Journal of Physical Studies 24(3), Article 3904 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3904

THIRD COMPONENTS WITH ELLIPTICAL ORBITS IN THE ECLIPSING BINARIES

D. E. Tvardovskyi{1,2} , V. I. Marsakova{2} , I. L. Andronov1 

1Department of Mathematics, Physics and Astronomy, Odesa National Maritime University, Odesa, Ukraine
2Department of Theoretical Physics and Astronomy, Odesa I. I. Mechnikov National University, Odesa, Ukraine

Received 30 September 2019; in final form 20 June 2020; accepted 23 June 2020; published online 07 October 2020

In our research, we studied 9 eclipsing binary stars: AR Lac, U CrB, S Equ, SU Boo, VV UMa, WW Gem, YY Eri, V0404 Lyr, HP Aur. We collected large sets of moments of minima from BRNO and observational data from AAVSO databases. Then, we obtained the moments of minima for AAVSO observations (totally 397 minima) using the method of approximation with symmetric polynomial, realized in software MAVKA. This software was provided by Kateryna D. Andrych and Ivan L. Andronov. Then, we combined the obtained moments of minima with the data taken from BRNO and plotted O-C diagrams. For all the stars, these diagrams represented sinus-like oscillations with the superposition of a linear trend (for SU Boo, VV UMa, WW Gem, V0404 Lyr and HP Aur) or a parabolic trend (for AR Lac, U CrB, S Equ and YY Eri). The oscillations could be described as the presence of the third component, which does not take part in eclipses, but causes the well-known light-time effect (LTE). That effect could be easily detected using long data series of observations. However, the oscillations show clear asymmetry, which we interpreted by an elliptical shape of the third components' orbit. The parabolic trend is explained by a mass transfer between components of a binary system. For all the stars, we computed the minimal possible mass of the third component. In addition, we developed our own code in the computed language Python and, using it, we computed orbital elements of the third component. For the stars with a parabolic trend, we calculated the mass transfer rate. For all computed values, the errors (accuracy) were estimated.

Key words: stellar astrophysics, eclipsing binary, mass transfer, third component, orbital elements, O–C diagram

