
quantization as (3.90).
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Chapter 4

Time reversal symmetry
in noncommutative phase
space of canonical type

4.1 Introduction

In ordinary space commutation relations for coordinates and mo-
menta

[X1, X2] = 0 (4.1)

[X1, P1] = [X2, P2] = i~, (4.2)

[P1, P2] = 0, (4.3)

are invariant upon time reversal [96].
If we consider transformations of coordinates and momenta upon

time reversal as in the ordinary case

Xi → Xi, (4.4)

Pi → −Pi, (4.5)

taking into account that in the quantum case the time reversal oper-
ation involves also the operation of complex conjugation [96], in the
case of noncommutative algebra of canonical type

[X1, X2] = i~θ, (4.6)

[X1, P1] = [X2, P2] = i~(1 + γ), (4.7)

[P1, P2] = i~η, (4.8)
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we find

[X1, X2] = −i~θ, (4.9)

[X1, P1] = [X2, P2] = i~(1 + γ), (4.10)

[P1, P2] = −i~η. (4.11)

So, algebra (4.6)-(4.8) is not invariant upon the time reversal. Be-
cause of this, the transformation of coordinates and moment Xi, Pi

after time reversal depends on representation. Noncommutative co-
ordinates and momenta satisfying (4.6)-(4.8) can be represented by
coordinates and momenta that satisfy the ordinary commutation re-
lations as

X1 = ε
(
x1 − θ′1p2

)
, (4.12)

X2 = ε
(
x2 + θ′2p1

)
, (4.13)

P1 = ε
(
p1 + η′1x2

)
, (4.14)

P2 = ε
(
p2 − η′2x1

)
. (4.15)

Here ε, θ′1, θ
′
2, η

′
2, η

′
2 are constants.

After time reversal, if we consider transformations for coordinates
and momenta as in the ordinary space xi → xi, pi → −pi, we obtain

X1 → X ′
1 = ε

(
x1 + θ′1p2

)
, (4.16)

X2 → X ′
2 = ε

(
x2 − θ′2p1

)
, (4.17)

P1 → −P ′
1 = ε

(
−p1 + η′1x2

)
, (4.18)

P2 → −P ′
2 = ε

(
−p2 − η′2x1

)
. (4.19)

The results (4.16)-(4.19) depend on the parameters ε, θ′1, θ
′
2, η

′
2, η

′
2.

So, the transformation of the noncommutative coordinates depends
on the representation.

One can choose parameters ε, θ′1, θ
′
2, η

′
2, η

′
2 in different ways. On

the basis of (4.12)-(4.15) we can write

[X1, X2] = i~ε2(θ′1 + θ′2), (4.20)

[X1, P1] = i~ε2(1 + θ′1η
′
1) (4.21)

[X2, P2] = i~ε2(1 + θ′2η
′
2), (4.22)

[P1, P2] = i~ε2(η′1 + η′2). (4.23)
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Comparing (4.20)-(4.23) and (4.6)-(4.8) we obtain

ε2 = 1, θ′1η
′
1 = θ′2η

′
2 = γ, (4.24)

θ′1 + θ′2 = θ, (4.25)

η′1 + η′2 = η. (4.26)

Based on the equations we find

θ′1 =
1

2

(
θ ±

√
θ2 − 4

θγ

η

)
, (4.27)

θ′2 =
1

2

(
θ ∓

√
θ2 − 4

θγ

η

)
, (4.28)

η′1 =
1

2

(
η ∓

√
η2 − 4

ηγ

θ

)
, (4.29)

η′2 =
1

2

(
η ±

√
η2 − 4

ηγ

θ

)
, (4.30)

and γ ≤ θη/4. So, we have two different representations for noncom-
mutative coordinates and noncommutative momenta. These repre-
sentations determine two different transformations after time reversal
(4.16)-(4.19).

Well-known is the symmetric representation

ε = 1, (4.31)

θ′1 = θ′2 =
θ

2
, (4.32)

η′1 = η′2 =
η

2
(4.33)

In this case

γ =
θη

4
, (4.34)

see [21] If γ = 0, one has the ordinary commutation relation for
coordinates and momenta. The commutator for coordinates and mo-
menta is equal to i~. Taking into account (4.20)-(4.23), (4.6)-(4.8),
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γ = 0 we have

ε2 =
1

1 + θ′1η
′
1

, (4.35)

θ′1η
′
1 = θ′2η

′
2, (4.36)

ε2(θ′1 + θ′2) = θ, (4.37)

ε2(η′1 + η′2) = η, (4.38)

One has one free parameter. Namely, five parameters ε, θ′1, θ
′
2, η

′
1,

η′2 are related with four equations (4.35)-(4.38). So, choosing one
of the parameters one can obtain different representations for non-
commutative coordinates and momenta which satisfy (4.6)-(4.8) with
γ = 0. So, one can write different transformations after time reversal
(4.16)-(4.19).

If we choose θ′2 = 0 we find ε = 1, η′1 = 0, η′2 = η, θ′1 = θ. So, the
representation is the following

X1 = x1 − θp2, (4.39)

X2 = x2, (4.40)

P1 = p1, (4.41)

P2 = p2 − ηx1. (4.42)

So, upon time reversal the coordinate X2, and momentum P1

transform as in the ordinary space X2 → X2, P1 → −P1. For coor-
dinates and momenta X1, P2 we obtain

X1 → X ′
1 = x1 + θp2, (4.43)

P2 → −P ′
2 = −p2 − ηx1. (4.44)

If we choose

ε = (1 + θ′η′)−
1
2 , (4.45)

θ′1 = θ′2 =
1±

√
1− θη

η
, (4.46)

η′1 = η′2 =
1±

√
1− θη

θ
(4.47)

we can write two symmetric representations (4.12)-(4.15) [21, 57].
These representations also lead to different transformations under
the time reversal.
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Obvious example for studies of time-reversal symmetry is the cir-
cular motion. Considering Hamiltonian

H =
P 2
1

2m
+
P 2
2

2m
− k

X
, (4.48)

(here X =
√
X2

1 +X2
2 ) and taking into account that coordinates

and momenta Xi, Pi satisfy relations of noncommutative algebra of
canonical type, we find

Ẋ1 =
P1

m
(1 + γ) +

kθX2

X3
, (4.49)

Ẋ2 =
P2

m
(1 + γ)− kθX1

X3
, (4.50)

Ṗ1 =
ηP2

m
− kX1

X3
(1 + γ) , (4.51)

Ṗ2 = −ηP1

m
− kX2

X3
(1 + γ) . (4.52)

Solutions of the equations that correspond to the circular motion read

X1(t) = R0 cos(ωt), (4.53)

X2(t) = R0 sin(ωt), (4.54)

P1(t) = −P0 sin(ωt), (4.55)

P2(t) = P0 cos(ωt). (4.56)

Here R0 is the radii of the circle. The momentum reads

P0 =
mωR3

0 + kmθ

R2
0 (1 + γ)

, (4.57)

and frequency is defined as

ω =
1

2

√ 4k

mR3
0

((1 + γ)2 − θη) +

(
kθ

R3
0

+
η

m

)2

− η

m
− kθ

R3
0

 .(4.58)

For the period of motion, we have

T = 4π

√ 4k

mR3
0

((1 + γ)2 − θη) +

(
kθ

R3
0

+
η

m

)2

− η

m
− kθ

R3
0

−1

.(4.59)
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If we study the motion in the opposite direction with the same
radii R0, we find

