Visnyk of the Lviv University. Series Physics 60 (2023) ñ. 127-136
DOI: https://doi.org/10.30970/vph.60.2023.127

Quantifying concurrence of two-qubit quantum states on a quantum computer

P. V. Sapriianchuk, Kh. P. Gnatenko

(íå ìåíøå 1800 çíàê³â) The concurrence of two-qubit quantum states is considered. Relation between the concurrence and the parameters of an arbitrary two-qubit quantum state is presented and quantified with quantum computing. For this purpose the mean values of spin operators are calculated on a quantum device. Results obtained on a quantum computer are in a good agreement with theoretical ones.

Full text (pdf)


References
  1. J. Matson, Nature. (2012). doi: 10.1038/nature.2012.11163.
  2. A. Piveteau, J. Pauwels, E. Hakansson, S. Muhammad, M. Bourennane and A. Tavakoli, Nat Commun. 13, 7878 (2022). doi: 10.1038/s41467-022-33922-5.
  3. A. Perna, E. Ortega, M. Grafe and F. Steinlechner, Appl. Phys. Lett. 120, 074001 (2022). doi: 10.1063/5.0069992.
  4. J. Ho, G. Moreno, S. Brito, F. Graffitti, C. Morrison, R. Nery, A. Pickston, \mbox{M. Proietti}, R. Rabelo, A. Fedrizzi and R. Chave, npj Quantum Inf. 8, 13 (2022). doi: 10.1038/s41534-022-00520-8.
  5. L. Bulla, M. Pivoluska, K. Hjorth, O. Kohout, J. Lang, S. Ecker, S. P. Neumann, J. Bittermann, R. Kindler, M. Huber, M. Bohmann and R. Ursin, Phys. Rev. X. 13, 021001 (2023). doi: 10.1103/PhysRevX.13.021001.
  6. S. Ecker, J. Pseiner, J. Piris and M. Bohmann, International Conference on Space Optics. 12777, 925--945 (2022). doi: 10.48550/arXiv.2210.02229.
  7. V. Giovannetti, S. Lloyd and L. Maccone, Science. 306, 1330--1336 (2004). doi: 10.1126/science.1104149.
  8. T. Geza and A. Iagoba, J. Phys. A: Math. Theor. 47, 424006 (2014). doi: 10.1088/1751-8113/47/42/424006.
  9. V. Giovannetti, S. Lloyd and L. Maccone, Nature Photonics. 5, 222--229 (2011). doi: 10.1038/nphoton.2011.35.
  10. R. Jozsa and N. Linden, Proc. R. Soc. Lond. A. 459, 2011--2032 (2003). doi: 10.1098/rspa.2002.1097.
  11. P. V. Shor, Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA. 124--134 (1994). doi: 10.1109/SFCS.1994.365700.
  12. B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist and A. G. White, Phys. Rev. Lett. 99, 250505 (2007). doi: 10.1103/PhysRevLett.99.250505.
  13. C.-Y. Lu, D. E. Browne, T. Yang and J-W. Pan, Phys. Rev. Lett. 99, 250504 (2007). doi: 10.1103/PhysRevLett.99.250504.
  14. W. Yuanhao, L. Ying, Y. Zhang-qi and Z. Bei, npj Quantum Inf. 4, 46 (2018). doi: 10.1038/s41534-018-0095-x.
  15. Kh. P. Gnatenko and N. A. Susulovska, Europhys. Lett. 136, 40003 (2022). doi: 10.1209/0295-5075/ac419b.
  16. Kh. P. Gnatenko and V. M. Tkachuk, Physics Letters A. 396, 127248 (2021). doi: 10.1016/j.physleta.2021.127248.
  17. S.-M. Fei, M.-J. Zhao, K. Chen and Z. X. Wang, Phys. Rev. A. 80, 032320 (2009). doi: 10.1103/PhysRevA.80.032320.
  18. V. M. Tkachuk, Lviv: Ivan Franko National University of Lviv. (2011).
  19. IBM Quntum computing. https://quantum-computing.ibm.com/