Full text


References
  1. N. N. Samus, E. V. Kazarovets, O. V. Durlevich, N. N. Kireeva, E. N. Pastukhova, Astron. Rep. 61, 80 (2017);
    Crossref
  2. M. Zboril, J. M. Oliveira, S. Messina, G. Djurasevic, P. J. Amado, Contrib. Astron. Obs. Skalnate Pleso 35, 23 (2005).
  3. E. Raumer, Mon. Not. R. Astron. Soc. 427, 1702 (2012).
  4. J. P. De Greve, N. Mennekens, W. Van Rensbergen, L. Yungelson, Astron. Soc. Pacif. Conf. Ser. 404, 204 (2009).
  5. F. Mardirossian, M. Mezzetti, G. Giuricin, Astron. Astrophys. Suppl. Ser. 40, 57 (1980).
  6. C. Lázaro, M. J. Arévalo, A. Claret, E. Rodriguez, I. Olivares, Mon. Not. R. Astron. Soc. 325, 617 (2001);
    Crossref
  7. Y.-G. Yang, Y. Yang, H.-F. Dai, X.-G. Yin, Astron. J. 148, 90 (2014);
    Crossref
  8. R. Nesci, C. Maceroni, L. Milano, G. Russo, Astron. Astrophys. 159, 142 (1986).
  9. Jae Woo Lee, Astron. J. 148, 37 (2014).
  10. D. S. Hall, J. M. Kreiner, Acta Astron. 30, 387 (1980).
  11. Chun-Hwey Kim, Astron. J. 102, 1784 (1991).
  12. L. Jetsu et al., Astron. Astrophys. 326, 698 (1997).
  13. J. D. Needham, J. P. Phillips, M. J. Selby, C. Sanchez-Margo, Astron. Astrophys. 83, 370 (1980).
  14. R. K. Srivastava, Acta Astron. 34, 291 (1984).
  15. Ye Lu, Fu-Yuan Xiang, Xiao-Min Shi, Publ. Astron. Soc. Jpn. 64, 84 (2012).
  16. A. I. Khaliullina, Astron. Rep. 62, 264 (2018);
    Crossref
  17. M. T. Richards, A. S. Cocking, Proc. IAU Symp. 290, 301 (2012).
  18. E. Raymer, Mon. Not. R. Astron. Soc. 427, 1702-1712 (2012);
    Crossref
  19. M. T. Richards, Proc. Int. Astron. Union Symp. 282, 167 (2012).
  20. M. I. Agafonov, O. I. Sharova, M. T. Richards, Astrophys. J. 690, 1730 (2009);
    Crossref
  21. S. K. Yerli et al., Mon. Not. R. Astron. Soc. 342, 1349 (2003);
    Crossref
  22. G. J. Peters, R. S. Polidan, Bull. Am. Astron. Soc. 29, 835 (1997).
  23. G. E. Albright, M. T. Richards, Astrophys. Space Sci. 224, 415 (1995);
    Crossref
  24. M. T. Richards, G. E. Albright, L. M. Bowles, Astrophys. J. 438, L103 (1995).
  25. J. Tomkin, D. L. Lambert, M. Lemke, Mon. Not. R. Astron. Soc. 265, 581 (1993);
    Crossref
  26. T. Borkovits, T. Hegedus, Odessa Astron. Publ. 7, 126 (1994);
    Crossref
  27. P. Mayer, M. Wolf, J. Tremko, P. G. Niarchos, Publ. House Czechoslovak Acad. Sci. 42, 4 (1991).
  28. J. R. W. Heintze, J. Am. Assoc. Var. Star Observers 19, 23 (1990).
  29. R. H. van Gent, Astron. Astrophys. Suppl. Ser. 77, 471 (1989).
  30. H. Forbes-Conde, T. Hertczeg, Astron. Astrophys. Suppl. Ser. 12, 1 (1973).
  31. G. A. Bakos, J. Tremko, Roy. Astron. Soc. Canada 75, 124 (1981).
  32. N. Mennekens, J.-P. De Greve, W. Van Rensbergen, L. R. Yungelson, Astron. Astrophys. 486, 919 (2008);
    Crossref
  33. F. Soydugan et al., Mon. Not. R. Astron. Soc. 379, 1533 (2007);
    Crossref
  34. F. Soydugan, O. Demircan, E. Soydugan, C. Ibanoglu, Astron. J. 126, 393 (2003);
    Crossref
  35. S. B. Qian, L.Y. Zhu, Astrophys. J. Suppl. Ser. 142, 139 (2002);
    Crossref
  36. Jae Woo Lee, Seung-Lee Kim, Kyeongsoo Hong, Chung-Uk Lee, Jae-Rim Koo, Astron. J. 148, 37 (2014).
  37. Brno Regional Network of Observers; http://var2.astro.cz/EN/
  38. American Association of Variable Stars Observers; https://www.aavso.org
  39. K .D. Andrych, I. L. Andronov, Open Eur. J. Var. Stars 197, 65 (2019).
  40. M. T. Richards, G. E. Albright, Astrophys. J. Suppl. Ser. 123, 537 (1999);
    Crossref
  41. P. Zasche, M. Wolf, R. Uhlar, H. Kucakova, Astron. J. 147, 130 (2014);
    Crossref
  42. V. Simon, Astron. Astrophys. 311, 915 (1996).
  43. L. F. Snyder, in 32nd Annual Symposium on Telescope Science (Society for Astronomical Sciences, 2013), p. 179.
  44. I. L. Andronov, A. V. Baklanov, Astron. School Rep. 5, 264 (2004);
    Crossref
  45. K. D. Andrych, I. L. Andronov, L. L. Chinarova, Odessa Astron. Publ. 30, 57 (2017);
    Crossref
  46. K. D. Andrych, I. L. Andronov, L. L. Chinarova, V. I. Marsakova, Odessa Astron. Publ. 28, 158 (2015).
  47. K. D. Andrych, I. L. Andronov, L. L. Chinarova, J. Phys. Stud. 24, 1902 (2020);
    Crossref
  48. J. B. Tatum, Physics topics. Celestial Mechanics; http://astrowww.phys.uvic.ca/ tatum/celmechs/
  49. Scipy library; https://www.scipy.org
  50. Python; http://www.python.org
  51. I. L. Andronov et al., Astron. Soc. Pacif. Conf. Ser. 511, 43 (2017).
  52. I. B.Vavilova et al., Proc. IAU Symp. No. 325, 361 (2017);
    Crossref
  53. I. B. Vavilova et al., Kinem. Phys. Celest. Bodies 28, 85 (2012);
    Crossref
  54. D. E. Tvardovskyi, V. I. Marsakova, I. L. Andronov, Odessa Astron. Publ. 30, 135 (2017);
    Crossref
  55. D. E. Tvardovskyi, V. I. Marsakova, I. L. Andronov, L. S. Shakun, Odessa Astron. Publ. 31, 103 (2018);
    Crossref