X1(t) = R0 cos(ωt), (4.60)

X2(t) = −R0 sin(ωt), (4.61)

P1(t) = P ′
0 sin(ωt), (4.62)

P2(t) = P ′
0 cos(ωt). (4.63)

Here we use notions P ′
0 to distinguish momentum in the case of mo-

tion in opposite direction. Using (4.60)-(4.63), (4.49)-(4.220) we find

ω′ =
1

2

√ 4k

mR3
0

((1 + γ)2 − θη) +

(
kθ

R3
0

+
η

m

)2

+
η

m
+
kθ

R3
0

 ,(4.64)

T ′ = 4π

√ 4k

mR3
0

((1 + γ)2 − θη) +

(
kθ

R3
0

+
η

m

)2

+
η

m
+
kθ

R3
0

−1

,(4.65)

and the momentum reads

P ′
0 = −mω

′R3
0 − kmθ

R2
0 (1 + γ)

. (4.66)

It is important to stress that the expressions (4.58), (4.59), (4.64),
(4.65) are different. We have

∆ω = ω′ − ω =
η

m
+
kθ

R3
0

. (4.67)

Expressions for ω′, T ′ contain terms with parameters of noncommu-
tativity with opposite signs in comparison to (4.58), (4.59). It is also
important to stress that P ′

0 ̸= −P0. All these conclusions are caused
by the time-reversal symmetry breaking in noncommutative phase
space of canonical type.

In the present chapter, we propose algebra with noncommutativ-
ity of coordinates and noncommutativity of momenta which does not
lead to violation of the rotational and time-reversal symmetries and
is equivalent to noncommutative algebra of canonical type. In the
frame of the algebra, the motion of a system of free particles is stud-
ied, also the spectrum of a particles in uniform field is find. Also, the
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motion in the gravitational filed is analyzed. We obtain a stringent
upper bound for the momentum scale on the basis of studies of the
perihelion shift of the Mercury planet.

The chapter is organized as follows. In section 4.2 algebra which
is rotationally invariant and does not lead to time-reversal symmetry
breaking is constructed. In section 4.3 motion of a free particle system
is studied in noncommutative phase space with preserved rotational
and time-reversal symmetries. Section 4.4 is devoted to studies of
the energy of a particle in uniform field in noncommutative phase
space. In 4.5 motion of a particle in a uniform gravitational field is
analyzed and the weak equivalence principle is studied. In section
4.6 equivalence principle is examined in the case of motion in non-
uniform gravitational field. Section 4.7 is devoted to calculations of
the perihelion shift of the Mercury planet in rotationally-invariant
and time-reversal invariant noncommutative phase space. In section
4.8 the upper bound for the parameters of coordinate noncommuta-
tivity and parameters of momentum noncommutativity are obtained.
Conclusions are presented in section 4.9.

Results presented in this chapter are published in [97–99].

4.2 Noncommutative phase space with pre-
served time reversal and rotational sym-
metries

To preserve the time reversal symmetry and rotational symmetry in
noncommutative phase space we consider the idea of construction
of the tensors of noncommutativity with the help of additional co-
ordinates and additional momenta. To construct algebra which is
rotationally-invariant, tensors of noncommutativity θij , ηij have to
transform under the time reversal as follows

θij → −θij , (4.68)

ηij → −ηij . (4.69)

So, from the view of simplicity we construct tensors of noncom-
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mutativity as follows

θij =
cθ
~
∑
k

εijkp
a
k, (4.70)

ηij =
cη
~
∑
k

εijkp
b
k. (4.71)

Here cθ, cη are constants, and pai , p
b
i are additional momenta that

correspond to harmonic oscillators (1.23), (1.24) So, rotationally-
invariant and time-reversal invariant algebra reads

[Xi, Xj ] = icθ
∑
k

εijkp
a
k, (4.72)

[Xi, Pj ] = i~
(
δij +

cθcη
4~2

(pa · pb)δij −
cθcη
4~2

pajp
b
i

)
, (4.73)

[Pi, Pj ] = icη
∑
k

εijkp
b
k. (4.74)

Additional coordinates and additional momenta satisfy the ordinary
commutation relations.

It is important to stress that independently of representation co-
ordinates and momenta upon time reversal transforms as Xi → Xi,
Pi → −Pi. Coordinates and momenta which satisfy relations of non-
commutative algebra (4.72)-(4.74) can be represented as

Xi = xi +
cθ
2~

[pa × p]i, (4.75)

Pi = pi −
cη
2~

[x× pb]i, (4.76)

where operators xi, pi satisfy the ordinary relations

[xi, xj ] = [pi, pj ] = 0, (4.77)

[xi, pj ] = i~δij . (4.78)

Upon time reversal we have

xi → xi, (4.79)

pi → −pi, (4.80)

pai → −pai , (4.81)

pbi → −pbi . (4.82)
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So, form (4.75), (4.76) we obtain that upon time reversal noncom-
mutative coordinates and noncommutative momenta transform as

Xi → Xi, (4.83)

Pi → −Pi. (4.84)

Also, it is important that algebra (4.72)-(4.74) is rotationally in-
variant. After transformations

X ′
i = U(φ)XiU

+(φ), (4.85)

P ′
i = U(φ)PiU

+(φ), (4.86)

pa′i = U(φ)paiU
+(φ), (4.87)

pb′i = U(φ)pbiU
+(φ), (4.88)

we have

[X ′
i, X

′
j ] = icθ

∑
k

εijkp
a′
k , (4.89)

[X ′
i, P

′
j ] = i~

(
δij +

cθcη
4~

(pa′ · pb′)δij −
cθcη
4~

pa′j p
b′
i

)
, (4.90)

[P ′
i , P

′
j ] = icη

∑
k

εijkp
b′
k , (4.91)

where U(φ) = exp(iφ(n·Lt)/~), with Lt = [x×p]+[a×pa]+[b×pb].
The algebra is consistent. This follows from the explicit represen-

tation (4.75), (4.76).

4.3 Effect of noncommutativity of momentum
on the motion of a system of free particles
in time reversal and rotationally invariant
noncommutative space

Let us consider a system of N particles in time-reversal and rotation-
ally invariant noncommutative phase space. The Hamiltonian reads

H =
∑
n

(P(n))2

2mn
+Ha

osc +Hb
osc. (4.92)
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Here index n labels the particles. Using representation for noncom-
mutative momenta with coordinates and momenta satisfying the or-
dinary commutation relation we can write

H =
∑
n

(
(p(n))2

2mn
− (η(n) · L(n))

2mn
+

[η(n) × x(n)]2

8mn

)
+

+~ωosc

(
(p̃a)2

2
+
ã2

2

)
+ ~ωosc

(
(p̃b)2

2
+
b̃2

2

)
, (4.93)

where L(n) reads

L(n) = [x(n) × p(n)]. (4.94)

In the case of system of free particles we have the following expressions
for H0 and ∆H

H0 =
∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
+ (4.95)

+~ωosc

(
(p̃a)2

2
+
ã2

2

)
+ ~ωosc

(
(p̃b)2

2
+
b̃2

2

)
, (4.96)

∆H =

=
∑
n

(
−(η(n) · L(n))

2mn
+

[η(n) × x(n)]2

8mn
− ⟨(η(n))2⟩(x(n))2

12m

)
. (4.97)

So, up to the second order in the parameter of momentum noncom-
mutativity we can study Hamiltonian H0.

