Visnyk of the Lviv University. Series Physics 60 (2023) c. 70-77
DOI: https://doi.org/10.30970/vph.60.2023.70

Preparation of maximally entangled four-qubit states on a quantum computer and calculation of the geometric measure of entanglement

B. P. Hnatenko, Kh. P. Gnatenko

We study maximally entangled four-qubit quantum states. Quantum protocols for preparation of the states and calculation of the geometric measure of entanglement are constructed and realized on IBM's quantum computer ibm-perth. The results of quantum calculations are in agreement with theoretical ones. We show that the quantum device ibm-perth can be in a maximally entangled four-qubit quantum state.

Текст статті (pdf)


Список посилань
  1. Artur K. Quantum cryptography based on Bells theorem / K. Artur // Phys. Rev. Lett. -- 1991. -- Vol. 67. -- P. 661. doi: 10.1103/PhysRevLett.67.661.
  2. Bennett Ch. H. Teleporting an unknown quantum state via dual classical and EinsteinPodolsky-Rosen channels / Ch. H. Bennett, G. Brassard, C. Crpeau, R. Jozsa, A. Peres and W. K. Wootters // Phys. Rev. Lett. -- 1993. -- Vol. 70. -- P. 1895. doi: 10.1103/PhysRevLett.70.1895.
  3. Wang Y. 16-qubit IBM universal quantum computer can be fully entangled / Y. Wang, Y. Li, Zh.-qi Yin, B. Zeng // npj Quantum Inf. -- 2018. -- Vol. 4. -- P. 46. doi: 10.1038/s41534-018-0095-x.
  4. Mooney G. J. Entanglement in a 20-Qubit Superconducting Quantum Computer / G. J. Mooney, C. D. Hill, L. C. L. Hollenberg // Scientific Reports. -- 2019. Vol. 9. -- Art. 13465. doi: 10.1038/s41598-019-49805-7.
  5. Shimony A. Degree of Entanglement / A. Shimony // Ann. N.Y. Acad. Sci. -- 1995. -- Vol. 755. -- P. 675, doi: 10.1111/j.1749-6632.1995.tb39008.x.
  6. Frydryszak A. M. Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems / A. M. Frydryszak, M. I. Samar, V. M. Tkachuk // Eur. Phys. J. D. -- 2017. -- Vol. 71. -- P. 233. doi: 10.1140/epjd/e2017-70752-3.
  7. Wei T.-C. Geometric measure of entanglement and applications to bipartite and multipartite quantum states / T. C. Wei, P. M. Goldbart // Phys. Rev. A. -- 2003. -- Vol. 68. -- P. 042307. doi: 10.1103/PhysRevA.68.042307.
  8. Brody D. C., Hughston L. P. Geometric quantum mechanics / D. C. Brody, L. P. Hughston // J. Geom. Phys. -- 2001. -- Vol. 38(1). -- P. 19--53. doi: 10.1016/S0393-0440(00)00052-8.
  9. Markham D. Survival of entanglement in thermal states / D. Markham, J. Anders, V. Vedral, M. Murao, A. Miyake // Euro. Phys. Lett. -- 2008. - Vol. 81. -- P. 40006. doi: 10.1209/0295- 5075/81/40006.
  10. Wei T.-C. Global entanglement and quantum criticality in spin chains / T.-C. Wei, D. Das, S. Mukhopadyay, S. Vishveswara, P. M. Goldbart // Phys. Rev. A -- 2005. -- Vol. 71. -- P. 060305. doi: 10.1103/PhysRevA.71.060305.
  11. Nakata Y. Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model / Y. Nakata, D. Markham, M. Murao // Phys. Rev. A. -- 2009. -- Vol. 79. -- P. 042313. doi: 10.1103/PhysRevA.79.042313.
  12. Kuzmak A. R. Detecting entanglement by the mean value of spin on a quantum computer / A. R. Kuzmak, V. M. Tkachuk // Phys. Lett. A. -- 2020. -- Vol. 384. -- P. 126579. doi: 10.1016/j.physleta.2020.126579.
  13. Gnatenko Kh. P. Entanglement of graph states of spin system with Ising interaction and its quantifying on IBM's quantum computer / Kh. P. Gnatenko, V. M. Tkachuk // Phys. Lett. A. -- 2021. -- Vol. 396. -- P. 127248. doi: 10.1016/j.physleta.2021.127248.
  14. Gnatenko Kh. P. Geometric measure of entanglement of multi-qubit graph states and its detection on a quantum computer / Kh. P. Gnatenko, N. A. Susulovska // EPL (Europhys. Lett.) -- 2021. -- Vol. 136. -- P. 40003. doi: 10.1209/0295-5075/ac419b.
  15. Gour G. All maximally entangled four-qubit states / G. Gour, N. R. Wallach // J. Math. Phys. -- 2010. -- Vol. 51. -- P. 112201. doi: 10.1063/1.3511477.