Journal of Physical Studies 23(1), Article 1801 [6 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.1801

MODELING THE NERVE IMPULSE TRANSMISSION IN A SYNAPTIC CLEFT

O. V. Kulish, A. N. Vasilev

Taras Shevchenko National University of Kyiv, Department of Theoretical Physics,
60, Volodymyrska St., Kyiv, Ukraine
e-mail: alex@vasilev.kiev.ua

We propose a model of the nerve impulse spreading through a synaptic cleft (chemical synapse). The model takes into account the diffusion of the mediator in the synaptic cleft and the interaction of the mediator with the receptors on the postsynaptic membrane. We consider a system of two equations. One of them describes the diffusion of the mediator in the synaptic cleft, and the other describes the interaction of the mediator with the receptors on the postsynaptic membrane. This is the key process of the nerve impulse transmission since activating the receptors leads to generating a new nerve impulse, which spreads through the contacting neuron. We find an analytical solution for the system of equations, and on the basis of this solution, we calculate some important characteristics which determine the regime of the nerve impulse transmission. In particular, we find how the number of activated receptors changes with time, and how these activated receptors are distributed within the postsynaptic membrane. We also calculate the size of the activation zone of the postsynaptic membrane and show that it is proportional to the size of the activation zone of the presynaptic membrane. Moreover, we investigate how the thickness of the synaptic cleft affects the activation characteristics of the synapse. We find that increasing the thickness of the cleft decreases the size of the activation zone of the postsynaptic membrane.

PACS number(s): 89.75.Fb, 87.10.+e, 87.16.Xa

pdf


References
  1. Z. M. Bacq, Chemical Transmission of Nerve Impulses: A Historical Sketch (Pergamon, Oxford, 1975);
    CrossRef
  2. H. W. Davenport, Physiologist, 34, 129 (1991).
  3. T. C. S\"{u}dhof, R. C. Malenka, Neuron 60, 469 (2008);
    CrossRef
  4. M. R. Bennett, History of the Synapse (Harwood Academic Publishers, Amsterdam, 2001).
  5. A. V. Chalyi, L. M. Chernenko, in Dynamical Phenomena at Interfaces, Surfaces and Membranes, edited by D. Beysens N. Boccara, G. Forgacs (Nova Science Publishers, New York, 1993), p. 457.
  6. A. V. Chalyi, E. V. Zaitseva, J. Phys. Stud. 11, 322 (2007).
  7. O. V. Chalyi, O. V. Zaitseva, Ukr. J. Phys. 54, 366 (2009).
  8. A. N. Vasilev, A. V. Chalyi, Ukr. J. Phys. 54, 1183 (2009).
  9. A. V. Chalyi, A. N. Vasilev, Phys. Alive 10, 32, (2000).
  10. A. N. Vasil'ev, A.V. Chalyi, Biophysics 55, 600 (2010);
    CrossRef
  11. A. N. Vasilev, S. V. Kislyak, J. Phys. Stud. 14, 4801 (2010).
  12. S. I. Braichenko, A. N. Vasilev, J. Phys. Stud. 16, 4802 (2012) (in Ukrainian).
  13. A. N. Vasil'ev, A. V. Kulish, Biophysics 59, 304 (2014);
    CrossRef
  14. A. V. Chalyi, A. N. Vasilev, E.V. Zaitseva, Condens. Matter Phys. 20 13804, (2017);
    CrossRef
  15. S. O. Rizzoli, W. J. Betz, Nature Rev. Neurosci. 6, 57 (2005);
    CrossRef
  16. J. Trommershauser, R. Schneggenburger, A. Zippelius, E. Nehery, Biophys. J. 84, 1563 (2003);
    CrossRef
  17. R. W. Holz, S. K. Fisher, in Basic Neurochemistry, edited by S. Brady, G. Siegel, R. W. Albers, D. Price (Elsevier, 2012), p. 235;
    CrossRef
  18. J. Lichtenberger, P. Fromherz, Biophys. J. 92, 2266 (2007);
    CrossRef
  19. S. E. Lauri et al., Neuron 50, 415 (2006);
    CrossRef
  20. R.G. Zhai, H.J. Bellen, Physiology 19, 262 (2004);
    CrossRef
  21. M. Missler, T. C. S\"udhof, T. Biederer, Cold Spring Harb. Perspect. Biol. 4, a005694 (2012);
    CrossRef
  22. J. D. Clements, R. A. J. Lestert, G. Tong, C. E. Jahr, G. L. Westbrook, Science 258, 1498 (1992).