It is important that the following commutation relation is satisfied[∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
, Ha

osc +Hb
osc

]
= 0. (4.98)

It is important also to note that coordinates x
(n)
i and momenta p

(n)
i

satisfy the ordinary commutation relations and therefore in the clas-
sical limit they satisfy the ordinary Poisson brackets. We have

{x(n)i , x
(m)
j } = 0, (4.99)

{x(n)i , p
(m)
j } = δijδnm, (4.100)

{p(n)i , p
(m)
j } = 0. (4.101)
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So, the Hamiltonian that describes a system of free particles reads

Hs =
∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
. (4.102)

It corresponds to a Hamiltonian of a system of harmonic oscillators
with frequencies determined by the parameters of momentum non-
commutativity ⟨(η(n))2⟩ in the following way

ωn =

√
⟨(η(n))2⟩
6m2

n

. (4.103)

On the basis of expression (4.102) we can write the following
equations

x
(n)
i (t) = x

(n)
0i cos

√⟨(η(n))2⟩
6m2

n

t

+

+υ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n

t

 , (4.104)

where x
(n)
0i , υ

(n)
0i are the initial coordinates and initial velocity. It is

important to stress that the trajectory of free particle (4.147) depends
on mass. This is because of noncommutativity of momenta. As a
result, even in the case when all particles have the same velocities

υ
(n)
0i = υ0i the free particles fly away. For the trajectory of the center-

of-mass and the relative motion we have the following expressions

x̃i(t) =
∑
n

µnx
(n)
0i cos

√⟨(η(n))2⟩
6m2

n

t

+

+
∑
n

µnυ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n

t

 ,

(4.105)
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∆x
(n)
i (t) =

= x
(n)
0i cos

√⟨(η(n))2⟩
6m2

n

t

+ υ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n

t

−

−
∑
l

µlx
(l)
0i cos

(√
⟨(η(l))2⟩
6m2

l

t

)
+

+
∑
l

µlυ
(l)
0i

√
6m2

l

⟨(η(l))2⟩
sin

(√
⟨(η(l))2⟩
6m2

l

t

)
,

(4.106)

where µn = mn/
∑

lml. It is important to stress that if the tensor of
momentum noncommutativity is defined as

η
(n)
ij =

α̃mn~
l2P

∑
k

εijkp̃
b
k, (4.107)

(here constant α̃ does not depend on mass) we can write

⟨(η(n))2⟩
m2

n

=
3~2α̃2

2l4P
= B. (4.108)

Here we use notation B for a constant which is the same for parti-
cles with different masses. Taking into account (4.192), we have the
following expression for the trajectory

x
(n)
i (t) = x

(n)
0i cos

(√
B

6
t

)
+ υ

(n)
0i

√
6

B
sin

(√
B

6
t

)
. (4.109)

If the initial velocities are the same

υ
(n)
0i = υ0i, (4.110)

the trajectory of the center-of-mass reads

x̃i(t) = x̃0i cos

(√
B

6
t

)
+ υ0i

√
6

B
sin

(√
B

6
t

)
. (4.111)
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Here

x̃0i =
∑
n

µnx
(n)
0i , (4.112)

and the relative coordinates of particles do not depend on time

∆x
(n)
i (t) = x

(n)
0i − x̃0i. (4.113)

So, dependence of parameter of momentum noncommutativity
on mass is important for solving the problem of flying away from a
system of free particles.

4.4 Exact results for energy and wavefunc-
tions of a particle in uniform field in non-
commutative phase space

We examine a particle with massm in uniform field. The Hamiltonian
reads

Hp =
P 2

2m
− αX3, (4.114)

α is a constant. Without loss of generality, we study the case when the
field is pointed in the X3 direction (in (4.114). The total Hamiltonian
reads

H =
P 2

2m
− αX3 +

(pa)2

2mosc
+
moscω

2
osca

2

2
. (4.115)

Using representation for noncommutative coordinates and noncom-
mutative momenta we can write

H =
p2

2m
− αx3 −

1

2
[θ × p]3 +

(pa)2

2mosc
+
moscω

2
osca

2

2
=

=
p2

2m
− αx3 −

αcθ
2~

(pa1p2 − pa2p1) +
(pa)2

2mosc
+
moscω

2
osca

2

2
. (4.116)
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Let us rewrite Hamiltonian (4.116) as follows

H =

(
1−

α2c2θmmosc

4~2

)
p21
2m

+

+

(
1−

α2c2θmmosc

4~2

)
p22
2m

+
p23
2m

− αx3 +

+
1

2mosc

(
pa1 −

αcθmosc

2~
p2

)2
+

1

2mosc

(
pa2 +

αcθmosc

2~
p1

)2
+

+
(pa3)

2

2mosc
++

moscω
2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
.(4.117)

It is important to note that operators

H̃p =

(
1−

α2c2θm

4~ωoscl2P

)
p21
2m

+

+

(
1−

α2c2θm

4~ωoscl2P

)
p22
2m

+
p23
2m

− αx3, (4.118)

H̃osc =
1

2mosc

(
pa1 −

αcθ
2ωoscl2P

p2

)2

+

+
1

2mosc

(
pa2 +

αcθ
2ωoscl2P

p1

)2

+

+
(pa3)

2

2mosc
+
moscω

2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
, (4.119)

commute

[H̃p, H̃osc] = 0. (4.120)

Hamiltonian of the particle H̃p can be rewritten as

H̃p = H̃1 + H̃2 + H̃3, (4.121)
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where

H̃1 =
p21

2meff
, (4.122)

H̃2 =
p22

2meff
, (4.123)

H̃3 =
p23
2m

− αx3, (4.124)

[H̃1, H̃2] = [H̃2, H̃3] = [H̃1, H̃3] = 0, (4.125)

with effective mass

meff = m

(
1−

α2c2θmmosc

4~2

)−1

= m

(
1−

α2c2θm

4~ωoscl2P

)−1

. (4.126)

It is important to mention that x3, p3 in H̃3 satisfy the ordinary
commutation relations. So, Hamiltonian H̃3 is the Hamiltonian of a
particle in uniform filed in the ordinary space. Let us introduce

p̃a1 = pa1 −
αcθ

2ωoscl2P
p2, (4.127)

p̃a2 = pa2 +
αcθ

2ωoscl2P
p1, (4.128)

p̃a3 = pa3. (4.129)

So, we can write (4.119) as follows

H̃osc =
(p̃a)2

2mosc
+
moscω

2
osca

2

2
. (4.130)

For operators ai and p̃
a
i we have the ordinary commutation rela-

tions

[ai, aj ] = [p̃ai , p̃
a
j ] = 0, (4.131)

[ai, p̃
a
j ] = i~δij . (4.132)

For operators H̃1, H̃2, H̃3, H̃osc we have (4.120), (4.125). So,
exact expression for the spectrum of a particle in uniform filed reads

E =
~2k21
2m

(
1−

α2c2θm

4~ωoscl2P

)
+

+
~2k22
2m

(
1−

α2c2θm

4~ωoscl2P

)
+E3 +

3

2
~ωosc. (4.133)
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It is important to mentioning that we have free motion of a par-
ticle in the directions perpendicular to the field. Values k1, k2 are
components of the wave vector that correspond to this free motion.
Notation E3 is used for denoting continious eigenvalues of Hamilto-
nian H̃3. in (4.133) the last term corresponds to the ground state of
the harmonic oscillator.

