Journal of Physical Studies 23(4), Article 4002 [4 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4002

DETERMINING KEY ENERGY RELATIONS, QUANTUM STATES AND ASSOCIATED MATRIX FORMALISMS RELATIVE TO THE COLLISION BETWEEN TWO DIATOMIC MOLECULES UNDER A STRONG MAGNETIC FIELD

M. A. Grado-Caffaro, M. Grado-Caffaro

M. A. Grado-Caffaro and M. Grado-Caffaro-Scientific Consultants,
C/Julio Palacios 11, 9-B, 28029-Madrid, Spain,
%\url{www.sapienzastudies.com},
e-mail: ma.grado-caffaro@sapienzastudies.com

We carry out a dynamical analysis of the collision process between two diatomic molecules in the presence of a strong magnetic field. In order to exemplify, these molecules can be, say, typically, lasing molecules as, for instance, relative to carbon-monoxide gasdynamic lasers. The molecules in question behave as quantum anharmonic oscillators after the Morse potential. In our analysis, we simulate the kinetic energy lost after the collision by assuming, equivalently, two additional molecules (fictitious and identical to the molecules which collide) with the above kinetic energy. Furthermore, the corresponding density of states is determined and associated matrix formalisms are established to calculate the total number of states.

PACS number(s): 02.10.Yn, 03.65.-w, 33.20.Tp, 34.20.-b, 34.50.-s

pdf


References
  1. J. A. Coxon, P. G. Hajigeorgiou, J. Chem. Phys. 132, 094105 (2010);
    CrossRef
  2. R. J. Le Roy, Y. Huang, C. Jary, J. Chem. Phys. 125 164310 (2006);
    CrossRef
  3. N. S. Dattani, R. J. Le Roy, J. Mol. Spectrosc. 268 199 (2013);
    CrossRef
  4. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997);
    CrossRef
  5. S. A. Mikhailov, Physica B 299, 6 (2001);
    CrossRef
  6. M. A. Grado-Caffaro, M. Grado-Caffaro, Eur. Phys. J. B 73, 243 (2010);
    CrossRef
  7. S. Y. Bhide, S. Yashonath, J. Phys. Chem. A 106, 7130 (2002);
    CrossRef
  8. R. L. McKenzie, Phys. Fluids 15, 2163 (1972);
    CrossRef
  9. J. D. Anderson, jr., Gasdynamic lasers: an introduction (Academic Press, New York, 1976), p. 113.
  10. A. A. Dakhel, Curr. Appl. Phys. 11, 11 (2011);
    CrossRef
  11. Tz-Jun Kuo, M. H. Huang, J. Phys. Chem. B 110, 13717 (2006);
    CrossRef
  12. J. Owen, J. H. M. Thornley, Rep. Prog. Phys. 29, 675 (1966);
    CrossRef
  13. G. Amat, H. H. Nielsen, G. Tarrago, Rotation-vibration of polyatomic molecules (Marcel Dekker, Inc., New York, NY, 1971).
  14. M. Dang-Nhu, A. S. Pine, Can. J. Phys. 64, 289 (1986);
    CrossRef
  15. M. A. Grado-Caffaro, M. Grado-Caffaro, Mod. Phys. Lett. B 18, 1449 (2004);
    CrossRef
  16. M. A. Grado-Caffaro, M. Grado-Caffaro, Rep. Math. Phys. 70, 105 (2012);
    CrossRef
  17. M. A. Grado-Caffaro, M. Grado-Caffaro, Adv. Stud. Theor. Phys. 8, 73 (2014);
    CrossRef
  18. M.A. Grado-Caffaro, M. Grado-Caffaro, Z. Naturforsch. A 72, 463 (2017);
    CrossRef
  19. B. E. J. Dahlberg, E. Trubowitz, Comment. Math. Helvetici 57, 130 (1982);
    CrossRef
  20. A. Mohamed, J. Math. Phys. 38, 4023 (1997);
    CrossRef
  21. M. M. Skriganov, Inv. Math. 80, 107 (1985);
    CrossRef
  22. A. V. Sobolev, Ann. Henri Poincaré 6, 31 (2005);
    CrossRef