The eigenfunctions of the total Hamiltonian (4.117) can be writ-
ten as

ψ(x,a) = ψ̃1(x1)ψ̃2(x2)ψ̃3(x3)ψ̃(a). (4.134)

Here ψ̃i(xi) are eigenfunctions of H̃i that are defined as (4.122)-
(4.124). Eigenfunction of a particle in the uniform field in the space

with commutative coordinates and commutative momenta ψ(3)(x3)
reads

ψ(3)(x3) =

(
4m2

π3α~4

) 1
6

Φ

((
2mα

~2

) 1
3
(
−x3 −

E3

α

))
, (4.135)

where Φ is the Airy function

Φ(x) =
1√
π

∫ ∞

0
cos

(
t3

3
+ tx

)
dt. (4.136)

Functions ψ̃(a) denote eigenfunctions of Hamiltonian

H ′
osc =

1

2mosc

(
pa1 −

αcθ~k2
2ωoscl2P

)2

+

+
1

2mosc

(
pa2 +

αcθ~k1
2ωoscl2P

)2

+

+
(pa3)

2

2mosc
+
moscω

2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
. (4.137)

Note that expression for Hamiltonian (4.137) is obtained replacing
p1 by ~k1 and p2 by ~k2, in (4.119). The eigenfunction of harmonic
oscillator (4.137) corresponding to the ground state as follows

ψ̃(a) =
1

π
3
4 l

3
2
P

e
− a2

2l2
P

−iβ(k1a2−k2a1)
. (4.138)
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Here we introduce the notation

β =
αcθ

2ωoscl2P
. (4.139)

So, for the total Hamiltonian (4.117) we have the following eigen-
functions

ψ(x,a) =

= Ceik1x1eik2x2Φ

((
2mα

~2

) 1
3
(
−x3 −

E3

α

))
e
− a2

2l2
P

−iβ(k1a2−k2a1)
,(4.140)

where C is the normalization constant.
It is important to stress that noncommutativity affects the motion

of a particle in the directions perpendicular to the direction of the
field Namely, it affects on the mass of the particle in uniform field.

4.5 Motion of a particle in the uniform grav-
itational field in noncommutative phase
space with preserved time reversal and
rotational symmetries

Let us consider the motion of a particle of mass m in rotationally-
invariant and time-reversal invariant noncommutative phase space
(4.72)-(4.74). The Hamiltonian of a particle in a uniform field is as
follows

Hp =
P2

2m
+mgX1. (4.141)

In the Hamiltonian we considered X1 axis to be directed along the
field direction. The total Hamiltonian in terms of commuting coor-
dinates and commuting momenta rads

H =
p2

2m
+mgx1 −

(η · L)
2m

+
mg

2
[θ × p]1 +

+
[η × x]2

8m
+Ha

osc +Hb
osc. (4.142)
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This Hamiltonian can be represented asH = H0+∆H H0 = ⟨Hp⟩ab+
Ha

osc +Hb
osc, ∆H = H −H0 = Hp − ⟨Hp⟩ab

H0 =
p2

2m
+mgx1 +

⟨η2⟩x2

12m
+Ha

osc +Hb
osc, (4.143)

∆H = −(η · L)
2m

+
mg

2
[θ × p]1 +

[η × x]2

8m
− ⟨η2⟩x2

12m
. (4.144)

Up to the second order in ∆H one can study Hamiltonian H0. In this
approximation one can write the equations of motion of the particle

ẋi =
pi
m
, (4.145)

ṗi = −mgδi,1 −
⟨η2⟩xi
6m

. (4.146)

Solution of the equations is as follows

xi(t) =

(
x0i + 6g

m2

⟨η2⟩
δ1,i

)
cos

(√
⟨η2⟩
6m2

t

)
+

+υ0i

√
6m2

⟨η2⟩
sin

(√
⟨η2⟩
6m2

t

)
− 6g

m2

⟨η2⟩
δ1,i, (4.147)

where we considered notations x0i, υ0i for initial coordinates and ve-
locities of the particle. Note that only momentum noncommutativity
affects on the motion of a particle in gravitational field Considering
limit ⟨η2⟩ → 0 we find the well-known result in the ordinary space

xi(t) = δ1,i
gt2

2
+ x0i. (4.148)

Analyzing (4.147) we have that the weak equivalence principle is vi-
olated because of noncommutativity. According to the principle the
velocity and position of a point mass in a gravitational field are in-
dependent of mass.

If we consider the parameter of momentum noncommutativity to
be dependent on mass as

⟨η2⟩
m2

=
3~2α̃2

2l4P
= B = const, (4.149)
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where B does not depend on mass, one obtains the following trajec-
tory

xi(t) =

(
x0i +

6g

B
δ1,i

)
cos

(√
B

6
t

)
+

+υ0i

√
6

B
sin

(√
B

6
t

)
− 6g

B
δ1,i. (4.150)

So, due to condition (2.124) the trajectory of a particle in the grav-
itational field does not depend on mass, and the weak equivalence
principle is preserved.

Let us study more general case. For a composite system in the
gravitational field we have the following Hamiltonian

Hs =
(Pc)2

2M
+MgX

(c)
1 +Hrel, (4.151)

where X(c), Pc are coordinates and momenta of the center-of-mass
of the composite system. Hamiltonian Hrel represents the relative
motion. In the case when conditions (2.123), (2.124) are satisfied we
can represent the Hamiltonian as follows

H0 =
(pc)2

2M
+Mgxc1 +

⟨(ηc)2⟩(xc)2

12M
+ ⟨Hrel⟩ab +

+H(a)
osc +H(b)

osc. (4.152)

Taking into account that

[H0, ⟨Hrel⟩ab] = 0, (4.153)

we can write

xci (t) =

(
xc0i + 6g

M2

⟨(ηc)2⟩
δ1,i

)
cos

(√
⟨(ηc)2⟩
6M2

t

)
+

+υc0i

√
6M2

⟨(ηc)2⟩
sin

(√
⟨(ηc)2⟩
6M2

t

)
− 6g

M2

⟨(ηc)2⟩
δ1,i, (4.154)
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Due to condition (2.124) the trajectory can be rewritten as

⟨(ηc)2⟩
M2

=
3~2α̃2

2l4P
= B = const, (4.155)

xci (t) =

(
xc0i +

6g

B
δ1,i

)
cos

(√
B

6
t

)
+

+υ0i

√
6

B
sin

(√
B

6
t

)
− 6g

B
δ1,i, (4.156)

So, the weak equivalence principle is satisfied.

Using (4.147) for the trajectory of the center-of-mass of a system
of N non-interacting particles in uniform gravitational field we have

xci (t) =
∑
a

µax
(a)
i (t) = −

∑
a

6gµa
m2

a

⟨(η(a))2⟩
δ1,i +

+
∑
a

µa

(
x
(a)
0i + 6g

m2
a

⟨(η(a))2⟩
δ1,i

)
cos

√⟨(η(a))2⟩
6m2

a

t

+

+
∑
a

µaυ
(a)
0i

√
6m2

a

⟨(ηa)2⟩
sin

(√
⟨(ηa)2⟩
6m2

a

t

)
, (4.157)

Here ma is the mass of particle a, x
(a)
0i , υ

(a)
0i are initial coordinates

and initial velocities. Note, that due to condition (2.124), taking into
account

x
(c)
0i =

∑
a

µax
(a)
0i , (4.158)

υ
(c)
0i =

∑
a

µaυ
(a)
0i , (4.159)

one find that expression (4.157) reduces to (4.154).
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4.6 Motion in the non-uniform gravitational
field in rotationally- and time-reversal in-
variant noncommutative phase space

For a particle in non-uniform gravitational field we have the following
Hamiltonian

Hp =
P 2

2m
− GM̃m

X
, (4.160)

where m is the mass of the particle,

X = |X| =
√∑

i

X2
i . (4.161)

Similarly as in the previous sections, up to the second order in the
parameters of noncommutativity, we can consider Hamiltonian as
follows

H0 =
p2

2m
− GM̃m

x
+

⟨η2⟩x2

12m
− GM̃mL2⟨θ2⟩

8x5
+

+
GM̃m⟨θ2⟩

24

(
2

x3
p2 +

6i~
x5

(x · p)− ~2

x5

)
+

+Ha
osc +Hb

osc. (4.162)

So, in this approximation of a particle in non-uniform gravitational
field read we have the following equations of motion

ẋ =
p

m
− GM̃m⟨θ2⟩

12

(
1

x3
p− 3x

x5
(x · p)

)
, (4.163)

ṗ = −GM̃mx

x3
− ⟨η2⟩x

6m
− GM̃m⟨θ2⟩

4

(
1

x5
(x · p)p−

−2x

x5
p2 +

5x

2x7
L2 +

5~2x
6x7

− 5i~
x7

x(x · p)
)
. (4.164)
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In the limit ~ → 0 we can write

ẋ = υ − GM̃m2⟨θ2⟩
12

(
1

x3
υ − 3x

x5
(x · υ)

)
, (4.165)

υ̇ = −GM̃x

x3
− ⟨η2⟩x

6m2
−

−GM̃m2⟨θ2⟩
4

(
1

x5
(x · υ)υ − 2x

x5
υ2 +

5x

2x7
[x× υ]2

)
. (4.166)

Here we use notation

υ =
p

m
(4.167)

Note that the obtained results depend on m2⟨θ2⟩ and ⟨η2⟩/m2.
So, if we consider conditions (2.123), (2.124) we can write

ẋ = υ − GM̃A

12

(
1

x3
υ − 3x

x5
(x · υ)

)
, (4.168)

υ̇ = −GM̃x

x3
− Bx

6
−

−GM̃A

4

(
1

x5
(x · υ)υ − 2x

x5
υ2 +

5x

2x7
[x× υ]2

)
. (4.169)

Here we take into account (4.149), (2.123) and

⟨θ2⟩m2 =
3α2l4Pm

2

2~2
= A = const. (4.170)

Constant A does not depend on mass.

Results for the equations of motion (4.168), (4.169) depend on
constants A, B. The constants are the same for different particles.
So, conditions (2.123), (2.124) open a possibility to recover the weak
equivalence principle.

Let us also consider a quantum case. If relations (2.123), (2.124)
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are satisfied the equations (4.163), (4.164) can be rewritten as

ẋ = υ − GM̃B

12

(
1

x3
υ − 3x

x5
(x · υ)

)
, (4.171)

υ̇ = −GM̃x

x3
− Bx

6
− GM̃A

4

(
1

x5
(x · υ)υ − 2x

x5
υ2+

+
5x

2x7
[x× υ]2 +

5~2x
6m2x7

− 5i~
mx7

x(x · υ)
)
. (4.172)

Note, that these equations depend on ~/m, as it has to be. This is
due to commutation relation

[x,υ] = i~
Î

m
. (4.173)

(see [100] for the details).
So, if relations (2.123), (2.124) hold, the motion of a particle in

gravitational field is independent of its mass, and the weak equiva-
lence principle is preserved.

The same conclusion can be made in the case of motion of a
composite system. We have

Hs =
(P c)2

2M
− GM̃M

(Xc)2
+Hrel, (4.174)

H0 =
(pc)2

2M
− GM̃M

xc
+

⟨(ηc)2⟩(xc)2

12M
−

−GM̃M(Lc)2⟨θ2⟩
8(xc)5

+
GM̃M⟨(θc)2⟩

24

(
2

(xc)3
(pc)2+

+
6i~
(xc)5

(xc · pc)− ~2

(xc)5

)
+ ⟨Hrel⟩ab +Ha

osc +Hb
osc.

(4.175)

In the case when conditions (2.123), (2.124) are satisfied we can write

ẋc = υc − GM̃B

12

(
1

(xc)3
υc − 3xc

(xc)5
(xc · υc)

)
, (4.176)

υ̇c = −GM̃xc

(xc)3
− Bxc

6
− GM̃A

4

(
1

(xc)5
(xc · υc)υc−

− 2xc

(xc)5
(υc)2 +

5xc

2(xc)7
[xc × υc]2

)
. (4.177)
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It is important to stress that if relations (2.123), (2.124) are not
preserved, the equations of motion of a composite system depend on
its mass and parameters ⟨(θc)2⟩, ⟨(ηc)2⟩. The parameters are defined
as

θcij =
∑
n

µ2nθ
(n)
ij , (4.178)

ηcij =
∑
n

η
(n)
ij , (4.179)

and depend on the composition. So, this in addition causes violation
of the weak equivalence principle in quantum space.

4.7 Studies of the Mercury motion in non-
commutative phase space

Let us first consider a particle of mass m in the gravitational filed
−k/X in noncommutative phase space with preserved rotational and
time-reversal symmetries (4.72)-(4.74). So, the total Hamiltonian
reads

H = Hp +Ha
osc +Hb

osc, (4.180)

Hp =
P 2

2m
− mk

X
. (4.181)

hereXi, Pi satisfy relations (4.72)-(4.74), termsHa
osc, H

b
osc are Hamil-

tonians of harmonic oscillators. Up to the second order in the param-
eters of noncommutativity we can consider Hamiltonian as follows

⟨Hp⟩ab =
p2

2m
− mk

x
+

⟨η2⟩x2

12m
− ⟨θ2⟩mkL2

8x5
+

⟨θ2⟩mkp2

12x3
. (4.182)

Noncommutativity of coordinates and noncommutativity of momenta
cause the precession of the orbit of the particle. To find the precession
rate of the orbit we consider

u =
p

m
− mk[L× x]

xL2
, (4.183)

and calculate

Ω =
[u× u̇]

u2
. (4.184)
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We obtain {
u,

p2

2m
− mk

x

}
= 0, (4.185)

u̇ =

{
u,

⟨η2⟩x2

12m
− ⟨θ2⟩mkL2

8x5
+

⟨θ2⟩mkp2

12x3

}
=

= −⟨η2⟩x
6m2

− k⟨θ2⟩
4

(
(x · p)p
x5

− 2p2x

x5
+

5L2x

2x7

)
+

+
m2k2⟨θ2⟩[L× p]

12L2x4
− m2k2⟨θ2⟩(x · p)[L× x]

12L2x6
. (4.186)

It is known that in the ordinary space

u2 =
m2k2e2

L2
, (4.187)

here e is the eccentricity of the orbit. So, we find

Ω = ⟨θ2⟩
(

5L4

8km3x7e2
− p2L2

2m3x5ke2
+

+
p2

4me2x4
− 7L2

24mx6e2
− mk

12x5e2

)
L+

+⟨η2⟩
(

L2

6m5k2e2
− x

6m3ke2

)
L. (4.188)

For the perihelion shift per revolution we can write

∆ϕp =

∫ T

0
Ωdt =

=

∫ 2π

0

Ω

ϕ̇
dϕ = ⟨θ2⟩πkm

2(4 + e2)

8a3(1− e2)3
− ⟨η2⟩πa

3
√
1− e2

2m2k
, (4.189)

with a being the semi-major axis, ϕ being the polar angle. To find
(4.189) we take into account that in the ordinary space

L = mx2ϕ̇, x =
a(1− e2)

1 + e cosϕ
, (4.190)

p2

2m
− mk

x
= −mk

2a
. (4.191)
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It is important to stress that the perihelion shift depends on the
mass of the particle m. If relations (2.123), (2.124) hold, we obtain

⟨θ2⟩m2 =
3γ̃2

2l2P
= A,

⟨η2⟩
m2

=
3α̃2

2l2P
= B, (4.192)

where A, B are constants that do not depend on the masses of Par-
ticles.

Taking into account (4.192), (4.189) we find

∆ϕp = A
πk(4 + e2)

8a3(1− e2)3
−B

πa3
√
1− e2

2k
. (4.193)

It is worth mentioning that the proposed conditions (2.123), (2.124)
are important for solving the problem of violation of the weak equiv-
alence principle in quantum space.

For a composite system with mass M in gravitational field we
have

Hs = Hcm +Hrel, (4.194)

Hcm =
(P c)2

2M
− Mk

Xc
, (4.195)

Xc
i , P

c
i are coordinates and momenta of the center-of-mass, Hrel de-

scribes the relative motion. If relations (2.123), (2.124) are satisfied
commutators for coordinates and momenta corresponds to noncom-
mutative algebra (4.72), (4.74). The coordinates and momenta of the
center-of-mass can be represented as

Xc
i = xci −

θcijp
c
j

2
, (4.196)

P c
i = pci +

ηcijx
c
j

2
. (4.197)

So, up to the second order in the parameters of noncommutativity
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we can study Hamiltonian as follows

H0 = ⟨Hs⟩ab +Ha
osc +Hb

osc =

=
(pc)2

2M
− Mk

xc
+

⟨(ηc)2⟩(xc)2

12M
−

−⟨(θc)2⟩Mk(Lc)2

8(xc)5
+

+
⟨(θc)2⟩Mk

24

(
1

(xc)2
(pc)2

1

xc
+

1

xc
(pc)2

1

(xc)2
+

~2

(xc)5

)
+

+⟨Hrel⟩ab +Ha
osc +Hb

osc. (4.198)

Here

Lc = [xc × pc]. (4.199)

Using definitions

∆X(n) = X(n) −Xc, (4.200)

∆P(n) = P(n) − µnP
c, (4.201)

and taking into account (2.123), (2.124), we have

∆X
(n)
i = ∆x

(n)
i −

θ
(n)
ij ∆p

(n)
j

2
, (4.202)

∆P
(n)
i = ∆p

(n)
i +

η
(n)
ij ∆x

(n)
j

2
. (4.203)

Here coordinates and momenta

∆x(n) = x(n) − xc, (4.204)

∆p(n) = p(n) − µnp
c, (4.205)

satisfy the ordinary commutation relations. It is important that
⟨Hrel⟩ab commutes withH0. So, one can consider the following Hamil-
tonian

⟨Hcm⟩ab =
(pc)2

2M
− Mk

xc
+

⟨(ηc)2⟩(xc)2

12M
−

−⟨(θc)2⟩Mk(Lc)2

8(xc)5
+

⟨(θc)2⟩Mk(pc)2

12(xc)3
. (4.206)
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Using (4.189), for the perihelion shift of orbit of macroscopic body
we can write

∆ϕnc = ⟨(θc)2⟩πkM
2(4 + e2)

8a3(1− e2)3
− ⟨(ηc)2⟩πa

3
√
1− e2

2M2k
, (4.207)

here

⟨(θc)2⟩ = 3γ̃2

2l2PM
2
=

A

M2
, (4.208)

⟨(ηc)2⟩ = 3α̃2M2

2l2P
= BM2. (4.209)

4.8 Upper bounds on the parameters of non-
commutativity

We apply the obtained result for the perihelion shift for the Mercury
planet. We compare the perihelion shift caused by space quantization
(4.207) with

∆ϕobs −∆ϕGR = 2π(−0.00049± 0.00017) · 10−8radians/revolution(4.210)

(here ∆ϕGR is perihelion precession rate from General Relativity pre-
dictions, ∆ϕobs is the result of observations). We assume that |∆ϕnc|
is less than |∆ϕobs −∆ϕGR| at 3σ and write the following inequality

|∆ϕnc| ≤ 2π · 10−11radians/revolution, (4.211)

Parameter θcij or parameter ηcij could be equal to zero. Therefore it
is sufficiently to consider the following inequalities∣∣∣∣⟨(θc)2⟩πGM⊙M

2(4 + e2)

8a3(1− e2)3

∣∣∣∣ ≤ 2π · 10−11radians/revolution,(4.212)∣∣∣∣∣⟨(ηc)2⟩πa3
√
1− e2

2GM⊙M2

∣∣∣∣∣ ≤ 2π · 10−11radians/revolution,(4.213)

where M is the mass of Mercury, a, e are parameters of its orbit. So,
we find

~
√

⟨(θc)2⟩ < 2.3 · 10−57m2, (4.214)

~
√

⟨(ηc)2⟩ < 1.8 · 10−22kg2m2/s2. (4.215)
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Taking into account (4.192), (4.208), (4.209), we have

⟨(θc)2⟩M2 = ⟨(θ(n))2⟩m2
n, (4.216)

⟨(ηc)2⟩
M2

=
⟨(θ(n))2⟩
m2

n

, (4.217)

here parameters ⟨(θ(n))2⟩, ⟨(η(n))2⟩ correspond to particle of mass
mn.

Based on relations (4.214), (4.215), (4.216), (4.217) one can find
upper bounds on the parameters of noncommutativity of different
particles. In the case of electron we have

~
√

⟨(θ(e))2⟩ < 8.3 · 10−4m2, (4.218)

~
√
⟨(η(e))2⟩ < 5.1 · 10−76kg2m2/s2. (4.219)

We do not obtain strong upper bound for the parameter of coor-
dinate noncommutativity. This is because the influence of noncom-
mutativity of coordinates on the motion of macroscopic bodies is less
than on the motion of particles. So, for strong upper bounds on the
parameters of coordinate noncommutativity data of hight accuracy
are needed.

The result (4.219) is quite strong. This result is at least ten orders
less than that obtained based on studies of the hydrogen and exotic
atoms [45, 46, 50]. Using (4.219), we can also estimate the minimal
momentum

pmin =
4

√
3~2⟨(η(e))2⟩

2
< 2.5 · 10−38kg ·m/s. (4.220)

In the case of nucleons we have

⟨(ηc)2⟩
M2

=
⟨(θ(nuc))2⟩
m2

nuc

, (4.221)

~
√

⟨(η(nuc))2⟩ < 9.3 · 10−73kg2m2/s2, (4.222)

where mnuc is the mass of nucleon The obtained result (4.222) is 6
orders less than that estimated on the basis of studies of neutrons in
gravitational quantum well [101].
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4.9 Conclusions

Noncommutative phase space of canonical type with preserved rota-
tional and time reversal symmetries has been considered (4.72)-(4.74).
Corresponding noncommutative algebra (4.72)-(4.74) is constructed
with the help of generalization of the parameters of noncommutativ-
ity to tensors, constructed with the help of additional momenta. The
momenta are governed by harmonic oscillators.

We have considered a particle in uniform field in the frame of the
noncommutative algebra. Energy and wave functions of the parti-
cle have been found exactly (4.133), (4.140) We have obtained that
noncommutativity affects the mass of the particle in the directions
perpendicular to the field. Motion of a particle in the field direction
is the same as in the ordinary space.

Effect of space quantization on a particle in Coulomb potential
has been studied. We have obtained expression for the perihelion shift
of orbit of the particle up to the second order in the parameters of
noncommutativity. The result has been generalized to the case of mo-
tion of macroscopic bodies Upper bounds (4.214), (4.215) have been
estimated based on expression for the perihelion shift of the Mercury
planet in quantum space (4.207) and data for precession of Mer-
cury’s perihelion from ranging to the MESSENGER spacecraft. The
obtained upper bounds for the parameters of momentum noncom-
mutativity (4.219), (4.222), for the minimal momentum (4.220) are
strong. For parameter of momentum noncommutativity of electron
we have obtained upper bound (4.219) that is at least 10 orders less
than that obtained based on studies of the hydrogen atom [46,102].

106



Chapter 5

Conclusions

In the monograph noncommutative algebra with tensors of noncom-
mutativity constructed with the help of additional coordinates and
additional momenta has been considered (1.27)-(1.29). The algebra
is rotationally-invariant and equivalent to noncommutative algebra
of canonical type in the sense that tensors of noncommutativity com-
mute with operators of coordinates and operators of momenta. In
the frame of rotationally-invariant noncommutative algebra different
physical systems have been studied. Among them are free particle,
systems of harmonic oscillators, hydrogen and hydrogen-like atoms.
Based on the obtained results for the energy levels of hydrogen atom
and antiprotonic helium the upper bound for the parameters of non-
commutativity have been found (see section 2.6). Also the eigen-
values of squared length operator defined in coordinate space, mo-
mentum space have been found. Based on the obtained results the
minimal length in rotationally-invariant noncommutative phase space
has been found (1.112), (1.115), (1.118).

Also, the time-reversal symmetry has been studied in noncommu-
tative phase space. We have shown that noncommutative algebra of
canonical type leads to violation of the symmetry. As a result the
period of a circular motion in the space depends on its direction, the
transformation of noncommutative coordinates and momenta upon
time reversal depends on the representation. We have shown that
by constructing tensors of coordinates and momentum noncommu-
tativity with the help of additional momenta that are governed by
harmonic oscillator one can build algebra that is rotationally invari-
ant, equivalent to noncommutative algebra of canonical type and does
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not lead to violation of the time-reversal symmetry.
The weak equivalence principle has been studied in rotationally-

and time reversal invariant noncommutative phase space. Based on
studies of the motion in the gravitational field we have found ex-
pressions for the tensors of noncommutativity that gives a possibility
to preserve the weak equivalence principle in noncommutative phase
space. In addition on the basis of studies of the perihelion shift of the
Mercury planet, we have found the upper bound for the parameter
of momentum noncommutativity corresponding to electron (4.219)
which is at least 10 orders less than that presented in literature.
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2002. — Vol. 547, no. 1-2. — Pp. 51–54.

[18] Duval, C. Exotic Galilean symmetry in the non-commutative
plane and the Hall effect / C. Duval, P. A. Horvathy // J. Phys.
A: Math. Gen. — 2001. — Vol. 34, no. 47. — Pp. 10097–10107.

[19] Quantum theories on noncommutative spaces with nontrivial
topology: Aharonov–Bohm and Casimir effects / M. Chaichian,

110



References 111

A. , Demichev, P. Presnajder et al. // Nuc. Phys. B. — 2001. —
Vol. 611, no. 1-3. — P. 383–402.

[20] Sinha, D. Non-commutative quantum mechanics in three di-
mensions and rotational symmetry / D. Sinha, B. Chakraborty,
F. G. Scholtz // Journal of Physics A: Mathematical and The-
oretical. — 2012. — Vol. 45, no. 10 – Art. 105308.– 23 p.

[21] Scaling of variables and the relation between noncommutative
parameters in noncommutative quantum mechanics / O. Berto-
lami, J. G. Rosa, C. M. L. de Aragao et al. // Mod. Phys. Lett.
A. — 2006. — Vol. 21, no. 10. — Pp. 795–802.

[22] Moreno, E. F. Spherically symmetric monopoles in noncommu-
tative space / E. F. Moreno // Phys. Rev. D. — 2005. — Vol. 72,
no. 4. — P. 045001.

[23] Galikova, V. Coulomb problem in non-commutative quantum
mechanics / V. Galikova, P. Presnajder // J. Math. Phys. —
2013. — Vol. 54. — 20 pp.

[24] Kupriyanov, V. G. A hydrogen atom on curved noncommuta-
tive space / V. G. Kupriyanov // J. Phys. A: Math. Theor. —
2013. — Vol. 46, no. 24. — 7 pp.

[25] Amorim, R. Dynamical symmetries in noncommutative theo-
ries / R. Amorim // Phys. Rev. D. — 2008. — Vol. 78, no. 10.–
Art. 105003.– 7 p. — 7 pp.

[26] Bander, M. Coherent states and N dimensional coordinate non-
commutativity / M. Bander // J. High Energy Phys. — 2006. —
Vol. 03, no. 2006. — 14 pp.

[27] Chaichian, M. Hydrogen atom spectrum and the Lamb shift in
noncommutative QED / M. Chaichian, M. M. Sheikh-Jabbari,
A. Tureanu // Phys. Rev. Lett. — 2001. — Vol. 86, no. 13. —
Pp. 2716–2719.

[28] Ho, P.-M. Noncommutative quantum mechanics from noncom-
mutative quantum field theory / P.-M. Ho, H.-C. Kao // Phys.
Rev. Lett. — 2002. — Vol. 88, no. 15. — 4 pp.

111



112 References

[29] Chaichian, M. Non-commutativity of space-time and the hy-
drogen atom spectrum / M. Chaichian, M. M. Sheikh-Jabbari,
A. Tureanu // Eur. Phys. J. C. — 2004. — Vol. 36, no. 2. —
Pp. 251–252.

[30] Chair, N. The noncommutative quadratic Stark effect for the
H-atom / N. Chair, M. A. Dalabeeh // J. Phys. A. — 2005. —
Vol. 38, no. 7. — Pp. 1553–1558.

[31] Stern, A. Noncommutative point sources / A. Stern // Phys.
Rev. Lett. — 2008. — Vol. 100, no. 6. — 4 pp.

[32] Zaim, S. Second-order corrections to the non-commutative
Klein-Gordon equation with a Coulomb potential / S. Zaim,
L. Khodja, Y. Delenda // Int. J. Mod. Phys. A. — 2011. —
Vol. 26, no. 23. — Pp. 4133–4144.

[33] Dirac equation in noncommutative space for hydrogen atom /
T. C. Adorno, M. C. Baldiotti, M. Chaichian et al. // Phys.
Lett. B. — 2009. — Vol. 682, no. 2. — Pp. 235–239.

[34] Khodja, L. New treatment of the noncommutative Dirac equa-
tion with a Coulomb potential / L. Khodja, S. Zaim // Int. J.
Mod. Phys. A. — 2012. — Vol. 27, no. 19. — 13 pp.

[35] Djemai, A. E. F. On quantum mechanics on noncommutative
quantum phase space / A. E. F. Djemai, H. Smail // Commun.
Theor. Phys. — 2004. — Vol. 41, no. 6. — Pp. 837–844.

[36] Li, K. Hydrogen atom spectrum in noncommutative phase
space / K. Li, N. Chamoun // Chin. Phys. Lett. — 2006. —
Vol. 23, no. 5. — Pp. 1122–1123.

[37] Alavi, S. A. Lamb shift and Stark effect in simultaneous space-
space and momentum-momentum noncommutative quantum
mechanics and θ-deformed su(2) algebra / S. A. Alavi // Mod.
Phys. Lett. A. — 2007. — Vol. 22, no. 5. — Pp. 377–383.

[38] Balachandran, A. P. On time-space noncommutativity for tran-
sition processes and noncommutative symmetries / A. P. Bal-
achandran, A. Pinzul // Mod. Phys. Lett. A. — 2005. — Vol. 20,
no. 27. — Pp. 2023–2034.

112



References 113

[39] Stern, A. Particlelike solutions to classical noncommutative
gauge theory / A. Stern // Phys. Rev. D. — 2008. — Vol. 78,
no. 6. — 11 pp.

[40] Moumni, M. A new limit for the noncommutative space–time
parameter / M. Moumni, A. BenSlama, S. Zaim // J. Geom.
Phys. — 2011. — Vol. 61, no. 1. — Pp. 151–156.

[41] Moumni, M. Spectrum of hydrogen atom in space-time non-
commutativity / M. Moumni, A. BenSlama, S. Zaim // The
African Review of Physics. — 2012. — Vol. 7, no. 0010. — Pp. 83–
94.

[42] Zaim, S. Noncommutative of space-time and the relativistic hy-
drogen atom / S. Zaim, Y. Delenda // J. Phys.: Conf. Ser. —
2013. — Vol. 435. — 9 pp.

[43] Gnatenko, Kh. P. Hydrogen atom in rotationally invariant non-
commutative space / Kh. P. Gnatenko, V. M. Tkachuk // Phys.
Lett. A. — 2014. — Vol. 378, no. 47. — Pp. 3509–3515.

[44] Gnatenko, Kh.. P. Perturbation of the ns levels of the hydro-
gen atom in rotationally invariant noncommutative space /
Kh.. P. Gnatenko, Yu.. S. Krynytskyi, V. Tkachuk // Mod.
Phys. Lett. A. — 2015. — Vol. 30, no. 8. – Art. 1550033. – 12 p.

[45] Gnatenko, Kh. P. Composite system in rotationally in-
variant noncommutative phase space / Kh. P. Gnatenko,
V. M. Tkachuk // Int. J. Mod. Phys. A. — 2018. — Vol. 33,
no. 7. — P. 1850037.

[46] Gnatenko, Kh. P. Noncommutative phase space with rota-
tional symmetry and hydrogen atom / Kh. P. Gnatenko,
V. M. Tkachuk // Int. J. Mod. Phys. A. — 2017. — Vol. 32,
no. 26. — P. 1750161.

[47] Qiang, W.-C. An alternative approach to calculating the mean
values rk for hydrogen-like atoms / W.-C. Qiang, S.-H. Dong //
Phys. Scripta. — 2004. — Vol. 70, no. 5. — Pp. 276–279.

[48] Precision measurement of the hydrogen 1s-2s frequency via a
920-km fiber link / A. Matveev, C. G. Parthey, K. Predehl
et al. // Phys. Rev. Lett. — 2013. — Vol. 110, no. 23. — 5 pp.

113



114 References

[49] Noncommutative gravitational quantum well / O. Bertolami,
J. G. Rosa, C. M. L. Aragão et al. // Phys. Rev. D. — 2005. —
Vol. 72, no. 2. – Art. – 025010. – 9 p.

[50] Bertolami, O. Phase-space noncommutativity and the Dirac
equation / O. Bertolami, R. Queiroz // Phys. Lett. A. — 2011. —
Vol. 375, no. 2011. — Pp. 4116–4119.

[51] Polchinski, J. Precision Spectroscopy of Antiprotonic Helium
Atoms and Ions – Weighing the Antiproton. In: Karshenboim
S.G. (eds) Precision Physics of Simple Atoms and Molecules.
Lecture Notes in Physics vol 745. Springer, Berlin, Heidelberg /
J. Polchinski. — Springer, Berlin, Heidelberg. — Pp. 187–201.

[52] Spectroscopy of antiprotonic helium atoms and its contribu-
tion to the fundamental physical constants / A. Matveev,
C. G. Parthey, K. Predehl et al. // Proc. Jpn. Acad. Ser. B
Phys. Biol. Sci. — 2010. — Vol. 86, no. 1. — Pp. 1–10.

[53] Two-photon laser spectroscopy of antiprotonic helium and the
antiproton-to-electron mass ratio / M. Hori, A. Soter, D. Barn
et al. // Nature. — 2011. — Vol. 475. — Pp. 484–488.

[54] Gnatenko, Kh. P. Composite system in noncommutative space
and the equivalence principle / Kh. P. Gnatenko // Phys. Lett.
A. — 2013. — Vol. 377, no. 43. — Pp. 3061–3066.

[55] Gnatenko, Kh. P. Effect of coordinate noncommutativity on
the mass of a particle in a uniform field and the equivalence
principle / Kh. P. Gnatenko, V. M. Tkachuk // Mod. Phys.
Lett. A. — 2016. — Vol. 31, no. 5. — P. 1650026.

[56] Gnatenko, Kh. P. Weak equivalence principle in noncommu-
tative phase space and the parameters of noncommutativity /
Kh. P. Gnatenko, V. M. Tkachuk // Phys. Lett. A. — 2017. —
Vol. 381, no. 31. — P. 2463–2469.

[57] Gnatenko, Kh. P. Kinematic variables in noncommuta-
tive phase space and parameters of noncommutativity /
Kh. P. Gnatenko // Mod. Phys. Lett. A. — 2017. — Vol. 32,
no. 31. — P. 1750166.

114



References 115

[58] Quesne, C. Composite system in deformed space with minimal
length / C. Quesne, V. M. Tkachuk // Phys. Rev. A. — 2010. —
Vol. 81, no. 1. — P. 012106.

[59] Tkachuk, V. M. Deformed Heisenberg algebra with minimal
length and the equivalence principle / V. M. Tkachuk // Phys.
Rev. A. — 2012. — Vol. 86, no. 6. — P. 062112.

[60] Tkachuk, V. M. Galilean and Lorentz transformations in a space
with generalized uncertainty principle / V. M. Tkachuk //
Found. Phys. — 2016. — Vol. 46, no. 12. — P. 1666–1679.

[61] Hatzinikitas, A. The noncommutative harmonic oscillator in
more than one dimension / A. Hatzinikitas, I. Smyrnakis //
J. Math. Phys. — 2002. — Vol. 43, no. 1. — Pp. 113–125.

[62] Kijanka, A. Noncommutative isotropic harmonic oscillator /
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